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Abstract: Epilepsy diagnosis is a medical care process that requires considerable transformation,
mainly in developed countries, to provide efficient and effective care services taking into consideration
the low number of available neurologists, especially in rural areas. EEG remains the most common
test used to diagnose epilepsy. In recent years, there has been an increase in deep learning techniques
to analyze electroencephalograms (EEG) to detect epileptiform events. These types of techniques
support the epilepsy diagnostic processes performed by neurologists. There have been several
approaches such as biomedical signal processing, analysis of characteristics extracted from the
signals, and image analysis to detect epileptiform events. Most of the works reported in the literature,
which use images, transformed the signals into a two-dimensional space interpreted as an image.
However, only a few of them use the raw EEG image. This paper presents a computational model
for detecting epileptiform events from raw EEG images, using convolutional neural networks and
a transfer learning approach. To perform this work, 100 pediatric EEGs were collected, noting six
characteristics of epileptiform events in each exam: spikes, poly-spikes, spike-and-wave, sharp waves,
periodic, and a combination of them. Then, pre-trained convolutional neural networks were used,
which, through transfer learning techniques, were retrained to classify possible events. The model’s
performance was evaluated in terms of precision, accuracy, and Mathews’ correlation coefficient. The
model offered a performance above 95% accuracy for binary classification and above 87% for multi-
class classification. These results demonstrated that identifying epileptiform events from raw EEG
images combined with deep learning techniques such as transfer learning is feasible. Significance:
The proposed method for the evaluation of EEG tests, as a support tool for the diagnosis of epilepsy,
can help to reduce the time of reading EEGs, which is very important, especially in developing
countries with a limitation of a specialist in neurology.

Keywords: AlexNet; digital transformation; EEG raw images; epilepsy diagnosis; pediatrics epilepsy;
seizure detection; transfer learning

1. Introduction

Epilepsy is a functional cerebral disease caused by sudden abnormal brain neuron
discharge. It is one of the most common brain diseases [1]. Multichannel electroencephalo-
gram (EEG) has been widely applied for epilepsy analysis and diagnosis as it contains rich
information on the abnormal discharge of brain cells during seizure onsets [2]. The EEG
allows observing brain activity by using electrodes in the scalp’s area and usually adopting
the international system 10–20 [3]. The EEG is analyzed by a neurologist, who looks for
electrographic characteristic events that represent epilepsy, also called epileptiform events,
such as spikes, sharp waves, slow waves, etc. In addition, the specialist’s task is also to
identify non-epileptiform events [4], such as eye blinks, normal background activity, and
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noise from different sources. However, analyzing EEG is a time-consuming and rigorous
task since abnormalities such as spikes are only 20–70 milliseconds in length and cannot
become unnoticed [5]. Therefore, performing an automatic EEG analysis is essential to ap-
proach the enormous challenge of supporting, facilitating, and expediting the diagnosis of
epilepsy, especially in developing countries with a limitation of a specialist in neurology [6].

A developing country is defined as a country that has an annual gross national product
per capita (GNP) of less than 9361 American dollars, according to the World Bank. Most low
and middle-income countries (LMIC) fall into this category [7]. The number of neurologists
available in LMIC is low causing consequences such as the low coverage of health services
for epilepsy [8]. In Colombia, only 208 neurologists were available in 2017 (around one
neurologist for every 240,000 inhabitants), while in developed countries the number of
neurologists available is approximately ten times more [9]. It is also worrying that the
expected number of neurologists for the year 2030, according to the governing entity of
health in Colombia, would only reach 629, which is not enough to have a significant
improvement [9]. The lack of available specialists in LMIC affects the epilepsy process and
diagnosis due to the required time to analyze the diagnostic test.

Considering the low availability of neurologists in LMIC countries, digital transforma-
tion in epilepsy diagnosis is essential to support the process performed by neurologists and
try to reduce the time needed to review an EEG exam, which is used as the principal tool
for an epilepsy diagnosis. The time needed to review an EEG exam currently in developing
countries is too long, approximately 30 to 60 min, which considerably limits the number
of diagnoses per day that a neurologist can perform [5]. The use of information and com-
munication technologies (ICT) is essential to support these diagnoses, reducing the time
the neurologist spends reviewing an exam, and reducing the complexity of the process. By
reducing the review time of an EEG exam, the sustainability of the service is improved in
the social and economic aspects, allowing an increase in the number of patients diagnosed
per day. The technologies used in this study have focused on trying to reduce the number
of signals to be reviewed by the neurologist, because a page of an EEG exam (which lasts
approximately 30 min), which normally has only 10 s of the exam and a large number of
channels (one signal per channel) to review (an exam is approximately 180 pages) [5]. By
identifying the possible events of interest in an EEG to a certain number (which is normally
low), through ICT, the time needed to review the entire exam decreases considerably.

Machine learning (ML) algorithms are becoming a relevant tool to support the au-
tomatic detection of relevant information in EEG records. The objectives are diverse:
recognition of emotions, evaluation of the sleep quality, and detection of epileptiform
events, among others [2,10–16]. Approaches to detect epileptiform events using ML in-
clude biomedical signal processing, analysis of characteristics extracted from the signals,
and analysis of images in a lesser proportion [17]. The works of Molina et al. [5] and
Muñoz et al. [18] provide an example of the use of ML for the detection of epileptiform
events. Molina et al. developed an intelligent component to automatically detect abnormal
segments of EEG tests using conventional machine learning algorithms over a dataset gen-
erated from EEG signals [5]. Muñoz et al. present a machine learning-based methodology
using a visual bag of words taken from raw EEG images as input to identify images with
abnormal signals [18]. Although ML provides exciting results, it has many drawbacks due
to the many channels used, the low amplitude per channel, and the non-stationarity of
each channel in the signal [19].

The deep learning technique called transfer learning has been recently used to detect
epileptiform events in EEG [20–24]. Transfer learning is the process of taking a pre-trained
deep learning network and fine-tuning it to learn a new task [24]. Transfer learning
algorithms use datasets, features, or model parameters from the source domain to train
the model in the target domain to reduce the scale of training data in the target domain,
reducing the sampling and training cost [25]. Qu et al. propose an epileptogenic region
detection based on a deep Convolutional Neural Network (CNN) with transfer learning,
which aided the automatic detection and classifications of focal signals from non-focal
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signals [23]. Cao et al. present a comprehensive study on epileptic state classification
based on deep transfer learning (TL) [20]. Nogay et al. propose an end-to-end machine
learning model to detect epileptic seizures using the pre-trained deep two-dimensional
CNN and the concept of transfer learning [22]. Gómez et al. propose an automatic method
to detect epileptic seizures using an imaged-EEG representation of brain signals, analyzing
EEG signals from two different datasets: the CHB-MIT Scalp EEG database and scalp and
intracranial recordings of the EPILEPSIAE project [21]. Finally, Raghu et al. present a
classifier of seven seizures with non-seizure EEG, which is developed by applying CNN
and transfer learning using the Temple University Hospital EEG corpus (open-source
database) [24].

Most works reported in the literature for detecting epileptiform events that use images,
CNN, and transfer learning; performed a transformation of the signals to a two-dimensional
space that can be interpreted as an image. However, to the best of our knowledge, few
works use the raw EEG image (only three works in the researched literature). This research
presents a computational model for detecting epileptiform events from raw EEG images
and convolutional neural networks (pre-trained using transfer learning). This proposal
seeks to improve the efficiency in the diagnosing epilepsy through a technology that allows
the neurologist to reduce the time to review an EEG exam.

For the development of the proposal, first, 100 pediatric EEGs were collected to per-
form this work, noting six types of epileptiform events in each exam: sharp waves, spikes,
poly-spikes, spike-and-wave, periodic, and combinations of the above. Next, 100 other
pediatric EEGs were collected [5]. Then, pre-trained convolutional neural networks were
used, which, through transfer learning techniques, were retrained to classify possible events.
Finally, the model’s performance was evaluated in precision, accuracy, sensitivity/recall,
specificity, F1-score, and Mathews’ correlation coefficient (MCC).

The novelty of our work is represented in the following aspects: (a) The use of raw
images for abnormalities detection in EEG exams, which has been done in a few works
worldwide. (b) Some of the works with similar approaches (using raw images/or transfer
learning, and/or CNN) perform one of the two approaches we used in our research,
binary classification or multi-class classification. We did not find works with both types of
approaches. (c) The results presented by the works with similar approaches do not have
sufficient performance indices. They only present some of them (accuracy and precision).
In our work, we present the following performance indices: accuracy, sensitivity, specificity,
precision, F1- score, and Matthews Correlation Coefficient (CCM). (d) The use of a pediatric
EEG exams dataset in our research can be considered a novel result since few datasets on
pediatric EEG exist, and pediatric EEG presents more significant variability than adult
EEGs. Therefore, they have a greater level of difficulty in interpreting their signals.

The rest of this paper is divided into four more sections: Section 2 presents the
materials and methods used in this research; Section 3 shows the results obtained in each
stage of the methodology; Section 4 discusses the results, and, finally, Section 5 concludes
this paper and presents some future work.

2. Materials and Methods

Transfer learning is part of the deep learning approach and is characterized by a
recognition system that applies previously learned knowledge and skills to novel tasks [26].
It is commonly used to solve problems in implementing deep learning algorithms with
small datasets, where a large volume of data is required for the training stage [27,28]. It
is applied in two settings (Figure 1), taking a pre-trained model and adapting it to a new
data set.
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Figure 1. Block diagram of the transfer learning approach.

The principal material used to collect data within this research was the BWII EEG
device (by Neurovirtual) provided with the BWII Analysis software (https://neurovirtual.
com/). The device was set up for the 10–20 standard at a sampling frequency of 200 Hz,
with a 50/60 Hz filter and digital filter provided by the manufacturer’s software. Further-
more, the Ethics Committee of the University of Cauca, Colombia, consented to each EEG
record in compliance with the Declaration of Helsinki and bioethical standards.

Concerning methods, the work performed in this research was divided into two
stages. First, a binary classification (epileptic seizure or normal) of the analyzed images
was conducted in the first stage. Then, a multi-class classification was performed in the
second stage, identifying up to seven different classes: six possible types of an epileptic
seizure and the normal signal. The methods used in each stage are described below.

2.1. First Stage: Binary Classification

At this stage, the methodology consisted of five steps (Figure 2): data collection, data
preparation, model selection, model fine-tuning, and model evaluation.
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Figure 2. Five steps of the methodology proposed for stage 1.

The first step consisted of collecting and annotating pediatric EEG exams. Secondly,
each EEG was segmented into its constituting pages, stored as individual images. Then, a
generic deep learning model (pre-trained with a generic database) was selected. Next, a
new model was built by transferring the generic knowledge to a specific data set. Finally,
the performance of the model was evaluated with images of unseen patients.

2.1.1. Data Collection: Acquisition of Encephalograms

To perform this work and others related [5,18,29–31], 100 pediatric EEGs were collected
from the same number of children aged between 22 days and 17 years old, suspected of
suffering epilepsy. The exams were performed with the patients asleep, on the recommen-
dation of the neurologist. To achieve this, parents were asked to take the child to the test in
sleep deprivation, sleeping between five and six hours the night before the appointment by
delaying the child’s bedtime and moving the wake time up.

https://neurovirtual.com/
https://neurovirtual.com/
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Later, the exams were interpreted by pediatric neurologists noting six types of epilep-
tiform events in each exam: sharp waves, spikes, poly-spikes, spike-and-wave, periodic,
and combinations. This collected dataset was one of the objectives of the NeuroMoTIC
project. This system helps with the diagnosis of epilepsy, data collection, management, and
classification of clinical information and EEG signals [5].

In total, 100 EEGs were collected with a duration of 30 min per examination. At the
same time, the interpretation and annotation of events captured were performed with the
advice and supervision of a pediatric neurologist, who identified the main characteristics
of the patients in the entire data set. In addition, these data were divided demographically,
and the diagnosis between normal and abnormal is presented in Table 1.

Table 1. Patient demographics in the dataset.

Number
of Patients Min. Age Max. Age Mean Age Gender Conclusion

34 24 days 14 years 5.86 years M F
Abnormal

21 13

66 22 days 17 years 6.6 years 39 27 Normal

2.1.2. Data Preparation

Events were divided into normal and abnormal (binary classification). Then, all EEGs
were converted, page by page, to the European Data Format (EDF) format and stored, as
images, using the EDFBrowser (https://www.teuniz.net/edfbrowser/). This tool is a free
visualization tool that allows users to display time series such as EEG, EMG, and ECG,
using a set of displaying parameters (Table 2).

Table 2. Display parameters for capturing each image.

Parameters Description

Timeline 10 s/page
Amplitude 100 µV

Background White
Axes Hidden

Channels 19
Channel nomenclature Visible

Electrooculogram Visible
Electrocardiogram Visible

Tonality Blue
Edges and software interface Hidden

Four hundred one images with the signals were extracted, and they were organized
into normal and abnormal, each one, in jpg format with 1920 × 906 × 3 pixels. Figure 3
presents an example of the extracted images. One-hundred EEGs were taken, and each
EEG had an approximate duration of 30 min, for which each EEG had approximately 180
images because each image has a period of 10 s of the examination. Not all 180 images
were considered from each EEG, only the images with epileptiform events identified by the
neurologist, and some randomly selected normal images. For patients with normal EEG
recordings, all the images considered were randomly chosen.

https://www.teuniz.net/edfbrowser/
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The distribution of normal and abnormal EEG is presented in Table 3. Concerning the
abnormal category, 166 images were gathered in total.

Table 3. Dataset composition according to diagnosis.

EEG No. Patients EEG Pages

Normal 66 235
Abnormal 34 166

2.1.3. Model Selection

A classification system of transfer learning was developed by two convolutional neural
networks (CNN), AlexNet [32] and GoogLeNet [33]. Their architectures contain 8 and 22
deep layers, respectively; these were initially trained to classify up to 1000 different image
classes [33,34], with millions of images from the ImageNet database (ImageNet). Although
other CNN such as ResNET, Inception-ResNET, and NASNetLarge were evaluated, these
did not achieve good results. Therefore, they were not considered in this report.

2.1.4. Model Fine-Tuning

The model fine-tuning, also known as data tuning, was performed by following
the partial fine-tuning method, which consists of freezing the first layers of the model
and retrains with the specific dataset layers. In this case, it was replaced with a new
fully-connected layer with 31 outputs and a new one with two class labels corresponding
to normal and abnormal (seizure) pages, respectively; this is binary classification. In
such a sense, and considering the requirements of the CNN, images were resized to
224 × 224 × 3 pixels; those resized images served as input to both pre-trained networks
and, to discover seizures, the last fully connected layer and the final classification layer of
the networks were replaced.

2.1.5. Model Evaluation

In this step, the k-fold method was used with cross-validation to obtain the best model
from different performance indices. This methodology guarantees that the results are
independent of training and testing datasets [18]. First, a dataset partition was performed.
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EEG images of 70% of the patients were randomly chosen to train, and 30% of the remaining
patients were used as a held dataset to assess the model’s performance; 401 images were
considered in the model evaluation. Finally, the confusion matrix was calculated, and,
from there, the following indices were derived: Accuracy, Sensitivity, Specificity, Precision,
F1-Score, and Matthews Correlation Coefficient (CCM).

2.2. Second Stage: Multi-Class Classification

In this second stage, similar steps presented in the first stage were performed. How-
ever, there were some changes, as described below.

In data preparation, the abnormal signals showed six patterns: sharp waves, spikes,
poly-spikes, spike-and-wave, periodic, and above combinations. These, plus the normal
class, are the seven final classes considered at this stage. Figure 4 presents three types of
abnormal signals: (a) spikes, (b) poly spikes, and (c) spike-and-wave. Additionally, this
figure illustrates a normal signal (d). The image dataset used in this work has a considerable
number of spikes and poly spikes, which they will be the types of abnormalities to consider
in this work.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 16 
 

are independent of training and testing datasets [18]. First, a dataset partition was per-
formed. EEG images of 70% of the patients were randomly chosen to train, and 30% of the 
remaining patients were used as a held dataset to assess the model’s performance; 401 
images were considered in the model evaluation. Finally, the confusion matrix was calcu-
lated, and, from there, the following indices were derived: Accuracy, Sensitivity, Specific-
ity, Precision, F1-Score, and Matthews Correlation Coefficient (CCM). 

2.2. Second Stage: Multi-Class Classification 
In this second stage, similar steps presented in the first stage were performed. How-

ever, there were some changes, as described below.  
In data preparation, the abnormal signals showed six patterns: sharp waves, spikes, 

poly-spikes, spike-and-wave, periodic, and above combinations. These, plus the normal 
class, are the seven final classes considered at this stage. Figure 4 presents three types of 
abnormal signals: (a) spikes, (b) poly spikes, and (c) spike-and-wave. Additionally, this 
figure illustrates a normal signal (d). The image dataset used in this work has a consider-
able number of spikes and poly spikes, which they will be the types of abnormalities to 
consider in this work. 

 
Figure 4. Examples of abnormal and normal signals: (a) spikes, (b) poly-pikes, (c) spike-and-wave, 
and (d) normal. 

The number of selected images was increased in the model evaluation, from 401 im-
ages used in stage one to 601 images. Out of these 601 images, 435 were normal and 166 
abnormal out of the 166 abnormalities, 35 poly-spikes, 50 spikes, 35 spike-and-wave, 11 
sharp waves, 5 periodic, and 30 combinations. 

Additionally, in this second stage, the six types of abnormalities (and the normal 
class) were initially considered in model evaluation. Later, the number of classes was de-
creased in each evaluation iteration with each of the CNN to obtain models with 6, 5, 4, 
and 3 abnormalities. This process allowed us to evaluate if the performance indices (accu-
racy, precision, etc.) were affected when considering a more significant number of classes 
and the balance of the dataset. Finally, the complete results in the training and evaluation 
stage (with all the performance indices) were calculated for the model with the number of 
classes with better results in accuracy (four classes: three abnormalities and normal) and 
the worse outcomes inaccuracy (seven classes: six abnormalities and normal). 

Figure 4. Examples of abnormal and normal signals: (a) spikes, (b) poly-pikes, (c) spike-and-wave,
and (d) normal.

The number of selected images was increased in the model evaluation, from 401 images
used in stage one to 601 images. Out of these 601 images, 435 were normal and 166 abnor-
mal out of the 166 abnormalities, 35 poly-spikes, 50 spikes, 35 spike-and-wave, 11 sharp
waves, 5 periodic, and 30 combinations.

Additionally, in this second stage, the six types of abnormalities (and the normal class)
were initially considered in model evaluation. Later, the number of classes was decreased
in each evaluation iteration with each of the CNN to obtain models with 6, 5, 4, and 3
abnormalities. This process allowed us to evaluate if the performance indices (accuracy,
precision, etc.) were affected when considering a more significant number of classes and
the balance of the dataset. Finally, the complete results in the training and evaluation stage
(with all the performance indices) were calculated for the model with the number of classes
with better results in accuracy (four classes: three abnormalities and normal) and the worse
outcomes inaccuracy (seven classes: six abnormalities and normal).

3. Results

The results obtained in each stage are presented in this section.
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3.1. Results in Binary Classification
3.1.1. Modeling: Retraining of the Convolutional Neural Networks (CNN)

In this step, AlexNet [31] and GoogLeNet [32] CNN were partially varied and trained
repeatedly, as indicated in Section 2.1.4. Furthermore, the cross-validation with the k = 10
method was assumed to ensure independent results of the data partition and higher
performance. Results for the training stage, for each CNN in terms of accuracy, are
presented below.

AlexNet. As a first step, it was necessary to retrain the Alexnet by using 281 images of
EEG pages (70% of 401 images), a batch size of 10 and 15 epochs. The final output made
a 95% accuracy possible, as measured during each iteration until reaching the 15 epochs.
Figure 5 presents the training results with AlexNet.
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GoogLeNet. As a second step, it was necessary to retrain the GoogLeNet by using
the same 281 images of EEG pages (70% of 401 images), a batch size of 10 and 15 epochs.
The final output made accuracy higher than 93%, as measured during each iteration until
reaching the 15 epochs. Figure 6 presents the training results with GoogLeNet.
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3.1.2. Evaluation

The test data set consisting of 120 held images (30% of 401 images), 33 EEG pages with
seizures, and 87 EEG pages without seizures were used to estimate the performance of this
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model. Regarding CNN (AlexNet and GoogLeNet), a confusion matrix was employed for
the results shown in Table 4.

Table 4. Confusion matrix for test data in binary classification.

Prediction
AlexNet GoogLeNet

Abnormal Normal Abnormal Normal

True Class
Abnormal 28 5 27 6

Normal 1 86 1 86

Although the data set was unbalanced, the performance of both classifiers was opti-
mal. Furthermore, some seizures were identified through many mistakes caused by the
unbalanced dataset.

It was possible to calculate the performance indices by using the confusion matrix
values. The values are presented in Table 5.

Table 5. Performance indices are obtained from the confusion matrix in binary classification.

Index AlexNet (%) GoogLeNet (%)

Sensitivity/recall 96.55 96.43
Specificity 94.51 93.48
Precision 84.85 81.82
Accuracy 95.00 94.17
F1 Score 90.32 88.52

MCC 87.30 85.16

The trained model was able to generalize due to the implemented data set because it
presented outstanding performances compared to new data not included in the training stage.

The model presented a performance of approximately 95% (and the rest of the perfor-
mance indexes above 87.30%). These results demonstrated that identifying epileptiform
events from raw EEG images combined with deep learning techniques is feasible.

Another important aspect of the results of this classification is the execution time of the
algorithm. Such time is only a few minutes (less than 5 min); therefore, with this technique,
the initially stated objective of improving the efficiency of the epilepsy diagnostic process
is achieved, reducing the time necessary to review the EEG exam by part of the neurologist,
and reducing the number of pages he needs to review.

3.2. Results in Multi-Class Classification

As previously mentioned, the classes considered in this classification were initially six
abnormalities (sharp waves, spikes, poly-spikes, spike-and-wave, periodic, and combina-
tions of the abnormalities) and the normal class (seven classes in total). Subsequently, 6, 5,
4, and 3 classes were evaluated, considering only the performance index ”accuracy” (main-
taining in each option the normal class). Finally, as mentioned in Section 2.2, the number of
images considered was increased to 601 images. Final classification was performed using
both CNNs. However, AlexNet outperformed over GoogleNet. Figure 7 shows the results
obtained of the accuracy in each of the classifications made for AlexNet.



Sustainability 2022, 14, 11420 10 of 16Sustainability 2022, 14, x FOR PEER REVIEW 10 of 16 
 

 
Figure 7. Accuracy of multi-class classifications (seven to three classes). 

As expected, as the number of classes considered was decreased, performance in-
creased (in most cases because the result with three classes was lower than the result with 
four classes). Therefore, the straight line that was graphed in Figure 7 corresponds to the 
increasing trend. 

The training performed using four classes (spikes, poly-spikes, spike-and-wave, and 
normal), and 421 images (70% of 601 images) is presented in Figures 8 and 9, where accu-
racy and loss (respectively) are calculated. 

 
Figure 8. Accuracy during training (using four classes for classification). 

 
Figure 9. Loss during training (using four classes for classification). 

In evaluating four classes of classification, a test data set of 180 held images (30% of 
601 images). Regarding the CNN (AlexNet), a confusion matrix was employed for the 
results, as shown in Table 6. 

  

Figure 7. Accuracy of multi-class classifications (seven to three classes).

As expected, as the number of classes considered was decreased, performance in-
creased (in most cases because the result with three classes was lower than the result with
four classes). Therefore, the straight line that was graphed in Figure 7 corresponds to the
increasing trend.

The training performed using four classes (spikes, poly-spikes, spike-and-wave, and
normal), and 421 images (70% of 601 images) is presented in Figures 8 and 9, where accuracy
and loss (respectively) are calculated.
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In evaluating four classes of classification, a test data set of 180 held images (30% of
601 images). Regarding the CNN (AlexNet), a confusion matrix was employed for the
results, as shown in Table 6.
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Table 6. Confusion matrix for four classes classification.

Prediction

Normal Poly-Spikes Spikes Spike-and-Wave

True Class

Normal 129 0 1 0
Poly-spikes 0 7 2 1

Spikes 2 0 8 0
Spike-and-wave 2 2 0 11

The ”accuracy” index results were reasonable considering the results obtained in other
works (e.g., [21]). However, we consider it pertinent to calculate the other performance
indices for the four and seven classes under evaluation, where the best and worst accuracy
results were presented.

The values obtained for all performance indices in this evaluation (using 4 and
7 classes) are presented in Table 7.

Table 7. Performance indices obtained from the confusion matrix in multi-class classification.

Index Seven Classes Four Classes

Sensitivity/recall 65.81 81.75

Specificity 68.97 80.61

Precision 67.11 80.25

Accuracy 87.08 93.93

F1 Score 67.51 80.75

MCC 69.30 82.70

Finally, it was considered relevant to analyze the normal signals for patients diagnosed
with epilepsy and those ruled out for this disease. Therefore, the normal signals without
epileptiform events were divided into patients without epilepsy and patients with epilepsy.
The two networks (AlexNet and GoogleNet) were retrained with 95.56% and 91.12%
(respectively). AlexNet training is presented in Figures 10 and 11.
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The confusion matrix obtained in evaluating this last classification of normal signals is
presented in Table 8. The accuracy obtained in the evaluation of this classification was 93.08.

Table 8. Confusion matrix for test data in classification of normal signals.

Prediction

Patient with Epilepsy Patient without Epilepsy

True Class
Patient with epilepsy 45 5

Patient without epilepsy 5 125

We considered the result obtained in this last binary classification of normal signals
necessary to detect the possible presence of the disease (epilepsy) in signals without any
apparent type of epileptiform event (which could be easily confirmed by a neurologist).
This result could be relevant considering that no epileptiform event may occur in an EEG
(30 min approx.) even though the patient has the disease. We consulted about literature
that had performed this type of classification, but it was not possible to find results in
this regard.

A heat map was created to analyze if the results obtained in the last classification
of normal signals (patients with epilepsy and patients without epilepsy) were relatively
logical. This map made it possible to determine the image areas that the algorithm used to
determine the respective classification. In Figure 12, some examples of the obtained heat
map images are presented. The areas in red, or close to this color, are those that the classifier
indicated that is an image of a possible patient with epilepsy. The images present the
signals obtained in the different channels, in black lines, and the respective colors accepted.
Unfortunately, the resolution of these images cannot be improved because the use of the
transfer learning technique requires a resize of the images to analyze them

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 16 
 

 
Figure 11. Loss during training (classification of normal signals). 

The confusion matrix obtained in evaluating this last classification of normal signals 
is presented in Table 8. The accuracy obtained in the evaluation of this classification was 
93.08. 

Table 8. Confusion matrix for test data in classification of normal signals. 

 
 

Prediction 
 Patient with Epilepsy Patient without Epilepsy 

True 
Class 

Patient with epilepsy 45 5 
Patient without 

epilepsy 5 125 

We considered the result obtained in this last binary classification of normal signals 
necessary to detect the possible presence of the disease (epilepsy) in signals without any 
apparent type of epileptiform event (which could be easily confirmed by a neurologist). 
This result could be relevant considering that no epileptiform event may occur in an EEG 
(30 minutes approx.) even though the patient has the disease. We consulted about litera-
ture that had performed this type of classification, but it was not possible to find results 
in this regard.  

A heat map was created to analyze if the results obtained in the last classification of 
normal signals (patients with epilepsy and patients without epilepsy) were relatively log-
ical. This map made it possible to determine the image areas that the algorithm used to 
determine the respective classification. In Figure 12, some examples of the obtained heat 
map images are presented. The areas in red, or close to this color, are those that the clas-
sifier indicated that is an image of a possible patient with epilepsy. The images present 
the signals obtained in the different channels, in black lines, and the respective colors ac-
cepted. Unfortunately, the resolution of these images cannot be improved because the use 
of the transfer learning technique requires a resize of the images to analyze them 

 
Figure 12. Heat maps in EEG images for binary classification of normal signals, (a–d) are examples 
of the various types of heat maps that were obtained 

4. Discussion 
The proposed system allows the incorporation of a technological tool for the analysis 

of EEG exams, intending to support the epilepsy diagnosis process performed by 

Figure 12. Heat maps in EEG images for binary classification of normal signals, (a–d) are examples
of the various types of heat maps that were obtained.

4. Discussion

The proposed system allows the incorporation of a technological tool for the analysis of
EEG exams, intending to support the epilepsy diagnosis process performed by neurologists.
Through this tool, it is possible to identify, in an EEG exam, the segments of the signals that
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are possibly related to an "epileptic seizure”. Therefore, a considerable percentage of the
EEG exam is discarded, which the neurologist will not have to review since it contains no
signals that are of interest. By reducing the number of pages (or images) of the EEG exam
that the neurologist must review, the time to make a diagnosis of the disease decreases
considerably. This reduction in diagnosis time improves the sustainability of the service (in
social and economic aspects), allowing an increase in the number of patients that could be
diagnosed and reducing associated costs, considering the reduction in the time required by
the specialist.

This methodology in support of the specialist could be useful for more accurate work
on the monitoring of crises in patients who no longer take drugs (antiseizure medications).
It was seen that the most important risk factors for withdrawal failure are the etiology of the
epilepsy syndrome and epilepsy-related factors, worsening or persistence of epileptiform
abnormalities on EEG recordings at the time of discontinuation or during drug tapering,
and brain Magnetic Resonance Imaging (MRI) abnormalities [35].

The results obtained in our research with respect to the detection of events of interest in
the EEG exam are reasonable when compared with those obtained in similar works [21,24].
The work done by Gómez et al. only detects "epileptic seizures" in general [21]. It performs
a binary classification (normal or abnormal) in an EEG image. It is not multi-class like the
one by Raghu et al. [24], and our research, which performed both types of classification
(binary and multi-class). Gómez et al. work has excellent accuracy and specificity of
98–99% (in both indices, in both datasets, evaluated). However, it does not have good
results concerning the other performance indices such as precision, recall, and F-measure
(62.7%, 58.3%, and 59.0%, respectively, in the best-evaluated model). The results in our
work are lower in accuracy and specificity (93–95%) in the binary classification (normal
or abnormal signals in each image). Still, it has much better results in the other indices:
precision is 84.85%, recall 96.55%, and F-measure 90.32% in the better model (AlexNet
CNN). Therefore, it is considered that it is better to have all the indices above 84.85% than
to have only some between 98% and 99% and some others between 58.3% and 62.7%.

The work of Raghu et al. proposes a multi-class classifier, detecting seven types of
abnormalities in an EEG image, with a maximum accuracy of 82.85% [24]. The accuracy in
the multi-class classification presented in our research was 87.08% using seven classes (six
abnormalities and normal class) and 93.93% using four classes (three abnormalities and
normal class). Although the accuracy index is better in our research, it should be noted
that, in Raghu’s work, an additional abnormal type is used, and the results obtained in
the other performance indices are not presented. In contrast, our research offers all the
indexes for the multi-class classification of 4, and seven classes. In the 4-class classification,
the accuracy index was between 80.25% and 93.93%. While in the classification of seven
classes, the index was between 65.81% and 87.08%.

In Raghu’s work, 10 CNNs were used, while in our research, only five were used,
of which the results of two of them (AlexNet and GoogleNet) are presented because the
results obtained with the other three were not good enough.

Another highlight in our research is the data set collected since the project related to
this work performs the collection and processing work. The number of patients and the
number of EEGs is remarkable concerning other related works (not specifically concern-
ing [21,24], but about other works mentioned in such references and different results in
literature). Additionally, pediatric EEG (used in this research) presents more significant
variability than adult EEGs. Therefore, they have a greater level of difficulty in interpreting
their signals.

The results obtained in the binary classification of normal signals had good results
(93.08% accuracy). However, it was not possible to compare it with similar works because
they were not found. Usually, the identification of an EEG of a patient with epilepsy is
performed through epileptic seizures (abnormal signals). The approach of identifying it
through normal signals was not found in previous works. The revision of heat maps by a
neurologist is the next step to identify patterns.
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Finally, regarding the limitations of this work, these are related to the number of types
of epileptiform events detected, the number of EEG exams performed, and the patients who
participated in the study. Although the six types of epileptiform events that occur most
frequently were considered, it is important to identify a larger number, trying to cover all
those that could occur, to improve support for the diagnosis of the disease. The number of
EEG exams and patients is considerably high and increasing them would help to improve
the training process of the algorithms used, and possibly improve the results obtained.

5. Conclusions

These results demonstrated that identifying epileptiform events from raw EEG images
combined with deep learning techniques (such as transfer learning) is feasible. This
identification of epileptiform events allows an improvement in the epilepsy diagnosis
process, supporting the work performed by neurologists, by reducing the number of
images to be reviewed in the EEG.

This work proposes a machine learning pipeline capable of detecting and identifying
pages of EEG examinations with different abnormalities useful for an epilepsy diagnosis.
These abnormalities include sharp waves, spikes, poly-spikes, spike-and-wave, periodic,
and combinations of these abnormalities. In addition, an approach based on digital image
processing and computer vision was introduced, which is a novel approach. It is an alter-
native to classic signal processing and feature engineering proposed in other approaches to
EEG signal analysis.

The abnormalities detection in this work was performed using two approaches in two
different stages. In the first stage, a binary classification approach was used (normal or
abnormal), in which excellent results were obtained, with all the performance indices above
84%. These results are positive, since, although other studies reported better indicators of
accuracy and specificity, the values of the different indexes (precision, recall, and F-measure)
were lower than those obtained in this study. In the second stage of this work, a multi-class
classification was performed, where up to six classes of abnormalities were considered
in the EEGs. The detailed results of this type of classification were presented for four
classes (3 abnormalities and normal class) and seven classes (6 abnormalities and normal
class). These results allowed for showing better results of index performance compared to
previous works reviewed in the literature.

As an additional result to the two phases of the work mentioned, a binary classification
was performed to determine within the normal signals which belongs to a signal from
a patient with epilepsy or a patient without epilepsy. The results obtained have a good
level of accuracy, although it was not possible to find similar works to compare the results.
Furthermore, this approach was extended to detect specific locations within the image
where seizure is presented, using heat maps as support. We think it is an exciting approach
to support the diagnostic process of epilepsy in EEG, which should be evaluated in more
detail in future works.

EEG abnormal events were identified in this work using the two aforementioned
approaches. However, different types of epilepsy were not identified. The most well-
known types of epilepsy are: focal, generalized, focal and generalized, and unknown. The
neurologist who reviewed the EEG exams, in this work, identified the zones in EEG where
an epileptiform event was present but was not asked to identify the type of epilepsy. The
identification of types of epilepsy in EEG is proposed as future work, which can help to
better diagnose the disease.

The methodology proposed in this work needs to be tested in other databases with
which other comparisons can be made. Finally, after complying with the previous steps,
this methodology can be adapted to be implemented in a clinical setting for the semi-
automatic detection of epilepsy. Furthermore, the proposed method is expected to impact
the diagnosis and treatment of epilepsy patients significantly, for example, in low-income
countries with high patient volumes and regions with limitations in the provision of
neurology services.
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