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Abstract: Planting vegetation is an environmentally friendly method for reducing landslides. Current
vegetated slope analysis fails to consider the influence of different root architectures, and the accuracy
and effectiveness of the numerical simulations need to be improved. In this study, an explicit
smoothed particle finite element method (eSPFEM) was used to evaluate slope stability under the
influence of vegetation roots. The Mohr–Coulomb constitutive model was extended by incorporating
apparent root cohesion into the shear strength of the soil. The slope factors of safety (FOS) of four
root architectures (uniform, triangular, parabolic, and exponential) for various planting distances,
root depths, slope angles, and planting locations were calculated using the shear strength reduction
technique with a kinetic energy-based criterion. The results indicated that the higher the planting
density, the stronger the reinforcement effect of the roots on the slope. With increasing root depth,
the FOS value first decreased and then increased. The FOS value decreased with an increase in
slope angle. Planting on the entire ground surface had the best improvement effect on the slope
stability, followed by planting vegetation with a uniform root architecture in the upper slope region or
planting vegetation with triangular or exponential root architecture on the slope’s toe. Our findings
are expected to deepen our understanding of the contributions of different root architectures to
vegetated slope protection and guide the selection of vegetation species and planting locations.

Keywords: explicit smooth particle finite element method; vegetated slope; root architectures; shear
strength reduction technique; factor of safety

1. Introduction

Landslides and debris flows are common natural disasters that cause environmental
damage, human casualties, and economic losses [1,2]. To tackle this problem, measures,
such as nailing, vegetation, ground improvement, geosynthetic reinforcement, and im-
proved drainage have been taken. Among these, vegetation is an economically, sustainable,
and environmentally friendly bio-remediation technique [3,4]. Further studies on the effects
of vegetation on slope stability are essential.

It is now understood that vegetation contributes to the stability of civil infrastructure,
including shallow slopes (i.e., slopes with vertical depths less than 2 m), road and railway
slopes, dams, embankments, and dykes [5–9]. Vegetation roots (e.g., from grasses, shrubs,
and trees) are believed to stabilise slopes and slow the large-scale movement of landslides
by strengthening soils with increased cohesion [10–13]. Planting trees on slopes can reduce
the occurrence of shallow landslides by up to 95% compared with similar areas without
trees [14,15].

To date, a large body of literature has documented studies that have focused on
quantifying the contribution of roots to soil shear strength. These studies included in situ
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direct shear tests [16,17] and laboratory direct shear tests [18,19] on soil blocks containing
plant roots, as well as laboratory direct shear tests of soils reinforced by fibres that sim-
ulate roots [20–22]. The finite element method (FEM) can also be applied in this vein of
research [23,24]. These studies have shown that roots can increase the shear strength of the
soil. Therefore, it is necessary to incorporate the effects of root reinforcement into landslide
prediction models and slope-stability analyses.

The limit equilibrium method (LEM) [25,26] and FEM [27,28] have been widely used
in slope-stability analyses. The advantages of FEM compared to LEM are that it does not
need to presuppose the shape and position of the critical slip surface, and the stress–strain
relationship and soil deformation behaviour can be considered using the FEM. Slope-
stability analysis based on the FEM has been recognised as an effective tool in geotechnical
engineering [29]. The FEM has also been applied to the analysis of vegetated slopes [30].
The traditional FEM can correctly describe the initial failure surface, but for the large
deformation problem of the slope after the initial failure, the numerical simulation may be
inaccurate or even impossible owing to mesh distortion; therefore, FEM has limitations to
such problems [29,31].

An alternative solution for overcoming the FEM mesh distortion problem is the
meshless technique, which uses a set of particles to replace the mesh in FEM-based
approaches [32]. Many meshless numerical frameworks have been presented to solve
large-deformation problems in geomechanics so far [33], such as discrete element method
(DEM) [34,35], smoothed particle hydrodynamics (SPH) [36,37], and the material point
method (MPM) [38,39]. However, meshless methods require neighbours’ searching, which
needs high computation costs. Moreover, meshless methods usually necessitate special
treatment techniques to deal with boundary conditions [32]. The particle finite element
method (PFEM) [40,41] uses particles to represent materials that are similar to those in the
mesh-free method, and it has been proven as a powerful numerical means to analyse the
post-failure mechanisms in geo-engineering [32]. In recent years, many novel methods have
been improved on the basis of PFEM, such as the smoothed particle finite element method
(SPFEM) [30,32,42,43], edge-based smoothed PFEM (ES-PFEM) [44], node-based smoothed
PFEM (NS-PFEM) [45], and stable node-based smoothed PFEM (SNS-PFEM) [46,47].

In previous studies, the numerical analysis of the influence of roots on slope stability
usually involved the change of material parameters at a certain depth of the soil layer, and
the effect of specific root architecture has seldom been considered. Plant roots penetrate
the soil matrix to form a root-soil composite [29,31]. Nevertheless, existing analytical
models generally concentrate on the ultimate limit state, and they neglect the complicated
interactions between root systems and soil [48]. Therefore, quantifying the root contribution
and determining the critical slip surface remains a challenge.

Based on the shortcomings of previous investigations, this study proposes a novel
method for evaluating the stability of shallow vegetated slopes. An eSPFEM with a
kinetic-energy-based criterion was used for the numerical simulation. The apparent root
cohesion is incorporated into the Mohr–Coulomb constitutive model. The FOS of the four
root architectures for various planting distances, root depths, slope angles, and planting
locations were calculated using the shear strength reduction technique. To the best of our
knowledge, this is the first study to use eSPFEM to calculate the effects of different root
architectures on slope stability. This study is expected to provide a reference for improving
the slope stability and optimising the management of mountain shelter forests. Nonetheless,
the limitation of this study lies in the need for a large amount of calculation and accurate
parameterisation, so it is currently only applicable to small and shallow slopes.

2. Materials and Methods
2.1. The eSPFEM Approaches

The PFEM solves the governing equations using a standard finite element approach [30].
Therefore, it not only has the flexibility of mesh-free particle methods for arbitrary changes
in geometry but also inherits the solid mathematical foundation of the traditional FEM [49].
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The PFEM is based on an updated Lagrangian (UL) fashion for modelling the motion of a
continuum medium. The continuum medium is discretised into a set of Lagrangian nodes
(particles) that contain and transmit all of the information present. The computational
mesh was built using the Delaunay triangulation technique, and the boundary of the
computational mesh was identified using the alpha-shape approach. A mesh was then
used to solve the governing equations. However, in the PFEM, excessive mesh distortion is
avoided by frequent remeshing, and the state variables (i.e., stress and strain) are mapped
from old Gauss points to new ones. This mapping procedure inevitably introduces errors,
which increase the complexity of the calculation process [30,32,42].

The SPFEM [50,51] uses a strain smoothing technique for nodal integration based
on the PFEM to achieve the balance of governing equations at nodes or particles. In the
SPFEM, all of the field variables are calculated at particles instead of Gauss points in the
PFEM, which can avoid information transfer between Gauss points and particles, thus
reducing the calculation error. In addition, the SPFEM possesses the upper-bound property
and provides a conservative estimate for problems in geomechanics. Finally, low-order
triangle elements can be used directly without volumetric locking [30,32,42]. The SPFEM
can consider the entire dynamic failure process of a slope in slope-stability analysis and
therefore simulate the large deformation and post-failure of soil to obtain a more reliable
FOS value [32].

In SPFEM, the computation domain is discretized into strain smoothing cells associated
with nodes. The physical volume, Ω, is correspondingly discretized into particles. As
shown in Figure 1, The smoothing cell associated with the particle k is created by connecting
sequentially the mid edge point to the central points of the surrounding triangular elements
of particle k. A strain smoothing operation is then performed based on the set of smoothing
cells that are created based on the triangulation mesh [32].

Figure 1. Construction of smoothing cell associated with particle k.

In the smoothed strain technique, the area, Ak, of the smoothing cell, Ωk, associated
with node k is calculated by:

Ak =
∫

Ωk

dΩ =
1
3

Nk

∑
j=1

Aj (1)

where Nk is the number of elements related to particle k and Aj is the area of the jth element.
The smoothed strain matrix is calculated by:

B̃k =
1

Ak

Nk

∑
j=1

1
3

AjBj (2)

where Bj represents the strain gradient matrix used in the standard FEM for the jth element.
More details regarding the strain smoothing technique are available in Liu et al. [51] and
Chen et al. [52].
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The discretization of the computational formulations of eSPFEM is now briefly pre-
sented. The motion of a continuum can be described as:

ρa = ∇ · σ + ρb (3)

where, ρ is the material density, a is the acceleration, σ is the Cauchy stress tensor, and b is
the specific body force density. Considering the principle of virtual displacement and the
divergence theorem, the weak form is expressed as:∫

Ω
δu · ρadΩ =

∫
S

δu · τSdS +
∫

Ω
δu · ρbdΩ−

∫
Ω

δu:σdΩ (4)

where u is the displacement vector, Ω represents the configuration domain, S represents
the boundary, and τS is the prescribed traction. After the node-based discretization, the
above equation reads:

T

∑
k=1

ρak Ak =
T

∑
k=1

∫
S

NkτSdS +
T

∑
k=1

ρbk Ak −
T

∑
k=1

B̃
T
k σk Ak (5)

where T is the total number of nodes in the computation domain. The above discrete form
can then be written in the vector or matrix form as:

Ma = Fext − Fint (6)

in which:

Fext =
T

∑
k=1

∫
S

NkτSdS +
T

∑
k=1

ρbk Ak (7)

Fint =
T

∑
k=1

B̃
T
k σk Ak (8)

M =
T

∑
k=1

ρAk (9)

where Fext and Fint are termed as the external and internal forces, respectively, and M is the
diagonal mass matrix.

A typical computational cycle of eSPFEM is shown as follows [43]:

(1) Generate mesh using Delaunay triangulation and alpha shape technique;
(2) Acquire basic data of elements and nodes;
(3) Calculate smoothed strains of nodes;
(4) Update stresses of nodes through constitutive integration;
(5) Calculate internal forces of nodes;
(6) Update velocities and position.

Compared with the implicit SPFEM [30], the eSPFEM adopts an explicit time-integration
scheme, which has a more concise formulation, lower computational cost, and wider appli-
cations. We used a self-developed code that aims to develop a GPU-accelerated SPFEM
for large deformation analysis in geomechanics based on CUDA [43], which is released
by NVIDIA to perform high-performance computing and has gained popularity rapidly
in geomechanics recently [53,54]. Details of the eSPFEM theory can be found in Yuan
et al. [32,42] and Zhang et al. [43,55,56].

2.2. Modelling the Mechanical Effect of Roots

Plant roots extend into the soil matrix and form a soil-root composite material with
a mechanical effect that enhances the shear strength of the soil [57]. This effect is often
considered as additional soil cohesion (known as apparent root cohesion) [23,58,59].
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Different theoretical models have been created to estimate the mechanical effect of
roots on slope stability, such as the Wu model [17,60] and the fibre bundle model (FBM) [61].
The Wu model assumes that all roots are moved and broken simultaneously, which is not
true in reality. However, it is the most commonly used model owing to its simplicity. The
Wu model is a perpendicular root-strengthening model established using two variables:
root area ratio (RAR) and root tensile strength [48].

The Wu model is used to describe the increase in soil shear strength caused by the
mechanical effect of the roots, as follows:

cr = ζ × Tr × R f × RAR (10)

where cr is the additional soil cohesion and ζ represents the correction factor, which takes
into account the influence of roots breaking progressively in reality on soil shear strength;
in the present study, ζ equals 0.4 [62].

Tr is the root tensile strength. For simplicity, the effects of the root diameter distri-
butions were ignored, and a constant root tensile strength was considered [63]. Available
current data on tree roots indicate that Tr ranges from 5 to 60 MPa [11,64]; in the present
study, Tr equals 20 MPa.

R f stands for the root orientation factor, which is defined as follows:

R f = sin θ + cos θ tan ϕ′ (11)

where θ represents the angle between the root and failure surface when the root breaks, and
ϕ′ is the effective angle of internal friction. It should be noted that roots do not always grow
perpendicular to the slope’s surface, as their growth is influenced by ambient conditions
(e.g., gravity and nutrition) [57]. In many cases, θ is between 48◦ and 72◦ at failure, so the
range of sin θ + cos θ tan ϕ′ is narrow, i.e., approaching 1.2 [11]. In the present study, R f
equals 1.2.

The RAR (in Equation (1)), which is defined as the proportion of the cross-sectional
area of the soil occupied by roots, is determined as follows:

RAR =
Ar

A
(12)

where Ar and A represent the cross-sectional area of root and soil, respectively. In the
present study, RAR equals 0.45% [64].

Many researchers have estimated the value of cr for various vegetation species growing
in different environments, and its typical values vary from 1.0 to 94.3 kPa [29]. According
to Equation (1), the original cr score in this study is 43.2 kPa.

2.3. Mechanical Effect of Root-Soil on Shallow Slope Stability

Most of the results from the direct-shear tests showed that roots increased the co-
hesion [60], whereas the friction angle remained mostly unchanged [64]. For undrained
loading, the shear strength of saturated vegetated soils, s, can commonly be determined
by incorporating the additional soil cohesion, cr, into the Mohr–Coulomb failure crite-
rion [64,65], which can be modified as follows:

s = cr + c′ + σn tan ϕ′ (13)

where, c′ is effective cohesion and σn is total normal stress.
The shear strength reduction technique was adopted to analyse the slope stability,

which is defined as follows:
s f =

s
SRF

ϕ′ f = arctan
(

tan ϕ′

SRF

) (14)
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where s f and ϕ′ f are the reduced shear strength and the reduced effective angle of internal
friction, respectively. SRF is the shear strength reduction factor. First, the initial value of
the SRF was set to an adequately low value to keep the slope stable under gravitational
loading. Then, the value of the SRF increases gradually until the slope becomes unstable
and failure occurs. The critical value of the SRF leading to slope instability is considered to
be the FOS of the slope [30].

2.4. The Four Patterns of Root Geometry
2.4.1. Idealisation of Typical Patterns of Root Architecture

The spatial location of thick roots determines the arrangement of related thin roots;
thus, root distribution presents a high degree of complexity [8]. Existing methods for
quantifying root architecture include the extraction of roots, the complete washing of soil,
and image analysis of roots [66]. The spatial distribution of roots is an important factor
in determining the reinforcement behaviour and mechanical properties of roots, and the
generalisation of root morphology is essential for evaluating the influence of vegetation on
slope stability [9,67].

Based on experimental observations, researchers have summarised four typical pat-
terns of root geometry: uniform distribution [10,68], triangular distribution [68], parabolic
distribution [69], and exponential distribution [10]. Table 1 lists the characteristics of differ-
ent root architectures, typical species, and their growing regions. Figure 2 shows the root
architecture of four different real roots.

Table 1. Introduction to different root architectures.

Root Architectures Characteristics Typical Species Growing Regions

Uniform distribution
A root system with a large
taproot and large horizontal
lateral roots

Aleppo pine [10]
Mediterranean, Southern
Europe, Asia, and North
Africa [70]

Pulsatilla pratensis [68]
Sub-polar areas of Europe,
Asia, North America Central,
and Eastern Europe [71]

Triangular distribution A root taproot system with
small lateral roots Trigonella balansae [68] Europe, and Asia [72]

Parabolic distribution A concentrated root system Cynodon dactylon [69] North Africa, Asia, Australia,
and Southern Europe [73]

Exponential distribution A plate-shaped root system Beech and Mature oaks [10] Europe, and North America
[74,75]

Figure 2. Different real root architectures: (a) Uniform distribution [68]; (b) Triangular distribu-
tion [68]; (c) Parabolic distribution [69]; (d) Exponential distribution [10].

Root biomass can be expressed by root volume, mass, area, or length, and the most
commonly adopted measure is the soil area occupied by the roots [76]. In order to achieve
a fair comparison, the symmetric parts of the four root architecture profiles are normalised
to the same unit area. Figure 3 describes their normalised function curves. It is assumed
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that these root architectures have the same root depth and are homogeneously distribute in
the root zone.

Figure 3. Normalised function curves of the four different root architectures.

2.4.2. Root Architecture Functions on Slope

The coordinate system on the slope can be defined as x′o′y′, and the extent between
the bottom of the root zone and the slope’s surface is defined by the root depth, zr. Figure 4
describes the boundaries of the four different root zones, and the green areas indicate the
root zones. The mathematical functions derived from the root zone boundaries are as
follows:

1. Uniform distribution


y′ = 1

zr
y′ = − 1

zr
x′ = 0
x′ = −zr

(15)

Figure 4. Boundaries of the four different root zones: (a) Uniform distribution; (b) Triangular
distribution; (c) Parabolic distribution; (d) Exponential distribution.

2. Triangular distribution
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y′ = − 1

zr2 x′ − 2
zr

y′ = 1
zr2 x′ + 2

zr

x′ = 0
(16)

3. Parabolic distribution

{
y′ = 6

zr3 x′2 + 6
zr2 x′

y′ = − 6
zr3 x′2 − 6

zr2 x′
(17)

4. Exponential distribution 
y′ = ex′−e−zr

zre−zr+e−zr−1

y′ = e−zr−ex′

zre−zr+e−zr−1
x′ = 0

(18)

2.4.3. Root Architecture Functions after Coordinate Transformation

The coordinate transformation formula from the coordinate system x′o′y′ to the rect-
angular coordinate system xoy is assembled as:[

x
y

]
=

[
cos α − sin α
sin α cos α

][
x′

y′

]
+

[
C1
C2

]
(19)

where α is the complementary angle of the slope angle and β, C1, and C2 are parameters
related to the planting position. Equation (10) can be expressed as:{

x′ = x cos α + y sin α− C1 cos α− C2 sin α
y′ = y cos α− x sin α + C1 sin α− C2 cos α

(20)

According to Equations (15) and (20), the scope boundaries of the uniform distribution
were obtained. 

y cos α− x sin α + C1 sin α− C2 cos α ≤ 1/zr
y cos α− x sin α + C1 sin α− C2 cos α ≥ −1/zr
x cos α + y sin α− C1 cos α− C2 sin α ≤ 0
x cos α + y sin α− C1 cos α− C2 sin α ≥ −zr

(21)

According to Equations (16) and (20), the scope boundaries of the triangular distribu-
tion were obtained.
when zr

2 − 2 tan α > 0,
y cos α− x sin α + C1 sin α− C2 cos α ≥ − 2

zr2 (x cos α + y sin α− C1 cos α− C2 sin α)− 2
zr

y cos α− x sin α + C1 sin α− C2 cos α ≤ 2
zr2 (x cos α + y sin α− C1 cos α− C2 sin α) + 2

zr

x cos α + y sin α− C1 cos α− C2 sin α ≤ 0
(22)

when zr
2 − 2 tan α ≤ 0,

y cos α− x sin α + C1 sin α− C2 cos α ≥ − 2
zr2 (x cos α + y sin α− C1 cos α− C2 sin α)− 2

zr

y cos α− x sin α + C1 sin α− C2 cos α ≥ 2
zr2 (x cos α + y sin α− C1 cos α− C2 sin α) + 2

zr

x cos α + y sin α− C1 cos α− C2 sin α ≤ 0
(23)

According to Equations (17) and (20), the scope boundaries of the parabolic distribution
were obtained.
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y cos α− x sin α + C1 sin α− C2 cos α ≥ 6

zr3 (x cos α + y sin α− C1 cos α− C2 sin α)2

+ 6
zr2 (x cos α + y sin α− C1 cos α− C2 sin α)

y cos α− x sin α + C1 sin α− C2 cos α ≤ − 6
zr3 (x cos α + y sin α− C1 cos α− C2 sin α)2

− 6
zr2 (x cos α + y sin α− C1 cos α− C2 sin α)

(24)

According to Equations (18) and (20), the scope boundaries of the exponential distri-
bution were obtained.

y cos α− x sin α + C1 sin α− C2 cos α ≥ ex cos α+y sin α−C1 cos α−C2 sin α−e−zr

zre−zr+e−zr−1

y cos α− x sin α + C1 sin α− C2 cos α ≤ e−zr−ex cos α+y sin α−C1 cos α−C2 sin α

zre−zr+e−zr−1
x cos α + y sin α− C1 cos α− C2 sin α ≤ 0

(25)

C1, C2, and α in Equations (21)–(25) are discussed under three different conditions:
vegetation growth on the slope’s surface, upper slope region, and lower slope region.
Figure 5 shows the geometric parameters of the vegetated slope (taking a uniform distribu-
tion as an example), green areas indicate the root zones.

Figure 5. Geometric parameters of the vegetated slope.

When vegetation is planted on the slope’s surface:
α = 90o − β
C1,sur f ace = l1 + da − a(itree − 1)
C2,sur f ace = h1 + {l2 − [da + a(itree − 1)]} tan β

(26)

where a is the horizontal interval between root centres on the slope’s surface, da is the
horizontal distance between the root centre of the highest vegetation and the near edge of
the upper slope region, da = a/2, itree is the amount of vegetation on the slope’s surface,
1 ≤ itree ≤ l2/a, and l2/a is an integer.

When vegetation grows on the upper slope region:
α = 90o

C1,upper = db + b(jtree − 1)
C2,upper = h1 + l2 tan β

(27)

where b is the horizontal interval between root centres on the upper slope region, db is the
horizontal distance between the root centre of the vegetation closest to the slope’s surface
and the top edge of the slope’s surface, db = b/2, jtree is the number of vegetation on the
upper slope region, 1 ≤ jtree ≤ l1/b, and l1/b is an integer.
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When vegetation is planted on the lower slope region:
α = 90o

C1,lower = l1 + l2 + dg + g(ktree − 1)
C2,lower = h1

(28)

where g is the horizontal interval between the root centres in the lower slope region, dg is the
horizontal distance between the root centre of the vegetation closest to the slope’s surface
and the bottom edge of the slope’s surface, dg = g/2, ktree is the amount of vegetation in
the lower slope region, 1 ≤ ktree ≤ l3/g, and l3/g is an integer.

2.5. Numerical Implementation

The geometry and boundary conditions of the slope-stability problem are shown in
Figure 6. The boundary conditions were set as rollers along the left and right vertical
boundaries and were fully fixed at the base.

Figure 6. Geometry and boundary conditions of the slope-stability problem.

The soil behaviour was modelled by an elastic-perfectly plastic Mohr–Coulomb ma-
terial, and the material properties are listed in Table 2. The material parameters were
obtained by referring to [30,77]. The slope was divided into lower bedrock and upper soil.
The root zone is the soil elements influenced by vegetation [29]. It is assumed that two
adjacent root zones may overlap without affecting root distribution. Figure 7 shows root
zones and overlapping root zones of different root architectures in vegetated slopes (slope
angle of 45◦, root depth of 1 m, root zone area of 2 m2, planting distances of 2.5 m, and
planting location on the slope’s surface).

Table 2. Material properties.

Material Unit Weight
γ (kN/m3)

Young’s Modulus
E/MPa

Poisson’s Ratio
υ

Cohesion
c’/kPa

Friction Angle
ϕ’(◦)

Bedrock 21 100 0.3 30 35
Soil 20 60 0.3 10 20

Root zone 20 60 0.3 53.2 20
Overlapping root zone 20 60 0.3 96.4 20

To guarantee both the numerical accuracy and the computational efficiency, a non-
uniform initial particle distribution is assumed. A very fine mesh discretisation is used
for the soil and root zones near the slope’s surface, and a coarser mesh discretisation is
used for the bedrock, which is situated away from the slope’s surface. The meshes adopt
six-node triangular elements. Table 3 shows the mesh parameters of slopes angle of 40◦,
45◦, and 50◦.
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Figure 7. Root zones and overlapping root zones of different root architectures in vegetated slopes:
(a) Uniform distribution; (b) Triangular distribution; (c) Parabolic distribution; (d) Exponential
distribution.

Table 3. Mesh parameters.

Slope Angle β 40◦ 45◦ 50◦

Number of elements 1695 1744 1863
Number of nodes (particles) 3498 3599 3842

In this study, the eSPFEM is utilised to simulate the failure process of the entire
vegetated slope and predict the large deformation behaviour and final deposit of the slope
failure. A kinetic energy-based criterion [32] is adopted to analyse the stability of vegetated
slopes. This approach is based on the relation of the kinetic energy of the slope with the
simulation time [32]. The peak value of kinetic energy curve can be considered as an
indicator of the critical state, because the failure of the slope is related to large deformation,
and the kinetic energy increases significantly after failure occurs. The value of SRF at the
peak of the kinetic energy curve is interpreted as the FOS of the slope, and kinetic energy
reaches a steady state in a short period after the peak.

The simulation is divided into two stages: first, the displacements of all of the particles
are fixed, and gravity is applied to all of the particles to achieve the initial stress field; then,
the particles are allowed to move, and after the initial shear failure, the unstable soil moves
and reaches an equilibrium state at a new slope configuration. The horizontal displacement
of point P, which is located at the slope’s toe, is monitored (see Figure 5).

Slope failure was calculated using the shear strength reduction technique by gradually
increasing the SRF. For different SRFs, the simulation was implemented with eSPFEM,
and a physical time of 6 s [32] was considered for each SRF to obtain a new steady state
for the slope after failure. To evaluate the effect of roots on slope stability, five variables
(root architecture, planting distance, root depth, slope angle, and planting location) were
systematically varied to calculate FOS values under different conditions.

3. Results
3.1. Comparison of the Instability of the Vegetated Slope and Bare Slope

Case 1 compares the failure mechanisms of the bare and vegetated slopes. The eSPFEM
was used to analyse the stability of bare and vegetated slopes with a slope angle of 45◦

(planting location is the slope’s surface, root depth of 1 m, root zone area of 2 m2, planting
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distance of 2.5 m, and a uniform root distribution) for various SRFs. Figure 8 shows the
evolution of the kinetic energy with time. Figure 9 shows the variation in the maximum
horizontal displacement at the slope’s toe with time. Figure 10 shows the equivalent plastic
strain and final configurations for various SRFs, and the grey zones indicate the initial root
areas.

Figure 8. Evolution of kinetic energy with time for various SRFs: (a) Bare slope; (b) Vegetated slope.

Figure 9. Variation of maximum horizontal displacement at the slope’s toe with time for various
SRFs: (a) Bare slope; (b) Vegetated slope.

For the bare slope (Figure 8a), when SRF ≤ 1.3, the slope is stable, and no obvious
kinetic energy occurs. When SRF ≥ 1.4, the kinetic energy-time curve exhibits a peak value,
and then the kinetic energy reaches a steady state within a short time. Therefore, the critical
SRF value was 1.3, which was regarded as the FOS of the slope. Displacement at the slope’s
toe (Figure 9a) also occurred when SRF≥ 1.4. In addition, from the results of the equivalent
plastic strain (Figure 10a), it can be seen that when SRF = 1.2, a plastic strain develops at the
weak band between bedrock and soil as well as at the slope’s toe. When SRF = 1.3, a narrow
local band of plastic strain was detected, and the plastic zone subsequently extended from
the slope’s toe to the slope top. The plastic strain band was dark near the top of the slope,
indicating that the slope was not completely damaged. When SRF = 1.4, a continuous band
of plastic strain localisation was observed, and slope failure occurred, accompanied by a
large increment in displacement. The deformation of the slope was mainly concentrated
on the slope’s surface, and the maximum deformation occurred at the centre of the slope’s
surface.
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Figure 10. Equivalent plastic strain and final configurations for various SRFs: (a) Bare slope;
(b) Vegetated slope.

For the vegetated slope (Figure 8b), no obvious kinetic energy appears when SRF ≤ 1.5,
whereas the kinetic energy-time curve shows a peak value when SRF ≥ 1.6. The FOS of
the slope was 1.5. A large deformation displacement at the slope’s toe (Figure 9b) also
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occurs during FOS ≥ 1.6. Moreover, according to the equivalent plastic strain diagram
(Figure 10b), when SRF = 1.6, the slope produces a continuous band of plastic strain, and
the upper soil mass creates a displacement. The depth of the shear band corresponded to
the root zone depth.

3.2. Effects of the Planting Distance on the Stability of the Vegetated Slopes

The research object of case 2 was a vegetated slopes with a slope angle of 45◦, root
depth of 1 m, root zone area of 2 m2, and planting location on the slope’s surface. The
effects of the root architecture on slope stability are discussed when the planting distances,
a, are set to 5 m, 2.5 m, and 1.25 m, respectively. Figures 11 and 12 show the maximum
horizontal displacement at the slope’s toe after the failure of the vegetated slopes with the
increase in SRF for different planting distances.

Figure 11. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) a = 5 m; (b) a = 2.5 m; (c) a = 1.25 m.

Figure 12. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
various planting distances after slope failure: (a) Uniform distribution; (b) Triangular distribution;
(c) Parabolic distribution; (d) Exponential distribution.
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As shown in Figures 11 and 12, when the planting distance on the slope’s surface was
2.5 m or 1.5 m, the slope stability was significantly improved compared with the bare slope
(Figure 11b,c). However, the effect was not evident when the distance was 5 m (Figure 11a).
When the planting distance is 5 m, the slope FOS is 1.3 for the four root architectures,
which is equal to that of the bare slope. When the distance is 2.5 m, the FOS of the uniform
and exponential root architectures is 1.5, and that of the triangular and parabolic root
architectures is 1.4. The FOS of the four root architectures was 1.7 when the distance was
1.25 m.

3.3. Role of the Root Depth in the Stability of the Vegetated Slopes

The study object of case 3 is a vegetated slope with a slope angle of 45◦, planting
distances of 2.5 m, root zone area of 2 m2, and planting location on the slope’s surface. The
effects of root architecture on the slope stability are discussed when the root depths, zr,
are set to 0.5 m, 0.75 m, 1.0 m, 1.25 m, and 1.5 m, respectively. Figures 13 and 14 show
the maximum horizontal displacement at the slope’s toe after the failure of the vegetated
slopes with an increase in SRF for various root depths.

Figure 13. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) zr = 0.5 m; (b) zr = 0.75 m; (c) zr = 1 m;
(d) zr = 1.25 m; (e) zr = 1.5 m.

As shown in Figure 13, after slope failure, the horizontal displacement at the slope’s
toe with root depths of 0.5 m and 1.5 m is smaller than that with root depths of 0.75 m,
1.0 m, and 1.25 m. When the root depth is 1.5 m, the FOS of the triangular and exponential
root architectures is 1.6, whereas that of the uniform and parabolic root architectures is
greater than 1.8. The FOS of the four root architectures was 1.6 when the root depth was
0.5 m.
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Figure 14. With the increase in SRF, the maximum horizontal displacement at the slope’s toe
for various root depths after slope failure: (a) Uniform distribution; (b) Triangular distribution;
(c) Parabolic distribution; (d) Exponential distribution.

Figure 14 illustrates that, for uniform (Figure 14a) and parabolic root architectures
(Figure 14c), the slope stability is the best when the root depth is 1.5 m (FOS > 1.8). When
the root depth of the uniform root architecture was 0.75 m and that of the parabolic
root architecture was 1.0 m, the slope stability was the worst (FOS = 1.4). For triangular
(Figure 14b) and exponential (Figure 14d) root architectures, the FOS reaches the maximum
when root depths are 0.5 m and 1.5 m (FOS = 1.6); and the FOS is the lowest when the root
depths are 1.0 m and 1.25 m (FOS = 1.4).

3.4. Effects of the Slope Angle on the Stability of the Vegetated Slopes

The research object of case 4 is a vegetated slope with a planting distance of 2.5 m,
root depth of 1 m, root zone area of 2 m2, and planting location is the slope’s surface. The
influence of root architecture on slope stability is discussed when the slope angles, β, are
set to 40◦, 45◦, and 50◦, respectively. Figures 15 and 16 show the maximum horizontal
displacement at the slope’s toe after the failure of vegetated slopes with an increase in the
SRF for different slope angles.

As shown in Figures 15 and 16, when the slope angles are 40◦, 45◦, and 50◦, the FOS
are 1.3, 1.5, and 1.7, respectively, for the uniform and exponential root architectures; for
triangular root architecture, the FOS are 1.2, 1.4, and 1.6, and for parabolic root architecture,
the FOS are 1.3, 1.4, and 1.6, respectively.
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Figure 15. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) β = 40◦; (b) β = 45◦ (c) β = 50◦.

Figure 16. With the increase in SRF, the maximum horizontal displacement at the slope’s toe
for various slope angles after slope failure: (a) Uniform distribution; (b) Triangular distribution;
(c) Parabolic distribution; (d) Exponential distribution.

3.5. Influence of the Planting Location on the Stability of the Vegetated Slopes

The study object of case 5 is a vegetated slope with a slope angle of 45◦, planting
distance of 2.5 m, root depth of 1 m, and root zone area of 2 m2. The effects of the root
architecture on slope stability when the location of the root zone changes are discussed.
We referred to Chok et al. [29] for the planting locations. Figure 17 shows the slopes with
the planting positions of the slope’s surface, slope’s toe, the slope’s surface and toe, upper
slope region, lower slope region, upper and lower slope regions, and entire ground surface,
as well as their final equivalent plastic strains during FOS = 1.6. The grey area represents
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the root zone (taking uniform root architecture as an example). Figures 18 and 19 show the
maximum horizontal displacement at the slope’s toe after slope instability with an increase
in SRF for different planting locations.

Figure 17. Vegetated slopes for different planting locations and the final equivalent plastic strain
for FOS = 1.6: (a) slope’s surface; (b) slope’s toe; (c) slope’s surface and toe; (d) upper slope region;
(e) lower slope region; (f) upper and lower slope regions; (g) entire ground surface.

Figure 17 shows that different planting positions have different influences on the shear
band of the slope failure. The improvement in slope stability was the most obvious in the
entire ground surface planting. Planting at the slope’s toe can effectively reduce the sliding
displacement of the slope soil.

As shown in Figure 16, vegetation on the entire ground surface (Figure 18g) had the
best effect on the slope stability (FOS > 1.8). Planting on the lower slope region (Figure 18e)
has little impact on the FOS, which is equal to that of the bare slope (FOS = 1.3). Planting
on the slope’s surface (Figure 18a) was better than that on the lower slope region, and the
influence of uniform and exponential root architectures (FOS = 1.5) was better than that
of triangular and parabolic root architectures (FOS = 1.4). The effects of planting on the
slope’s toe (Figure 18b) and the slope’s surface and toe (Figure 18c) were both similar. Both
were better than the slope’s surface, and the impacts of the triangular and exponential root
architectures (FOS = 1.7) were better than those of uniform and parabolic root architectures
(FOS = 1.5). The effects of planting on the upper slope region (Figure 18d) and upper and
lower slope regions (Figure 18f) were similar, and the influence of uniform architecture
(FOS > 1.8) was better than that of the other three root architectures (FOS = 1.5).
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Figure 18. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) slope’s surface; (b) slope’s toe; (c) slope’s surface
and toe; (d) upper slope region; (e) lower slope region; (f) upper and lower slope regions; (g) entire
ground surface.

In Figure 19, the planting of uniform root architecture (Figure 19a) on the upper and
lower slope regions, upper slope region, and entire ground surface (FOS > 1.8) are better
than those on the slope’s surface and toe, as well as on the slope’s surface (FOS = 1.5). The
planting effects of parabolic root architecture (Figure 19c) on the upper and lower slope
regions, slope’s surface, and upper slope region were weaker than those of the uniform
root architecture. The effects of triangular (Figure 19b) and exponential root architectures
(Figure 19d) are similar, and they have a greater advantage when they are present at the
slope’s toe, as well as the slope’s surface and toe (FOS = 1.7).



Sustainability 2022, 14, 11272 20 of 24

Figure 19. With the increase in SRF, the maximum horizontal displacement at the slope’s toe of the
slopes with different planting locations after slope failure: (a) Uniform distribution; (b) Triangular
distribution; (c) Parabolic distribution; (d) Exponential distribution.

4. Discussion

In this study, the slip surface of the bare slope was mainly distributed in the weak
layer at the interface of the rock and soil, whereas the slip surface of the vegetated slope
was distributed at the bottom of the root zone, and the upper layer of soil entrains the root
system to slip. The tensile strength and adhesion properties of the roots reinforced the soil.
Plant roots with high tensile strength increase the confining stress of the soil through their
compact root matrix system [29]. The results of the finite element analysis showed that
reinforcement of the root can improve the stability of the slope, reduce the displacement of
the landslide, and increase the FOS value.

The FOS value of the vegetated slope increased with decreasing planting distance.
The higher the planting density, the stronger the root-strengthening effect. It should be
noted that if the planting distance exceeds a certain range, then the slope stability may not
improve. In this study, when the planting distance on the slope was 5 m, the effect was
similar to that on the bare slope. The stability of a slope with a uniform root architecture is
most sensitive to the planting distance.

For many slopes, the root depth is usually limited by bedrock, which is usually shallow
and less than 2 m [58]. The failure depth of most slopes is between 0.5 m and 1 m, and the
root zone plays a role in mechanical stability only when the root depth reaches the deeper
soil layer [78]. With an increase in root depth, the FOS first decreased and then increased.
When the root depth is 0.5 m, the slope’s surface is covered with overlapping roots, which
is similar to the geosynthetic reinforcement on the slope’s surface. When the root depth
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was 1.5 m, it was similar to installing anti-slide piles or anchors. In addition, for uniform
and parabolic root architectures, a greater root depth is more beneficial for slope stability.
For triangular and exponential root architectures, shallow roots were more conducive. In
addition, the stability of a slope with a uniform and parabolic root architecture is more
sensitive to its root depth.

The slope FOS of the four root architectures decreased with an increase in slope angle.
Regardless of whether the slope is steep or has a slight incline, uniform and exponential
root architectures are more effective in improving the slope stability.

The position of the plants on the slope also affects their contribution to stability. Except
for planting in the lower slope region, the stability of the vegetated slope in the other
planting positions was better than that of the bare slope. If there is no restriction on
planting location and vegetation quantity, planting on the entire ground surface of a slope
has the best effect on improving slope stability, which is similar to the conclusion of [29].
Moreover, it is better to plant vegetation with a uniform root architecture in the upper slope
region or plant vegetation with a triangular or exponential root architecture on the slope’s
toe. When the vegetated slope is unstable, the depth of the plastic strain at the top and toe
of the slope is shallower; therefore, it is more conducive for roots to play a role. Tensile
cracks may occur at the top of a slope, and the roots provide traction and support soil to
prevent landslides [79]. The roots bear pressure at the toe of the slope, which can act as a
support and inhibit soil sliding [80].

5. Conclusions

In this study, the eSPFEM was utilised to simulate the instability of vegetated slopes
with large deformations. This method can reasonably predict the deformation process of
the slope structure and the final deposition, avoiding the difficulty of numerical calculations
and loss of calculation accuracy.

The Mohr–Coulomb constitutive model was extended by introducing the additional
soil cohesion, cr, generated by roots and therefore increasing the shear strength of the soil.
The boundary functions of the four root architectures (uniform, triangular, parabolic, and
exponential) on the slope were derived. The FOS values of the four root architectures for
various planting distances, root depths, slope angles, and planting locations were calculated
using the shear strength reduction technique with a kinetic energy-based criterion, and the
effects of root architecture on slope stability were evaluated.

Their results showed that roots can effectively improve slope stability and reduce land-
slide displacement. The higher the planting density, the stronger the root-strengthening
effect. With an increase in root depth, the FOS first decreased and then increased. For
uniform and parabolic root architectures, deeper roots are more beneficial to slope stabil-
ity, whereas for triangular and exponential root architectures, shallower roots are more
conducive. The FOS decreases with the increase in slope angle; uniform and exponential
root architectures are more effective in improving slope stability, no matter whether the
slope is steep or has a slight incline. Vegetation at the slope’s toe can effectively reduce the
sliding displacement of the slope soil. Planting on the entire ground surface had the best
effect on slope stability improvement, followed by planting vegetation with uniform root
architecture in the upper slope region or planting vegetation with triangular or exponential
root architectures on the slope’s toe.

This study provides valuable information on the contribution of different root archi-
tectures to slope stability and can guide the selection of vegetation species and planting
locations, which can contribute to improving slope stability and optimising the manage-
ment of mountain shelter forests. Nonetheless, the limitation of this model lies in the need
for accurate parameterisation and a large amount of calculation, so it is currently only
applicable to small slopes.
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