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Abstract: An urban ecological zone (UEZ) is an important part of a city, focusing on environmental
conservation and ecological economic development simultaneously. During the past decade, the
urban scale of Xi’an city in China has been expanding, and the population has been increasing
rapidly. This dramatic change is a huge challenge to urban sustainability. It puts forward higher
requirements for the construction of an UEZ. Under different spatial resolution scales, this study
adopted Landsat8-OLI and gaofen-2 (GF-2) satellite high-resolution remote sensing data to interpret
the land use/cover change (LUCC) of the Weihe River UEZ. The ecosystem service value (ESV)
was assessed, and the ecological effect was analyzed based on LUCC. The results showed that the
spatial distribution of land types in the Weihe River UEZ changed significantly from 2014 to 2020.
The construction land gathered to the southeast. Especially, the vegetative land (i.e., forestland,
grassland and other green land) and water body showed a slightly increasing trend since the official
establishment of the UEZ in 2018. The cultivated land area gradually reduced, and the vegetative
land area tended to be concentrated as well as expanded. Through the interpretation of GF-2 remote
sensing data, the ESV at the Weihe River UEZ showed a downward trend in general. The high-value
areas were mainly distributed in the Weihe River and its surrounding beach areas, which were greatly
affected by river water scope. Construction land normally had low ESV, and it was affected by human
activities obviously. Therefore, the development of urban construction had significant impacts on the
Weihe River UEZ.

Keywords: land use/cover change (LUCC); ecosystem service value (ESV); multi-resolution remote
sensing; landscape pattern; urban ecological zone (UEZ); urban construction

1. Introduction

Land is the basis of human production and living, as well as being the carrier of all
kinds of resources [1]. Due to the interference from human activities, the land is facing
increasing pressure [2]. According to the natural characteristics of land itself and its certain
economic and social purposes, human adopts biological, physical, chemical and other
technical means to launch long-term and periodic management on land [3]. Land use/cover
change (LUCC) is an important way in which humans act on ecosystems. LUCC directly
affects the landscape pattern, biodiversity and ecosystem [4–7]. With the acceleration
of urbanization and industrialization, especially in developing countries, LUCC driven
by human activities has led to the deterioration of the ecological environment and the
degradation of ecosystem service function [8,9].

Sustainability 2022, 14, 11187. https://doi.org/10.3390/su141811187 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141811187
https://doi.org/10.3390/su141811187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2775-4606
https://orcid.org/0000-0002-9935-4452
https://doi.org/10.3390/su141811187
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141811187?type=check_update&version=1


Sustainability 2022, 14, 11187 2 of 18

Different land use types have different effects on ecosystem services in terms of extent
and pattern. Similarly, different land use intensity has different effects on the ecosystem [10].
Ecosystem services refer to all ecosystem products and services that contribute to human
survival and living quality [11,12]. Ecosystem service value (ESV) is the benefits achieved
from the ecosystem for human beings, directly and indirectly. It mainly includes the input
of useful materials and energy to the economic and social system, the acceptance and
transformation of waste from the system, and the direct provision of services to human
society [13,14].

The research object of ESV can be a single landscape unit including forest [15], is-
land [16], basin [17], and even an administrative scope, such as a specific city [18] or
regions [19–21] of different scales. In 1997, Costanza [22] systematically assessed the func-
tional value of global ecosystem services. Through quantitative evaluation of ESV, the
variation trend of ecosystem structure and function had been revealed; moreover, the
impact mode and degree of human activities on the ecosystem had been figured out [23].
The analysis of ESV is mainly realized by calculating the values of different ecosystem
service functions in the whole region [24]. Subsequently, some researchers improved the
valuation method of ecosystem services and proposed the equivalent factor method to
calculate the ESV [25], as well as the derived static ESV [26].

In recent years, studies combining ESV with urban expansion and landscape pattern
evolution have gradually emerged [27–29]. This research is of great significance for pro-
moting land ecology and urban sustainable development. Landscape pattern, namely the
spatial arrangement pattern of landscape elements, is an important approach to studying
ecosystem quality and function. The temporal and spatial change of landscape pattern
significantly affects regional biodiversity and other ecological indicators. It is an important
method to analyze ecological quality change, which has direct impacts on ESV [30]. The
main reason leading to landscape pattern change is the external interference, whose action
mechanism is comprehensive, involving the interaction among human activities, nature
and various organisms [31]. At present, the study on landscape pattern combining LUCC
is commonly accepted. In addition, the selection of landscape index, its particle size and
scale effects have also been a concern for a long time [32].

Many researchers focused on the prediction of ecosystem services and landscape
pattern based on LUCC. Cellular Automata (CA)—Markov prediction model has been
commonly used [33–35]. Meanwhile, evaluating landscape ecological risk and analyzing
various ecosystem service functions based on LUCC, such as calculating habitat quality
and carbon storage based on the integrated valuation of ecosystem services and trade-offs
(InVEST) model [36,37], have become hot issues in this field.

A city is a complicated and integrated organization. The environment and develop-
ment conditions of different urban regions inside the city vary wildly. It is insufficient to
study only large-scale objects such as regions and cities. More importantly, it is necessary
to study the small and medium-sized ecological areas in the city. However, such research
studies are still relatively few.

The research on LUCC and ESV of urban ecological areas based on remote sensing is
an important method to assess urban ecological environment quality scientifically. In order
to ensure research efficiency and accuracy, remote sensing data with different resolutions
should be adopted. Different types of multi-resolution remote sensing image data for
research are complementary. Although the obtained remote sensing information has a
certain redundancy, it is more accurate and comprehensive. Higher resolution images
can make up for the shortcomings of lower resolution images in fine structure extrac-
tion, while lower resolution images have advantages in large-scale observation and rapid
information extraction.

The different imaging principles of remote sensing images result in their various
target characteristics [38]. Therefore, combined with Landsat8-OLI and high-resolution
gaofen-2 (GF-2) satellite remote sensing data, this study aims at (1) analyzing LUCC and
comparing the scale effect of the Weihe River UEZ in Xi’an on different spatial resolution
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scales, (2) based on high-resolution remote sensing data, assessing the ESV and landscape
pattern index, and analyzing the ecological effects, (3) putting forward some suggestions
for the ecological development of Xi’an and the construction of the Weihe River UEZ.

2. Research Area and Data
2.1. Research Area

The Weihe River is the largest tributary of the Yellow River. It is one of the most
important rivers in the Guanzhong region. It originates from Niaoshu Mountain, Weiyuan
County, Gansu Province. It is 502.4 km long in Shaanxi Province, with a drainage area of
67,100 km2, accounting for 32.6% of the total areas of Shaanxi Province [39].

The Weihe River flows through the loess area and carries great quantities of silt and
sand. Most of the Weihe Basin belongs to the temperate continental monsoon climate zone,
and the precipitation is concentrated in summer. The Weihe River mainly flows through
the Weiyang district, Baqiao district, Gaoling district and Lintong district within Xi’an
city [40]. The Weihe River UEZ is located in the north of Weiyang district, close to the south
bank of the Weihe River, with a length of approximately 27 km and a maximum width of
approximately 8.4 km. The total areas reach 120.78 km2 (Figure 1).
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Figure 1. The location and satellite image of research area.

The Weihe River UEZ was built on the basis of a comprehensive treatment project
for the Weihe River and was officially established by the government in 2018. In taking
ecological protection as the main goal, this ecological zone is an important part of Xi’an
sustainable development planning, as well as an important urban ecological barrier. It
provides ecological services such as water conservation and eco-tourism for the city.
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2.2. Data Sources

In this study, Landsat8-OLI data in 2014, 2016, 2018 and 2020 were obtained from
the geospatial data cloud platform (http://www.gscloud.cn, accessed on 1 July 2022), one
Landsat 8-OLI image data of the bottom cloud volume was used each year to cover the
study area, and these data were all imaged between April and July. Landsat8-OLI can
achieve global coverage every 16 days, with a spatial resolution of 30 m; origin data were
preprocessed in Envi 5.3 (Radiometric Calibration and FLAASH Atmospheric Correction).
The 2018 and 2020 GF-2 high-resolution data were obtained from Shaanxi Satellite Applica-
tion Technology Center, one GF-2 image data was used in 2018, and two GF-2 image data
were used in 2020 to cover the study area. Due to the difficulty of acquiring GF-2 data, the
imaging times for the data in 2018 and 2020 were October and March, respectively, and the
data used were low cloud volumes. GF-2 global revisit frequency not greater than 5 days,
with a spatial resolution reaching 0.8 m (after preprocessing and fusion). The maximum
likelihood classification was used to complete the interpretation. The kappa coefficient of
Landsat8-OLI data interpretation was higher than 0.8, and the GF-2 data interpretation was
higher than 0.85, which met the research requirements.

Due to the difference in spatial resolution between the two remote sensing data, the
Landsat8-OLI data was divided into five categories, including unused land, water body,
vegetative land, cultivated land and construction land, in this study. At the same time, the
GF-2 data was divided into six categories, including unused land, water body, forestland,
grassland, cultivated land and construction land. The grassland and forestland types in the
GF-2 classification are uniformly covered by vegetative land types in the Landsat8-OLI data
classification. The boundary data of the Weihe River UEZ was obtained from the planning
map of Xi’an city and the vectorization of the planning scope of the Weihe River UEZ. Other
vector boundary data were from the resource and environmental science and data center of
the Chinese Academy of Sciences (https://www.resdc.cn, accessed on 4 July 2022).

3. Methodology
3.1. Land Use Transfer Matrix

The analysis of LUCC transfer is an important method to reveal regional human activ-
ities’ impact on land use. Based on the land use data of the Weihe River UEZ interpreted by
Landsat8-OLI and GF-2 remote sensing images, this study established the phase-by-phase
transfer matrix in 2014, 2016, 2018 and 2020, respectively. Additionally, it compared the
scale difference in the interpretation effect between Landsat8-OLI data with 30 m spatial
resolution and GF-2 data with 0.8 m spatial resolution. The land use transfer matrix can
scientifically reveal the overall land use structure and change characteristics, reflecting the
change direction of land use types [41,42]. The formula is shown as follows:

Sij =

S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

(1)

where S represents the areas of various land use types. i and j refer to the land use types at
the beginning and end of the study period, respectively. n is the total number of land use
types. Sij is the area transferred from land use i to land use j during the research period.

3.2. Landscape Pattern Index

Landscape pattern reflects the spatial differences of patches in size, shape and at-
tributes. Landscape pattern is usually reflected by various landscape pattern indexes.
In this study, separation degree, fragmentation degree and dominance degree were se-
lected to analyze the landscape pattern of the Weihe River UEZ. Fragmentation statistics
(Fragstats) is widely used to calculate landscape metrics for categorical map patterns, of
which Fragstats 4.2 is the most authoritative. Based on this platform, the landscape pattern
index of the Weihe River UEZ was calculated pixel by pixel through the moving-window

http://www.gscloud.cn
https://www.resdc.cn
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method based on the GF-2 data in 2018 and 2020. Specifically, the selected window size
was 100 m. The equations applied for calculation are shown as follows:

SPLIT =
A2

∑m
i=1 ∑n

j=1 aij
2 (2)

Fi =
npij

taij
(3)

Li = 1 − sheiij (4)

where Splitting index (SPLIT) is the splitting degree of landscape. aij is the area (m2) of patch
ij. A is the total landscape area. Fi is landscape fragmentation, npij is the number of patches
of landscape type i, taij is the area of landscape type i. Fi represents the fragmentation
degree of landscape segmentation, reflecting the complexity of landscape spatial structure
and the degree of human interference to the landscape to a certain extent. Li represents
landscape dominance and sheiij is the Simpson evenness of landscape type i. Li is used to
measure the deviation of landscape diversity from the maximum diversity, indicating the
degree to which the landscape is controlled by several main landscape types.

3.3. Ecosystem Service Value (ESV)

ESV reflects the benefits that human beings can directly obtain from the ecosystem,
which is closely related to the health and stability of the ecosystem and environmental
policies. This study was based on the Arcgis 10.2 platform, using 300 m grid size, the ESV
of the Weihe River UEZ was calculated in 2018 and 2020 using the GF-2 data by referring to
the equivalent factor method and equivalent factor table proposed. Xie et al. considered
that the equivalent ESV coefficient was 1/7 of the unit area value of market grain [25,42].
First, according to the grain yield, sowing area and market price (japonica rice, wheat
and corn, obtained from Xi’an statistical yearbook and Shaanxi statistical yearbook) of
prefecture-level cities in the study area, the unit area value of grain in the Weihe River
UEZ was obtained. Second, the ESV of each category in Table 1 was calculated by the 1/7
multi-year from 2018 to 2020 average grain unit area value (equivalent ESV coefficient)
multiplied by the equivalence factor. The data of equivalence factor referred to the studies
of Xie et al. and Guo et al. [43,44]. Eventually, the ESV of the Weihe River UEZ in Xi’an can
be calculated as Equation (5). The ESV calculations for both 2018 and 2020 are based on the
same unit area ESV data (Table 1) since the same equivalence factor and multi-year average
grain unit area values are used in the calculations.

ESVi = ∑(Ai × Vi) (5)

where ESVi represents the ESV value of land use type i. Ai is the area of land use type i. Vi
is the ESV per unit area of land use type i.

Table 1. Per unit ESV of various land use types at Weihe River UEZ (¥/hm2/year).

Primary Type Secondary Type Cultivated
Land Forestland Grassland Water

Body
Construction

Land
Unused

Land

Supply Service Food Production 1539.08 507.90 661.80 815.71 0.00 30.78
Material Production 600.24 4586.46 554.07 538.68 0.00 61.56

Regulation
Service

Gas Regulation 1108.14 6648.83 2308.62 784.93 0.00 92.34
Climate Regulation 1492.91 6264.06 2400.96 3170.50 0.00 200.08

Hydrological Regulation 1185.09 6294.84 2339.40 28,888.53 0.00 107.74
Waste Disposal 2139.32 2647.22 2031.59 22,855.34 0.00 400.16
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Table 1. Cont.

Primary Type Secondary Type Cultivated
Land Forestland Grassland Water

Body
Construction

Land
Unused

Land

Support Service Soil Conservation 2262.45 6187.10 3447.54 631.02 0.00 26.16
Biodiversity 30.78 6941.25 2878.08 5279.04 0.00 615.63

Cultural Service Aesthetic Landscape 261.64 3201.29 1339.00 6833.52 0.00 369.38

3.4. Spatial Analysis of ESV
3.4.1. Hotspot Analysis

Based on ArcMap 10.2 platform, the hotspot analysis tool was used to test whether
there existed significant spatial aggregation of high and low values of ESV in 2018 and
2020, using the GF-2 data in the Weihe River UEZ. The spatial distribution of ESV can be
analyzed as a result.

Gi
∗ =

∑n
j=1 ωi,jxj − X ∑n

j=1 ωi,j

S

√[
n ∑n

j=1 ω2
i,j −

(
∑n

j=1 ωi,j

)2
]

/(n − 1)

(6)

X =
1
n

n

∑
j=1

xj (7)

S =

√
∑n

j=1 x2
j

n
−
(
X
)2 (8)

where Xj is the attribute value of spatial unit j. ωij represents the spatial weight between
the spatial units i and j (value is 1 when adjacent, 0 when not adjacent). n is the number of
spatial units. X is the mean value, and S is the standard deviation. The statistical result of
Gi

∗ is Z points. Statistically significant positive Z-score indicates hot spots, and the higher
the Z score, the closer the hot spots gather. At the same time, negative values indicate cold
spots. The lower the Z score, the closer the cold spots gather.

3.4.2. Global Spatial Autocorrelation of ESV

Based on GeoDa platform, the spatial autocorrelation analysis of data is carried out to
describe its spatial dependence and aggregation degree, and the global Moran’s I index is
selected for analysis in 2018 and 2020 using the GF-2 data. The specific formula is shown
as follows:

I =
n
S0

∑n
i=1 ∑n

j=1 ωi,jzizj

∑n
i=1 zi

2 (9)

where zi is the deviation between the attribute of element i and its average value (xi −
X), ωi,j is the spatial weight between elements i and j. n is equal to the total number of
elements, and S0 is the aggregation of all spatial weights:

S0 =
n

∑
i=1

n

∑
j=1

ωi,j (10)

ZI-score is calculated in the following form:

ZI =
I − E[I]√

V[I]
(11)

where
E[I] = −1/(n − 1) (12)
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V[I] = E[I2]−E[I]
2

(13)

3.4.3. Local Spatial Autocorrelation of ESV

The local indicators of spatial association (LISA) clustering map is used to evaluate
the spatial clustering of land deformation in the study area in 2018 and 2020 based on
the GF-2 data. When the LISA coefficient value is larger than 0, it indicates that there is a
spatial positive correlation between local spatial units and adjacent spatial units, which
is expressed as high or low. Otherwise, it indicates low-high or high-low, and there is a
spatial negative correlation between local spatial units and adjacent spatial units. LISA was
calculated by Equation (14).

Ii =
(xi − x)

1
n ∑n

i=1(xi − x)2

n

∑
i,j=1

ωij
(
xj − x

)
(14)

where Ii is LISA of Moran’s I, and n is the number of spatial units participating in the
analysis. ωi,j is the space weight matrix. LISA statistics of Moran’s I index test is the same
as the global Moran’s I [45].

4. Results
4.1. Land Use Transfer and Scale Effect Analysis

This study constructed the land use transfer status of the Weihe River UEZ from
different spatial resolution scales. Through the phase-by-phase land use distribution map
and the construction of a land use transfer matrix, this paper analyzed the land use transfer
from the spatial and temporal dimensions.

As shown in Figure 2, the construction land in the Weihe River UEZ was mainly
distributed in the south and southeast. Additionally, with the construction of the ecological
area, the aggregation degree in the southeast became higher. Green space was mainly
distributed on both sides of the main stream of the Weihe River. Cultivated land was mainly
distributed in a small part of the west, with concentrated spatial distribution characteristics.
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As shown in Figure 3, the construction land areas were all larger than 40 km2 in four
different years. This indicated that construction land was dominant in terms of land use
types. In 2018 it reached its peak, 53.51 km2, and then it decreased. By comparison, the
areas of unused land and water body were relatively small in this UEZ. The water body
areas were steady while the variation of unused land dramatically fluctuated during this
period. In 2018, the areas of unused land reached the bottom, approximately 2.94 km2.
Moreover, it showed a remarkably increasing trend after 2018. Additionally, water body
areas slightly decreased and cultivated land areas obviously decreased from 2016 to 2020.
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Table 2 indicates that the change of construction land converted to cultivated land was
remarkable from 2014 to 2016, reaching 11.58 km2. At the same time, the areas of vegetative
land transferred into cultivated land were relatively large. This period was in the early
stage of the development of the Weihe River UEZ. The construction land was still dominant
in the research area, a part of which was converted into vegetative land. This variation
implemented the official planning of the Weihe River UEZ. A large area of vegetative land
transferred into cultivated land, indicating that the impact of locally cultivated land on
ecology was significant from 2014 to 2016.

Table 2. Matrix of Landsat8-OLI interpretation of land use data from 2014 to 2016.

From 2014
to 2016

Construction
Land

Cultivated
Land

Vegetative
Land

Water
Body

Unused
Land

Construction Land 26.12 11.58 1.72 0.78 3.49
Cultivated Land 4.68 22.34 5.15 0.50 2.29
Vegetative Land 4.12 6.11 10.38 2.08 0.91

Water Body 1.61 0.33 0.37 3.38 0.15
Unused Land 3.85 5.18 0.26 0.03 3.40

According to Table 3, the transformation of cultivated land into construction land was
obvious from 2016 to 2018. By comparing the land use map of the Weihe River UEZ, the
cultivated land area was mainly concentrated in the southwest, and the transformation
from cultivated land to construction land occurred in this region concurrently. In addition,
the transformation from cultivated land to vegetative land cannot be ignored, and it reached
9.54 km2. The increase of vegetative land reflected the development of the Weihe River
UEZ and the improvement of local ecological quality from 2016 to 2018.
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Table 3. Matrix of Landsat8-OLI interpretation of land use data from 2016 to 2018.

From 2016
to 2018

Construction
Land

Cultivated
Land

Vegetative
Land

Water
Body

Unused
Land

Construction Land 30.86 3.48 3.86 1.53 0.65
Cultivated Land 11.72 22.79 9.54 0.30 1.17
Vegetative Land 3.48 5.20 8.30 0.37 0.55

Water Body 1.68 0.33 1.32 3.13 0.30
Unused Land 5.90 2.80 1.13 0.14 0.28

According to Table 4, the significant change from 2018 to 2020 was the transformation
from cultivated land to vegetative land, reaching 8.29 km2. In addition, the area from
cultivated land to construction land was also remarkable, reaching 5.91 km2.

Table 4. Matrix of Landsat8-OLI interpretation of land use data from 2018 to 2020.

From 2018
to 2020

Construction
Land

Cultivated
Land

Vegetative
Land

Water
Body

Unused
Land

Construction Land 37.35 7.45 3.69 2.05 3.10
Cultivated Land 5.91 16.45 8.29 0.0045 3.94
Vegetative Land 3.12 4.64 14.59 0.07 1.71

Water Body 1.29 0.131 0.10 3.05 0.91
Unused Land 0.41 0.57 0.78 0.09 1.09

Landsat8-OLI data with a spatial resolution of 30 m was not accurate enough to inter-
pret land use, especially in small-scale areas. It would be confused in the interpretation of
features with similar pixel spectra, such as small and scattered water bodies and buildings.
However, it was good in the interpretation of features with large continuous areas, such as
vegetative land and construction land. Generally, it reflected the trend of construction land
gathering to the southeast. The land use spatial distribution map (Figure 4) and transfer
matrix (Table 5) of the Weihe River UEZ were further built based on GF-2 remote sensing
images in 2018 and 2020, respectively, and the resolution and accuracy were improved as
a result.
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GF-2 land use classification results showed that the spatial distribution of construction
land in 2018 and 2020 were concentrated in the southeast of the Weihe River UEZ. In terms
of spatial agglomeration, the construction land in the research area is more obvious in 2020,
while it was relatively scattered in 2018. Cultivated land was mainly concentrated in parts
of western regions, and the largest land type was grassland.
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Table 5. Matrix of GF-2 interpretation of land use data from 2018 to 2020.

From 2018
to 2020

Construction
Land

Cultivated
Land

Grass
Land

Forest
Land

Water
Body

Unused
Land

Construction Land 12.67 2.89 7.45 1.55 1.15 5.86
Cultivated Land 6.37 3.73 7.03 2.03 1.59 4.83

Grass Land 6.26 3.96 9.88 2.20 2.94 4.98
Forest Land 2.85 1.93 4.74 1.34 1.31 2.12
Water Body 3.24 1.66 3.12 0.64 1.13 2.23

Unused Land 1.78 0.89 1.88 0.42 0.51 1.61

Compared with Landsat8-OLI, GF-2 interpretation data showed an obvious scale effect
in the proportion of various land use types (Figure 5). It was difficult to deal with different
classes in a single pixel when interpreting small-scale regional land use data using 30 m
resolution remote sensing data. The classifier will select a representative object as the pixel
land classification according to its mechanism, ignoring the fragmented and scattered land
classification. The dominant, concentrated and continuous land classification will expand,
eventually resulting in the error in the total area of each category.
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According to the interpretation of GF-2 data, the mutual conversion of land use types
in the Weihe River UEZ was remarkable among construction land, grassland and cultivated
land from 2018 to 2020 (Table 5). To be specific, there were 7.45 km2 of construction land
transferred into grassland, 7.03 km2 of cultivated land transferred into grassland, 6.37 km2

of cultivated land transferred into construction land and 6.26 km2 of grassland transferred
into construction land. The dramatic land use transformation reflected the instability of the
current construction of the Weihe River UEZ. Meanwhile, it corresponded to the change of
the spatial aggregation degree.

The transformation of land use in the Weihe River UEZ reflected the continuous
strengthening of local ecological construction and the gradual improvement of ecological
quality. However, due to the lack of interpretation of small area scale by Landsat8-OLI,
the green space had not been classified in more detail, and the content covered by a single
pixel and the information of similar spectral pixels were difficult to extract and classify. It
was necessary to further utilize higher resolution GF-2 data for verification and analysis.
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4.2. Landscape Pattern Analysis

According to the calculation of the landscape pattern index with the size of a 100 m
window, the high-resolution indexes of spatial continuity of the Weihe River UEZ in 2018
and 2020 were obtained, as shown in Figure 6.
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Figure 6. (a)The separation degree of Weihe River UEZ in 2018; (b) the separation degree of Weihe
River UEZ in 2020; (c) the fragmentation degree of Weihe River UEZ in 2018; (d) the fragmentation
degree of Weihe River UEZ in 2020; (e) the dominance of Weihe River UEZ in 2018; (f) the dominance
of Weihe River UEZ in 2020. (GF-2 satellite based).

For different patches of a specific landscape pattern, the separation degree of individ-
ual distribution showed the spatial aggregation of landscape patches to a certain extent.
From 2018 to 2020, areas with low separation degree concentrated in urban agglomeration
areas, reflecting that the spatial agglomeration of construction land had a significant impact
on the spatial distribution of separation degree. The regions with high separation had a
trend of spatial dispersion from 2018 to 2020. Although the construction land showed a
trend of spatial aggregation, the landscape separation degree of patches was relatively large
within the construction land. It indicated that the spatial aggregation of construction land
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still has a large potential for improvement and optimization. Fragmentation was an impor-
tant indicator reflecting the degree of the ecological health of the landscape. From 2018 to
2020, the low-value areas increased significantly. The low-value areas were concentrated
in the southeast of the Weihe River UEZ and in part of the river’s south beach. Generally,
the ecosystem in this area was relatively stable. From 2018 to 2020, the areas with high
dominance increased, which were mainly distributed in the concentrated construction land.
This result can be mutually verified with land use interpretation data. The construction
land is dominant in the study area. Since construction land has a great impact on ESV
and landscape pattern, the dominance of construction land needs to be controlled to a
certain extent.

4.3. ESV Calculation Based on High-Resolution Images

ESV calculation results showed that the total value of ESV in the Weihe River UEZ was
227.46 million yuan in 2018 and 175.27 million yuan in 2020. It decreased by 52.19 million
yuan. The average value of ESV in the Weihe River UEZ was 0.17 million yuan in 2018 and
0.13 million yuan in 2020. It decreased by 0.04 million yuan. According to Figure 7, the
ESV value along the river was generally at a higher level and the highest level. The ESV
in 2018 and 2020 showed an outward attenuation trend along the river. By comparing the
land use data interpreted by GF-2 in 2018 and 2020, the ESV in the construction area was at
the lowest level and lower level as a whole. The ESV with significant human interference
showed a lower trend than that with less interference. It showed a trend of gathering to
the southeast from 2018 to 2020 with the change of spatial distribution of construction
and other land types. The phenomenon that high-grade ESV existing in the river areas
showed was that the ESV generated by water conservation service was the main ecological
service in the Weihe River UEZ. Compared with 2018, the ESV in 2020 showed a higher
degree of spatial aggregation in low-value areas, which was conducive to environmental
management and ecological governance.
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4.4. Spatial Analysis of ESV

In 2018 and 2020, the hot spots of ESV in the Weihe River UEZ were spatially dis-
tributed around the main stream of the Weihe River (Figure 8). Generally, the spatial
relation of the cold–hot spot is stable. However, the variation trend in the cold spot area
was relatively conspicuous. It was mainly determined by the change in construction density.
The areas with insignificant cold and hot spots correspond to the grassland, forestland
and cultivated land based on GF-2 interpretation data, in which the building density was
low. It reflected that the distribution of construction land had an obvious density center.
Especially in 2020, it showed a decreasing trend from southeast to outside.
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Based on the GeoDa platform, the global spatial autocorrelation calculation of ESV was
carried out. The Moran’s I index of ESV in 2018 and 2020 was 0.527 and 0.613, respectively,
which was in an upward trend (Figure 9). Under 999 randomized displacements of the
GeoDa platform, the p value was 0.001, which passed the significance test. Local spatial
autocorrelation and its LISA map were used to analyze further the spatial autocorrelation
of ESV (Figure 10).
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Figure 9. The Moran’s I scatter diagram of global spatial autocorrelation of ESV at Weihe River UEZ
in 2018 (a) and 2020 (b). (GF-2 satellite based).

According to Figure 10, the regions with obvious significance were similar to the
hot spot analysis diagram, indicating that there was a significant spatial autocorrelation
phenomenon in the cold–hot spot significant region of the Weihe River UEZ. The region
occupied by insignificant areas included 796 grids in 2018 and 718 grids in 2020, which
showed a decreasing trend. In 2018 and 2020, the positive spatial autocorrelation regions
of high–high aggregation and low–low aggregation corresponded to cold and hot spots,
respectively. Between the regional distribution of low–high aggregation and high–high
aggregation along the river, there were few high–low aggregation regions and decreased
continuously with time. It was mainly distributed in low–low aggregation areas.
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5. Discussion
5.1. Multi-Resolution Remote Sensing Method

The GF-2 high-resolution image can present more details, which can provide a refer-
ence for the selection of training samples when interpreting the Landsat8-OLI image in
the same area. However, GF-2 is significantly affected by redundant information, such
as building shadows during interpretation, causing a certain amount of blur and error in
some information. It can be solved by post correction or adding training samples, but the
efficiency is low. When using 30 m resolution remote sensing data to interpret small-scale
regional land use data, it is difficult to deal with different classifications in a single pixel.
The classifier will select a representative class as the pixel class according to its mechanism,
resulting in the total area error of each class. The scale effect of remote sensing images with
different spatial resolutions in a unified region has a great impact on the interpretation
results. If the spatial resolution is particularly small, it will increase the difficulty and effi-
ciency of training samples and interpretation, and the workload will increase exponentially.
Therefore, it is suggested that the appropriate spatial resolution scale should be selected
according to the research area and research targets. Moreover, the method and mechanism
of fast processing high-resolution remote sensing images should be explored [46,47].

According to LUCC analysis by GF-2 remote sensing data interpretation, there ex-
isted a large-scale spatial aggregation phenomenon in the southeast of the Weihe River
UEZ. Moreover, it transmitted to the ESV and its cold–hot spot results. However, this
phenomenon did not appear in the landscape pattern index results calculated by using the
moving window method. The reason probably is that the moving window has a certain
fuzzy effect on the data. That was, the calculation process was not completely based
on a single grid unit but took into account the values within a certain range around the
central grid. Therefore, in the transitional boundary of the building aggregation area, the
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calculation of its landscape pattern index was significantly affected by the grid values
of non-building aggregation areas. If the size of the moving window were larger, the
calculation results would be more blurred.

5.2. Planning Implementation and Policy Interpretation

According to the planning of the Weihe River UEZ, the government planned to build
an education-housing cluster by establishing schools in the southeast areas. Such measures
attracted more people to live in this region and drove economic development. From the
point of view of land use, it was mainly reflected in the increase of construction land as
well as the building density in the southeast areas. The concentration of urban settlement
increases regional population density as well as human activity intensity. At the same time,
the traffic efficiency and infrastructure utilization efficiency can be improved. Although the
regional ESV decreases, it has positive impacts on reducing energy consumption and carbon
emissions. This view corresponds to Song et al., who opined that high density, mixed
land use and good connectivity of urban built environments are healthy and sustainable
modes [48].

As shown in Figure 11, a large area of an ecological buffer zone, including protective
green land and urban ecological parks, had been planned between the Weihe River and
Xi’an downtown areas. Given the result of the research, scattered landscape patches
gathered into a coherent large landscape belt, and the ESV in the north part had been
improved from 2014 to 2020. Xu et al. pointed out that land resource was the main factor
limiting urban sprawl. Urban construction had negative impacts on urban ESV [49]. Zhang
et al. considered that urban parks could alleviate the impact of human activities on the
ecological environment, especially in high-density cities [50]. The growth of urban parks
is of great significance to urban sustainability. In the west part of the Weihe River UEZ,
the continuous reduction of cultivated land indicated that urban expansion encroached on
farmland. This phenomenon was spontaneous since these suburban areas are out of the
planning scope. This spontaneous transformation of land use has potential threats, which
should unify urban and rural planning, as well as strictly manage the non-agricultural
conversion of farmland. In addition, the water of the Weihe River is obviously affected by
local precipitation. The water flow varies greatly between different years and months. With
many industrial factories relocated from downtown to suburbs, the water consumption,
including agricultural, industrial and domestic water, use became quite large. This was
consistent with the result that the water areas had decreased slightly. Therefore, the change
in land use and ESV is just a symptom, and the key is to understand its causes and collective
management behavior.
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change still exist, especially in urban–rural transition areas. This issue needs to be brought 
to the forefront of public discussion. 
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6. Conclusions

From 2014 to 2020, the spatial differentiation of land types in the Weihe River UEZ
was significant. The construction land gradually gathered in the southeast part of the
research area. The bounds between construction land and other land types, such as
forestland and grassland, had become clear. With the development of the Weihe River
UEZ, the vegetative land, including forestland, grassland and water body, showed a rising
trend as well as non-scattered features. The cultivated land area was gradually reduced.
Additionally, the grassland area was obviously expanded based on GF-2 data interpretation.
The construction land area expanded, and it was mainly concentrated in the southeast. In
general, the ecological quality of non-construction land areas has been optimized. The
zoning regulation made the boundary of different regions clear.

The total ESV decreased by approximately 23% from 2018 to 2020. In terms of spatial
distribution, the ESV of the ecological area represented the high value was mainly dis-
tributed in the Weihe River surrounding beach areas. It was greatly affected by river water
and riverside ecological landscape. The distribution of low-value areas was largely affected
by construction land. From 2018 to 2020, the ESV high-value areas remained compara-
tively stable while the medium-value areas increased significantly. The landscape pattern
showed that the landscape separation degree, fragmentation degree and dominance degree
were greatly affected by the changes in the construction area, especially the landscape
fragmentation degree. The construction land was greatly disturbed by human activities
and the spatial structure was complex. The Weihe River UEZ in 2018 and 2020 had obvious
global spatial autocorrelation. Moran’s I was in an upward trend. The distribution of ESV
cold–hot spot significant area was similar to local spatial autocorrelation significant area.
The high–high aggregation of the hot spot area and LISA cluster was distributed between
the main stream of the Weihe River, and the low–low aggregation of the cold spot area
and LISA cluster was greatly affected by construction land. With the development of the
land system in China, land use changes under the guidance of planning, staying a benign
and sustainable state. Significantly, spontaneous land use and landscape change still exist,
especially in urban–rural transition areas. This issue needs to be brought to the forefront of
public discussion.
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