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Abstract: This paper proposes a novel multi-function isolated three-port bidirectional DC–DC
converter for a stand-alone photovoltaic (PV) system. The proposed topology was composed of
a unidirectional step-up converter and a bidirectional step-up/step-down converter that only re-
quired one set of complementary PWM signals to control any operation mode and used multiple
operating stages to improve the practicability of the converter. In addition, the proposed topology
had the function of inductance energy leakage recovery to improve the conversion efficiency and
used synchronous rectification technology to reduce the conduction losses from passive components.
This paper implemented a 500 W converter to verify the feasibility of the proposed converter by
theoretical analysis, simulation, and experiment results. The experimental results show the highest
efficiency of 95.5% for the PV step-up to the DC bus, 97.8% for the PV step-down to the battery
terminal, 94.5% for the battery terminal step-up to the DC bus, and 93.4% for the DC bus step-down
to the battery terminal, respectively.

Keywords: three-port bidirectional converter; leakage energy recycling; galvanic isolation;
photovoltaic system

1. Introduction

Today’s society relies heavily on non-renewable energy, which has seriously affected
the environment [1]. The supply of petrochemical energy is excessively concentrated in
areas with many disputes in the world, and energy prices are easily affected by human
factors. Once oil production is in short supply, it will inevitably lead to global impacts such
as soaring oil prices, rising prices, and inflation. In the case of natural gas, burning natural
gas produces methane, a greenhouse gas that contributes to rapid global warming when
it spills into the atmosphere in large quantities. Many countries are actively developing
green energy sources, such as solar energy and wind power. Solar power generation has
been the focus of energy technology in response to air pollution problems, which have
received increased attention. On the other hand, once a solar power generation device is
set up, energy can be continuously delivered, and there is no need to consider the problem
of fuel transportation. Similarly, wind power generation does not need to consider the
harmful gases and waste residues produced by fossil fuels such as coal and petroleum [2].
With the installation and promotion of wind power generation and solar power generation,
centralized energy generation has gradually turned into distributed energy generation,
which has become an inevitable trend of future urban intelligence [3]. With the reduction
in the cost of solar cells, the number of commercialized solar power supply systems is
increasing day by day. At the present stage, most common PV power generation systems
are equipped with energy storage systems and rely on bidirectional converters to process
the direction of energy and allow the energy storage system to be charged and discharged.
This has led to the trend of research on bidirectional converters in recent years. Bidirectional
converters can achieve step-up and step-down adjustments through the same topology.
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Some scholars have successively developed three-port converters for PV power supply
systems, which can be powered by PV energy and batteries. Combining the functions of
two-way converters and three-port converters is bound to greatly reduce the production
cost and volume. Therefore, a three-port bidirectional converter with multiple operational
functions was proposed in this paper. The PV could be stepped up to a DC bus (400 V) for
supplying the DC load and charging the battery at the same time, while the battery also
could be stepped up to the DC bus to stabilize the entire system. In addition, the DC bus
could also be stepped down to charge the battery, as shown in Figure 1.
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Figure 1. Application system diagram of three-port bidirectional DC/DC converter. 
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verter has the advantages of a lower cost and a simpler structure. However, the voltage 
gain of the topology is not sufficient for high-voltage conversion applications. The con-
verter [9] uses the switched capacitor voltage doubler technique, and the quasi-Z source 
can achieve a wider voltage gain range and lower power switch voltage stress. However, 
in order to achieve wide voltage gain, the switched capacitor technology increases the 
component count, resulting in lower conversion efficiency of this topology than conven-
tional quasi-Z-source converters. 

Refs. [10,11] presented the most common topology of all isolated converters, which 
have the advantages of few components, a simple structure, a low cost, and electrical iso-
lation. However, leakage inductance can cause voltage surges to damage components, 
and therefore they should not be used in high-power applications. Ref. [11] presented a 
forward-flyback converter and a switched capacitor voltage circuit. The topology has the 
advantages of leakage inductance recovery, ZVS, and high conversion efficiency, and it 
can effectively improve the problem of large current ripples in traditional forward-flyback 
converters. However, circuit control is more complicated due to the synchronous rectifi-
cation technology. At the same time, in order to achieve a high conversion ratio, a higher 
turns ratio is required, thus increasing the volume of the transformer and reducing the 
power density. 

In recent years, many three-port converters have been proposed [12–21]. Such con-
verters have been widely applied to renewable energy and electric vehicles, as they have 
fewer components and a lower cost. The topology in [12] requires larger component 
counts, two sets of transformers, and an inductor on the output side. Although there are 
two operating modes, the volume is large, which results in high implementation costs, 
leakage inductance, and low efficiency. Although [13] has the function of power factor 
correction (PFC) and has fewer active switching parts, it has the disadvantages of a dis-
continuous input current and low voltage gain. Ref. [14] was derived from the improved 
LLC topology, which uses a coupled inductor and a secondary-side voltage doubler cir-

Figure 1. Application system diagram of three-port bidirectional DC/DC converter.

Bidirectional DC–DC converters can be divided into non-isolated and isolated types.
Non-isolated converters [4–8] are derived from conventional converters. This type of
converter has the advantages of a lower cost and a simpler structure. However, the volt-
age gain of the topology is not sufficient for high-voltage conversion applications. The
converter [9] uses the switched capacitor voltage doubler technique, and the quasi-Z source
can achieve a wider voltage gain range and lower power switch voltage stress. However,
in order to achieve wide voltage gain, the switched capacitor technology increases the com-
ponent count, resulting in lower conversion efficiency of this topology than conventional
quasi-Z-source converters.

Refs. [10,11] presented the most common topology of all isolated converters, which
have the advantages of few components, a simple structure, a low cost, and electrical
isolation. However, leakage inductance can cause voltage surges to damage components,
and therefore they should not be used in high-power applications. Ref. [11] presented
a forward-flyback converter and a switched capacitor voltage circuit. The topology has
the advantages of leakage inductance recovery, ZVS, and high conversion efficiency, and
it can effectively improve the problem of large current ripples in traditional forward-
flyback converters. However, circuit control is more complicated due to the synchronous
rectification technology. At the same time, in order to achieve a high conversion ratio,
a higher turns ratio is required, thus increasing the volume of the transformer and reducing
the power density.

In recent years, many three-port converters have been proposed [12–21]. Such con-
verters have been widely applied to renewable energy and electric vehicles, as they have
fewer components and a lower cost. The topology in [12] requires larger component counts,
two sets of transformers, and an inductor on the output side. Although there are two
operating modes, the volume is large, which results in high implementation costs, leakage
inductance, and low efficiency. Although [13] has the function of power factor correction
(PFC) and has fewer active switching parts, it has the disadvantages of a discontinuous
input current and low voltage gain. Ref. [14] was derived from the improved LLC topology,
which uses a coupled inductor and a secondary-side voltage doubler circuit to achieve
higher voltage gain and zero-voltage switching (ZVS). It also has the advantages of leakage
inductance recovery and high efficiency. However, its operating modes are fewer. Ref. [15]
presented a non-isolated converter with soft switching for hybrid energy systems. The
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topology has the advantages of multiple input sources, high efficiency, a simple topology,
and soft switching, but it possesses larger component counts and has fewer operating
modes. Ref. [16] presented a non-isolated high-step-up three-port converter, in which
coupled inductors are used to achieve high voltage gain. This topology possesses lower
voltage stress, soft switching, and lower conduction losses, as it uses two sets of clamp
circuits. Due to employing more active switches, the operating mode is more complicated.
Ref. [17] employed two step-up circuits to achieve three-port bidirectional power flows,
in which a clamp circuit is used to realize the soft switching. The design also reduces the
number of components used and achieves higher voltage gain by combining two sets of
voltage doubler rectifier circuits, thus satisfying the characteristics of high voltage gain,
component sharing, and soft switching. However, four sets of magnetic components and
eight capacitors are employed, resulting in a high cost and large volume. Ref. [18] designed
a three-winding common-core coupled inductor combined with a full-wave frequency
multiplier circuit to achieve a high step-up. This topology also has the advantages of
primary and secondary leakage inductance recovery, high efficiency, a simple topology,
and simple signal control. Only three switches are employed in [19], and two input sources
share a single inductor, thus reducing size and cost. This topology also has the advantages
of high voltage gain, low voltage stress, few active components, and simple control, and it
does not require an excessive turns ratio or non-extreme duty cycle. However, there are
fewer operating modes, and the topology is more complicated.

2. Circuit Architecture and Operational Principles

This paper proposed a three-port isolated bidirectional DC/DC converter for solar
energy systems. Its circuit topology is shown in Figure 2a. The proposed topology mainly
combines a unidirectional boost converter and a bidirectional step-up/step-down converter.
The PV (VPV) can be stepped up to a DC bus (VH 400 V) for supplying the DC load and
charging the battery at the same time, and the battery (VBat) also can be stepped up to the
DC bus. In addition, the DC bus can also be stepped down to charge the battery. This
topology includes switches S1–S6, a transformer, an inductor (L), and capacitors C1–C3. The
structure of this circuit is simple, and only one set of complementary signals is needed for
control in different operating modes. It has leakage inductance recovery to reduce energy
consumption, and it has four operating stages to achieve multiple operating functions
under various conditions.
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Figure 2. Proposed three-port bidirectional converter: (a) circuit architecture; (b) operating current
direction of the proposed converter.

The operating current direction of the converter in this paper is shown in Figure 2b.
The circuit was divided into four working modes for discussion and analysis. Stage one
stepped up the output of PV (VPV) to the high-voltage side (VH) of the DC bus; stage two
stepped down the output of the PV (VPV) to charge the battery; stage three stepped up
the battery output (VB) to the high-voltage side (VH); and stage four stepped down the
high-voltage side (VH) to charge the battery.

In order to simplify the analysis of the circuit, this study made the following assumptions:

(1) Capacitors CPV, CBat, and C1–C3 are large enough to keep the output voltage as
a constant voltage source.

(2) Switches S1–S6 are ideal components.
(3) The inductor current is operated in a continuous conduction mode (CCM).
(4) The switching period is T; the time when the switch turns on is DT, and the time when

the switch turns off is (1-D)T.

2.1. Stage One: PV Output Is Stepped Up to the High-Voltage Side (VH) of the DC Bus

Figure 3 shows the waveforms of the key components operating in stage one. In this
stage, switches S1 and S2 are both turned off, and the energy is transmitted through the
body diodes of switches S5 and S6. This operation is divided into five modes in this stage,
and the equivalent circuits are shown in Figure 4a–e.

(1) Mode 1 [t0–t1]

At t = t0, the equivalent circuit is shown in Figure 4a. In this mode, switches S3 and
S4 are turned off, and leakage inductance Lk and capacitor C1 store energy through the
parasitic capacitance of switch S3. The parasitic capacitance of switch S4 and magnetizing
inductance Lm transmit energy to the secondary side through the transformer. The energy
of capacitor C2 is transferred to the VH and charges capacitor C3 at the same time. This
mode ends when switch S4 is turned on.

(2) Mode 2 [t1–t2]

When t = t1, the equivalent circuit is shown in Figure 4b. In this mode, switch S4
is turned on, and switch S3 is turned off. The PV output (VPV) stores energy in leakage
inductance Lk and magnetizing inductance Lm and transfers the energy to the secondary
side through the transformer for charging capacitor C2. Capacitor C3 releases energy to the
VH through the body diode of switch S5 and the secondary side of the transformer. Mode 2
ends when switch S4 is turned off.
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(3) Mode 3 [t2–t3]

At t = t2, the equivalent circuit is shown in Figure 4c. This mode is a dead time for
switches S3 and S4. At this time, the leakage inductance releases energy to the magnetizing
inductance Lm, the transformer, the parasitic capacitance of switch S4, and capacitor C1,
and stores energy in capacitor C2 through the body diode of switch S5. Capacitor C3
releases energy to the VH through the body diode of switch S5 and the secondary side of
the transformer. Mode 3 ends when switch S3 is turned on.

(4) Mode 4 [t3–t4]

At t = t3, the equivalent circuit is shown in Figure 4d. In this mode, switch S3 is turned
on, and switch S4 is turned off. Leakage inductance Lk releases energy to the transformer
and capacitor C1, and the secondary side of the transformer stores energy in capacitor C3
through the body diode of switch S6. Capacitor C2 releases energy to the VH through the
body diode of switch S6 and the secondary side of the transformer. When the energy of
leakage inductance Lk drops to zero, mode 4 ends.

(5) Mode 5 [t4–t5]
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At t = t4, the equivalent circuit is shown in Figure 4e. In this mode, switch S3 is turned
on, and switch S4 is turned off. At this time, magnetizing inductance Lm and capacitor C1
release energy to the transformer, and the secondary side of the transformer stores energy
in capacitor C3 through the body diode of switch S6. Capacitor C2 releases energy to the VH
through the body diode of the switch and the secondary side of the transformer. Mode 5
ends when switch S3 is turned off.

2.2. Stage Two: PV Output Is Stepped Down to Charge the Battery

Figure 5 shows the waveforms of the key components in stage two. This stage is
divided into two operating modes in one switching cycle. Switches S3–S6 are turned off.
The equivalent circuits are shown in Figure 6a,b.

(1) Mode 1 [t0–t1]

At t = t0, the equivalent circuit is shown in Figure 6a. In this mode, switch S1 is turned
on, and switch S2 is turned off. Inductor L releases energy to the battery (VBat) through
switch S1. Mode 1 ends when switch S1 is turned off.

(2) Mode 2 [t1–t2]

At t = t1, the equivalent circuit is shown in Figure 6b. In this mode, switch S1 is turned
off, and S2 is turned on. PV output VPV stores energy in inductor L, and the energy of
inductor L charges the battery at the same time. Mode 2 ends when switch S2 is turned off.
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2.3. Stage Three: Battery Output Is Stepped Up to the VH of the DC Bus

Figure 7 shows the waveforms of the key components of stage three. This operating
mode is divided into five modes in one switching cycle, and its equivalent circuits are
shown in Figure 8a–e.

(1) Mode 1 [t0–t1]

At t = t0, the equivalent circuit is shown in Figure 8a. In this mode, switches S1–S6
continue to be turned off from the previous mode. Leakage inductance Lk and the parasitic
capacitance of switch S3 release energy to capacitor C1, capacitor C2 stores energy through
the secondary side of the transformer, and capacitor C3 releases energy to the VH through
the secondary side of the transformer. Mode 1 ends when switches S1 and S3 are turned on.

(2) Mode 2 [t0–t1]

At t = t1, the equivalent circuit is shown in Figure 8b. In this mode, switches S1 and
S3 are turned on, and switches S2 and S4 are turned off. At this time, the battery terminal
(VBat) stores energy in inductor L, and leakage inductance Lk releases energy to capacitor
C1 to recover the leakage inductance energy. Magnetizing inductance Lm stores energy in
capacitor C3 through the secondary side of the transformer, and capacitor C2 releases energy
to the VH through the body diode of switch S6 and the secondary side of the transformer.
Mode 2 ends when the energy of leakage inductance Lk is zero.

(3) Mode 3 [t2–t3]

At t = t2, the equivalent circuit is shown in Figure 8c. In this mode, switches
S1–S4 are kept in the previous mode. At this time, leakage inductance Lk and capacitor C1
release energy to magnetizing inductance Lm and transfer it to the secondary side of the
transformer. The remaining operating states are the same as in the previous mode. Mode 3
ends when switches S1 and S3 are turned off.
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(4) Mode 4 [t3–t4]

At t = t3, the equivalent circuit is shown in Figure 8d. In this mode, all switches
are turned off. Magnetizing inductance Lm releases energy to capacitor C3 through the
secondary side of the transformer and the body diode of switch S6, and capacitor C2
releases energy to the VH through the body diode of switch S6 and the secondary side of
the transformer. Mode 4 ends when switches S2 and S4 are turned on.

(5) Mode 5 [t4–t5]

At t = t4, the equivalent circuit is shown in Figure 8e. In this mode, switches S2 and
S4 are turned on. Battery terminal VBat and inductor L release energy to the transformer
and store energy in magnetizing inductor Lm. The secondary side of the transformer
transfers energy to capacitor C2 through the body diode of switch S5, and capacitor C3
releases energy to the VH through the body diode of switch S5 and the secondary side of
the transformer. Mode 5 ends when switches S2 and S4 are turned off.
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2.4. Stage Four: The High-Voltage Side (VH) Is Stepped Down to Charge the Battery

Figure 9 shows the waveforms of the key components in stage four. This operating
mode is divided into six modes in one switching cycle, and the equivalent circuits are
shown in Figure 10a–f.
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(1) Mode 1 [t0–t1]

At t = t0, the equivalent circuit is shown in Figure 10a. In this mode, switches S1–S6
are all turned off following the previous mode. Capacitor C2 releases energy to parasitic
capacitor CS5 of switch S5, while parasitic capacitor CS6 of switch S6 releases energy to
capacitor C3. Leakage inductance Lk transfers energy to parasitic capacitance CS2 of switch
S2 and the input capacitance (CPV) of the PV terminal through the body diode of switch S4.
Mode 1 ends when switches S1, S3, and S6 are turned on.

(2) Mode 2 [t0–t1]

At t = t1, the equivalent circuit is shown in Figure 10b. Switches S1, S3, and S6 are
turned on in this mode. The VH transfers energy to capacitor C2 and the secondary side
of the transformer, while capacitor C3 also transfers energy to the primary side through
the secondary side of the transformer. Leakage inductance Lk releases energy to capacitor
C1 for leakage inductance recovery, magnetizing inductance Lm stores energy through the
primary side of the transformer while capacitor CPV transfers energy to parasitic capacitor
CS4 of switch S4, and inductor L releases energy to the battery terminal VBat. Mode 2 ends
when the energy of leakage inductance Lk is zero.

(3) Mode 3 [t2–t3]

At t = t2, the equivalent circuit is shown in Figure 10c. Switches S1, S3, and S6 are
turned on in this mode. At this time, leakage inductance Lk and capacitor C1 release energy
to magnetizing inductance Lm. The other operating state is the same as in the previous
Mode. Mode 3 ends when switches S1, S3, and S6 are turned off.

(4) Mode 4 [t3–t4]

At t = t3, the equivalent circuit is shown in Figure 10d. All switches are turned off in
this mode. Capacitor C3 discharges energy to parasitic capacitor CS6 of switch S6, parasitic
capacitor CS5 of switch S5 transfers energy to capacitor C2, parasitic capacitor CS4 of switch
S4 transfers energy to capacitor CPV, capacitor C1 releases energy to parasitic capacitance
CS3 of switch S3, and inductor L releases energy to the battery terminal VBat through the
body diode of switch S1. Mode 4 ends when switches S2, S4, and S5 are turned on.

(5) Mode 5 [t4–t5]

At t = t4, the equivalent circuit is shown in Figure 10e. Switches S2, S4, and S5 are
turned on in this mode. Capacitor C2 is charged by the transformer, capacitor C3 transfers
energy through the secondary side to the primary side of the transformer, and inductor L
stores energy through magnetizing inductor Lm and capacitor CPV. Mode 5 ends when the
current in magnetizing inductance Lm is greater than that of leakage inductance Lk.

(6) Mode 6 [t5–t6]

At t = t5, the equivalent circuit is shown in Figure 10f. Switches S2, S4, and S5 are
turned on in this mode. Capacitor C2 transfers energy to the primary side through the
secondary side of the transformer, the VH stores energy in capacitor C3 and at the same
time transfers energy to the primary side through the secondary side of the transformer,
and inductor L stores energy through magnetizing inductor Lm, capacitor CPV, and the
primary side of the transformer. Mode 6 ends when switches S2, S4, and S5 are turned off.

3. Steady-State Analysis

This section discusses and analyzes the voltage gain ratio and switching component
stress, respectively. In order to simplify the analysis of the circuit, the same assumptions
were also made, as in the above section.
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3.1. Voltage Gain Analysis

(1) Stage One

In stage one, the PV output VPH is stepped up to the VH when switch S3 is turned on
and switch S4 is turned off, and the body diode of switch S5 is reverse biased. According
to Kirchhoff’s voltage law, the voltage across magnetizing inductance Lm is as follows:

VLm = Lm
diLm

dt
=

−VC3

n
(1)

The inductor current decreases linearly with time when switch S3 is closed. The
variation in the inductor current with time is calculated as:

∆iLm

∆t
=

∆iLm

DT
=

−VC3

nLm
(2)

(∆iLm)on can be derived as follows when switch S3 is turned on:

(∆iLm)on =
−VC3DT

nLm
(3)

When switch S3 is turned off and S4 is turned on, the PV terminal stores energy in
magnetizing inductance Lm, and the voltage across the inductance is:

VLm = VPV = Lm
diLm

dt
=

VC2

n
(4)

Similarly, the inductor current changes linearly with time when switch S3 is turned
off. The variation in inductor current with time is as follows:

∆iLm
∆t

=
∆iLm

(1 − D)T
=

VPV
Lm

(5)

(∆iLm)o f f =
VPV(1 − D)T

Lm
(6)

According to the voltage-second balance, the variation in the inductor current must be
zero in a steady-state operation:

(∆iLm)on + (∆iLm)o f f = 0 (7)

−VC3DT
nLm

+
VPV(1 − D)T

Lm
= 0 (8)

After simplifying Equation (8), the voltage gain of VPV and VC3 can be obtained as:

VC3

VPV
=

(1 − D)

D
n (9)

Because:
VH = VC2 + VC3 (10)

After substituting (3) and (6) into (7), the voltage gain of the high-voltage side and the
PV port can be obtained:

VH
VPV

=
n
D

(11)

According to Equation (11), the relationship between duty cycle D, turns ratio n, and
the voltage gain (VH/VPV) of stage one can be obtained, as shown in Figure 11. Among
them, the turns ratio n and duty cycle D used in this paper were 4 and 0.33, respectively;
therefore, the voltage gain (VH/VPV) was 12.12.
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Figure 11. Relationship between the voltage gain (VH/VPV) of stage one and duty cycle D.

(2) Stage Two

In stage two, the VPH is stepped down to charge the battery Vbat. When switch S1 is
turned on, the voltage across inductor L is:

VL = VBat = L
diL
dt

(12)

∆iL
∆t

=
∆iLm

DT
=

VBat

L
(13)

(∆iL)on can be derived as follows when switch S1 is turned on:

(∆iL)on =

(
VBat

L

)
DT (14)

When switch S1 is turned off and switch S2 is turned on, the voltage across the
inductor L is:

VL = VBat − VPV = L
diL
dt

(15)

diL
dt

=
VBat − VPV

L
(16)

At this time, (∆iL)o f f is:

(∆iL)o f f =

(
VBat − VPV

L

)
(1 − D)T (17)

According to the voltage-second balance, the variation in the inductor current must be
zero in a steady-state operation:

(∆iL)on + (∆iL)o f f = 0 (18)(
VBat

L

)
DT +

(
VBat − VPV

L

)
(1 − D)T = 0 (19)

After simplifying Equation (19), the voltage gain in this stage can be obtained as:

VBat

VPV
= 1 − D (20)

According to Equation (20), the relationship between duty cycle D and the voltage
gain (VBat/VPV) of stage two can be obtained, as shown in Figure 12. In this stage, duty
cycle D was designed to be 0.5, and the voltage gain (VBat/VPV) was 0.5.
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Figure 12. Relationship between the voltage gain (VBat/VPV) of stage two and duty cycle D.

(3) Stage Three

In this stage, the Vbat is stepped up to the VH. When switches S1 and S3 are turned on,
the voltages of inductance L and magnetizing inductance Lm can be obtained by Kirchhoff’s
voltage law, respectively:

VL = L
diL
dt

= VBat (21)

VLm = Lm
diLm

dt
=

VC3

n
(22)

When switches S1 and S3 are turned on and switches S2 and S4 are turned off, the
inductor current increases linearly with time. The current variation of inductance L and
magnetizing inductance Lm with time can be calculated as follows:

∆iL
∆t

=
∆iL
DT

=
VBat

L
(23)

∆iLm

∆t
=

∆iLm

DT
=

VC3

Lmn
(24)

∆iL and ∆iLm can be obtained as follows:

(∆iL)on=
VBatDT

L
(25)

(∆iLm)on=
VC3DT

Lmn
(26)

When switches S1 and S3 are turned off and switches S2 and S4 are turned on, the
inductor current does not change instantaneously. The voltage across inductance L and
magnetizing inductance Lm is:

VL = (VBat − VLm) = L
diL
dt

(27)

VLm =
−VC2

n
= Lm

diLm
dt

(28)

When switches S1 and S3 are turned off, the current variation of inductance L and
magnetizing inductance Lm with time is:

∆iL
∆t

=
∆iL

(1 − D)T
=

(VBat − VLm)

L
(29)

(∆iL)o f f =
(VBat − VLm)(1 − D)T

L
(30)

∆iLm

∆t
=

∆iLm

(1 − D)T
=

−VC2

Lmn
(31)
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(∆iLm)o f f =
−VC2(1 − D)T

Lmn
(32)

According to the voltage-second balance, the change in the inductor current must be
zero in a steady-state operation:

(∆iL)on + (∆iL)o f f = 0 (33)

VBatDT
L

+
(VBat − VLm)(1 − D)T

L
= 0 (34)

Simplifying (34), the relationship between VBat and VL can be obtained as:

VL =
VBat

1 − D
(35)

Similarly,
(∆iLm)on + (∆iLm)o f f = 0 (36)

VC3DT
Lmn

+
−VC2(1 − D)T

Lmn
= 0 (37)

Simplifying (37) obtains (38):

VC2 + VC3

n
D =

VC2

n
(38)

Because:
VC2 + VC3 = VH (39)

Substituting (28) and (38) into (39) obtains (40):

VH
n

D = Lm (40)

Simplifying (34) and (40) obtains the voltage gain of stage three as follows:

VH
VBat

=
n

(1 − D)D
(41)

The relationship between duty cycle D, turns ratio n, and the voltage gain (VH/VBat)
of stage three can be obtained, as shown in Figure 13. Among them, the turns ratio n and
duty cycle D designed in this paper were 4 and 0.5, respectively; therefore, the voltage gain
(VH/VBat) was 16.6.
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(4) Stage Four

In this stage, the VH is stepped down to charge the Vbat. When switches S1, S3, and S6
are turned on, the voltages of inductance L and magnetizing inductance Lm can be obtained
from Kirchhoff’s voltage law:

VL = L
diL
dt

= VBat (42)

VLm = Lm
diLm

dt
=

VC3

n
=

VH − VC2

n
(43)

When switches S1, S3, and S6 are turned on and switches S2, S4, and S5 are turned
off, the current increases linearly with time. The current variation of inductance L and
magnetizing inductance Lm with time can be calculated as:

∆iL
∆t

=
∆iL
DT

=
VBat

L
(44)

∆iLm

∆t
=

∆iLm

DT
=

VC3

Lmn
=

VH − VC2

Lmn
(45)

(∆iL)on and (∆iLm)on can be obtained as follows:

(∆iL)on=
VBatDT

L
(46)

(∆iLm)on=
(VH − VC2)DT

Lmn
(47)

When switches S1, S3, and S6 are turned off and switches S2, S4, and S5 are turned on,
the inductor current does not change instantaneously. The voltage across inductance L and
magnetizing inductance Lm is:

VL = (VBat − VLm) =

(
VBat −

VC2

n

)
= L

diL
dt

(48)

VLm =
−VC2

n
= Lm

diLm
dt

(49)

Similarly, when switches S1, S3, and S6 are turned off, the current variation of induc-
tance L and magnetizing inductance Lm with time is:

∆iL
∆t

=
∆iL

(1 − D)T
=

(VBat − VLm)

L
(50)

(∆iL)o f f =
(VBat − VLm)(1 − D)T

L
(51)

∆iLm

∆t
=

∆iLm

(1 − D)T
=

−VC2

Lmn
(52)

(∆iLm)o f f =
−VC2(1 − D)T

Lmn
(53)

According to the voltage-second balance, the change in the inductor current must be
zero in a steady-state operation:

(∆iLm)on + (∆iLm)o f f = 0 (54)

(VH − VC2)DT
Lm

+
−VC2(1 − D)T

Lm
= 0 (55)



Sustainability 2022, 14, 11169 19 of 32

Simplifying (55), the relationship between VC2 and VH can be obtained as:

VC2 = VH D (56)

Similarly,
(∆iL)on + (∆iL)o f f = 0 (57)

VBatDT
L

+

(
VBat − VC2

n

)
(1 − D)T

L
= 0 (58)

Simplifying (58) obtains (59):

VBat
VC2

=
1 − D

n
(59)

By substituting (56) into (59) and simplifying the equation, the voltage gain of stage
four can be obtained as:

VBat
VH

=
(1 − D)D

n
(60)

The relationship between duty cycle D, turns ratio n, and the voltage gain (VBat/VH)
of stage four can be obtained, as shown in Figure 14. Among them, the turns ratio n and
duty cycle D designed in this paper were 4 and 0.5, respectively; therefore, the voltage gain
(VBat/VH) was 0.0625. It could be seen that the voltage gain (VBat/VH) could be increased
by reducing duty cycle D or increasing turns ratio n.
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3.2. Voltage Stress Analysis

The voltage stress on the components of the proposed topology can be deduced from
the ON–OFF state of the switches. The voltage stress of switch S1 can be derived from the
ON state of mode 5 in stage four, as shown in Figure 10e and as follows:

VS1 − VLm = 0 (61)

By substituting (49) and (56) into (61), the voltage stress of switch S1 can be obtained:

VS1 =
VH D

n
(62)

The voltage stress of switch S2 can be deduced from the state of mode 2 in stage four,
as shown in Figure 10b and as follows:

VS2 =
VH D

n
(63)
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The voltage stress of switch S3 can be derived from the state of mode 5 in stage four,
as shown in Figure 10e and as follows:

VS3 =
VH
n

(64)

The voltage stress of switch S4 can be derived from the state of mode 3 in stage four,
as shown in Figure 10c and as follows:

VS4 =
VH
n

(65)

The voltage stress of switch S5 can be derived from the state of mode 2 in stage four,
as shown in Figure 10b and as follows:

VS5 = VH (66)

The voltage stress of switch S6 can be derived from the state of mode 5 in stage four,
as shown in Figure 10e and as follows:

VS6 = VH (67)

The voltage stress of capacitor CPV is VPV.

VCPV = VPV (68)

The voltage stress of capacitor CBat is VBat.

VCBat = VBat (69)

The voltage stress of capacitor C2 is:

VC2 = VH(1 − D) (70)

The voltage stress of capacitor C3 is:

VC3 = VH D (71)

3.3. Magnetic Component Design

Since the proposed converter operates in CCM, this section presents the design of
inductance L and magnetizing inductance Lm.

(1) Design of Inductor L

The maximum and minimum inductor current (iLmax and iLmin) can be expressed as
follows when switch S1 is turned on and off:

iL(max) = iL +
∆iL
2

(72)

iL(min) = iL −
∆iL
2

(73)

Because:
iL = iBat (74)

According to the energy conservation principle, the ideal transformer conversion
efficiency is 100%, and the input power (PBat) is equal to the output power (PH):

PBat = PH (75)

VBatiBat = VH iH (76)
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By substituting (41) and (74) into (76) and replacing output current iH with output
resistance RH on the high-voltage side, the equation can be simplified as follows:

iL =
VBatn2

[(1 − D)D]2RH
(77)

Substituting (25) and (77) into (72) and (73) obtains:

iL(max) =
VBatn2

[(1 − D)D]2RH
+

VBatDT
2L

(78)

iL(min) =
VBatn2

[(1 − D)D]2RH
− VBatDT

2L
(79)

Due to all of the inductances of the converters in this paper working in CCM, iL is
always greater than zero. If the converter operates in the boundary conduction mode
(BCM), iL(min) is equal to zero. Therefore, the boundary value between the continuous and
discontinuous inductor current is expressed as:

iL(min) = 0 =
VBatn2

[(1 − D)D]2RH
− VBatDT

2L
(80)

According to the above equation, the value of inductance L(BCM) can be obtained by
substituting switching frequency f and simplifying the equation:

L(BCM) =
(1 − D)2D3RH

2 f n2 (81)

It can be seen from (81) that the value of inductance L can be designed by switching
frequency f, transformer turns ratio n, and duty cycle ratio D to determine whether the
converter operates in BCM, CCM, or the discontinuous conduction mode (DCM). The turns
ratio n was set at 4 in this paper, and the switching frequency f was 40 kHz. Substituting the
above parameters into (81) obtains the inductance value, as shown in Figure 15. When the
value of inductance L is greater than L(BCM), the converter will operate in CCM; conversely,
when the value of inductance L is lower than L(BCM), it will operate in DCM.
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(2) Design of Magnetizing Inductance (Lm)

The maximum and minimum magnetizing inductor current (iLm(max) and iLm(min)) can
be expressed as follows when switch S4 is turned on and off:

iLm(max) = iLm +
∆iLm

2
(82)
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iLm(min) = iLm − ∆iLm
2

(83)

Because:
iBat = iLmD (84)

Similarly,
PBat = PH (85)

VBatiBat = VH iH (86)

By substituting (41) and (84) into (86) and replacing output current iH with output
resistance RH on the high-voltage side, the equation can be simplified as follows:

iLm =
VBatn2

(1 − D)2D3RH
(87)

Substituting (32) into (72) and (73) obtains:

iLm(max) =
VBatn2

(1 − D)2D3RH
+

VC2(1 − D)T
2Lmn

(88)

iLm(min) =
VBatn2

(1 − D)2D3RH
− VC2(1 − D)T

2Lmn
(89)

If the converter operates in BCM, iLm(min) is equal to zero. Therefore:

iLm(min) = 0 =
VBatn2

[(1 − D)D]2RH
− VC2(1 − D)T

2Lmn
(90)

By substituting duty cycle T into (90) and simplifying the equation, magnetizing
inductance Lm(BCM) can be obtained:

Lm(BCM) =
(1 − D)2D3RH

2 f n
(91)

It can be seen that Lm(BCM) can be determined by switching frequency f, transformer
turns ratio n, and duty cycle ratio D. Figure 16 shows the relationship between magnetizing
inductance Lm and the duty ratio D. The proposed converter operates in CCM when the
value of magnetizing inductance Lm is greater than Lm(BCM); conversely, when the value of
magnetizing inductance Lm is lower than Lm(BCM), it will operate in DCM.
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4. Experimental Results

The electrical specifications and component parameters of the proposed converter are
listed in Table 1. Figure 17 shows the implemented circuit in this paper. In this paper, the
PV voltage was 48 V, the Vbat was 24 V, and the VH was 400 V.

Table 1. Electrical specifications and component parameters of the proposed topology.

Parameter Specification

Input PV voltage VPV 48 V
Battery voltage VBat 24 V

High-side voltgae VH 400 V
Maximus output battery power 500 W

Maximus output load bus power 500 W
Switching frequency fs 40 kHz

Component Model Specification

S1–S4 IRFP4568PbF 150 V/171 A
S5 and S6 IXFH60N50P3 500 V/60 A

C1 Electroytic Capacitor 50 µF/100 V
C2 and C3 Electroytic Capacitor 330 µF/450 V

L MPP Ring Core 40 µH
Lm MPP Ring Core 170 µH
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Figure 18a–e shows the measured waveforms of stage one operating under a full
load (500 W). Figure 18a shows the measured waveforms vgs3, vds3, and ids3 of switch S3.
It can be seen that when switch S3 was turned on, ids3 started to rise from a negative to
a positive current, leakage inductance current iLk was released by switch S3, and the leakage
inductance is recovered. Figure 18b shows the measured waveforms (vgs4, vds4, and ids4)
of switch S4. It can be seen that magnetizing inductance Lm stored energy through switch
S4. Figure 18c shows the measured waveforms vgs4, vds5, and ids5. In this stage, in order to
avoid circuit malfunctions caused by an unbalanced magnetic flux on the secondary side,
the current flowed through the body diode of switch S5. Figure 18d shows the measured
waveforms vgs3, vds6, and ids6. The current flowed through the body diodes of switch
S6. Figure 18e shows the measured waveform vgs3, the primary-side current in1, and the
secondary-side current in2 of the transformer.
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Figure 19a–c show the measured waveforms of stage two operating under a full load
(500 W). Figure 19a shows the measured waveforms (vgs1, vds1, and ids1) of switch S1. It can
be seen that switch S1 had synchronous rectification characteristics in this stage. Figure 19b
shows the measured waveforms (vgs2, vds2, and ids2) of switch S2. Figure 19c shows the
measured waveforms of vgs2, vds2, and iL. It can be seen that inductor L stored energy
while switch S2 was turned on and released energy while switch S2 was turned off.

Figure 20a–h show the measured waveforms of stage three operating under full load
(500 W). Figure 20a shows the measured waveforms vgs1, vds1, and ids1 of switch S1, and
it can be seen that inductor L stored energy through switch S1. Figure 20b shows the
measured waveforms (vgs2, vds2, and ids2) of switch S2. Figure 20c shows the measured
waveforms (vgs3, vds3, and ids3) of switch S3. When switch S3 was turned on, current
ids3 started to turn from a negative current to a positive current, and leakage inductance
current iLk was released and recovered energy through switch S3. Figure 20d shows the
measured waveforms (vgs4, vds4, and ids4) of switch S4. Figure 20e shows the measured
waveforms vgs4, vds5, and ids5. Figure 20f is the measured waveforms vgs3, vds6, and ids6. In
this mode, the energy flowed through the body diode of switch S6. Figure 20g shows the
measured waveform vgs1, inductor current iL, and the transformer primary-side current in1.
Figure 20h shows the measured waveform vgs1, the transformer primary-side current in1,
and the transformer secondary-side current in2.
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Figure 20. Measured waveforms of stage three: (a) vgs1, vds1, and ids1; (b) vgs2, vds2, and ids2; (c) vgs3,
vds3, and ids3; (d) vgs4, vds4, and ids4; (e) vgs4, vds5, and ids5; (f) vgs3, vds6, and ids6; (g) vgs1, iL, and in1;
(h) vgs1, in1, and in2.

Figure 21a–g show the measured waveforms of stage four operating under a full load
(500 W). Figure 21a shows the measured waveforms (vgs1, vds1, and ids1) of switch S1. It can
be seen that inductor L released energy through switch S1 at this time. Figure 21b shows
the measured waveforms (vgs2, vds2, and ids2) of switch S2. It can be seen that inductor L
stored energy through switch S2. Figure 21c shows the measured waveforms (vgs3, vds3,
and ids3) of switch S3. Current ids3 started to rise from positive to negative, and the leakage
inductance current iLk released and recovered energy through switch S3. The energy was
transferred to the magnetizing inductance Lm. Figure 21d shows the measured waveforms
(vgs4, vds4, and ids4) of switch S4. Figure 21e shows the measured waveforms (vgs5, vds5,
and ids5) of switch S5. Figure 21f shows the measured waveforms (vgs6, vds6, and ids6) of
switch S6. Figure 21g shows the measured waveforms vgs1, the transformer primary-side
current in1, and the transformer secondary-side current in2.
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Figure 22 shows the load variation in the step-up mode. When the output load was
step changed from a half load to a full load, it can be seen that the output voltage (VH/VBat)
was stable and not greatly affected by load changes.

Figure 23a–d show the efficiency curves of the proposed converter in this paper.
Figure 23a shows the highest efficiency was 95.5% at an output power of 200 W, and the
efficiency at the full load of 500 W was 92.3%. Figure 23b shows the highest efficiency was
97.8% at an output power of 150 W, and the efficiency was 95.7% at the full load of 500 W.
Figure 23c shows the highest efficiency was 94.5% at an output power of 150 W, and the
efficiency was 87% at the full load of 500 W. Figure 23d shows the highest efficiency was
93.4% at an output power of 150 W, and the efficiency was 88.3% at the full load of 500 W.

Figure 24 presents the power loss analysis of the proposed converter operated in
step-up mode (stage three) and under full load. It can be seen that the switching loss
and conduction loss of all power switches account for a large proportion of the overall
power loss.
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Figure 23. Efficiency curve of the proposed converter: (a) stage one; (b) stage two; (c) stage three;
(d) stage four.
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Figure 24. Power loss analysis of the proposed converter operated in step-up mode (stage three).



Sustainability 2022, 14, 11169 30 of 32

Figure 25 presents the power loss analysis of the proposed converter operated in
step-down mode (stage four) and under full load. It can be also seen that the switching loss
and conduction loss of all switches account for a large proportion of the overall power loss.
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Figure 25. Power loss analysis of the proposed converter operated in step-down mode (stage four).

Figure 26 shows the efficiency comparison between this paper and Refs. [15–19]
operating under the step-up/step-down mode. Refs. [15,16] employed more passive
components, causing poor efficiency. Ref. [18] had higher conversion efficiency in the
step-down mode, but its disadvantage was a low voltage gain ratio. Ref. [19] had the
highest efficiency under the step-up mode, but its implemented power was only 300 W,
and the total component count was too high, which limited its application. Overall, the
proposed topology had a higher voltage gain ratio and efficiency compared to Refs. [15–19].
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To illustrate the feasibility and performance of the proposed converter, Table 2 shows
the performance comparison between the proposed converter and Refs. [15–19]. It can
be seen that the proposed topology possessed a higher voltage conversion ratio, and the
implemented power was also higher than that found in other literature. Only one set
of complementary PWM signals was used in each mode, ensuring that there were many
stages, and the control was simple. A galvanic isolation feature was used to protect the
circuit operation.

Table 2. Comparison of related literature of three-port bidirectional converters.

Item/Ref. [15] [16] [17] [18] [19] Proposed
Converter

Voltage of
input/battery/output (V) 48/40/400 30/48/400 30/24/400 24/24/200 24/48/400 48/24/400

Rated power 200 W 150 W 200 W 500 W 300W 500 W
MOSFETs 3 4 3 4 3 6

Diodes 7 6 3 3 5 0
Capacitors 4 5 8 4 6 5

Magnetic elements 2 2 4 2 2 2
Efficiency of step-up mode 92.9% 95.3% 95.5% 95.3% 94% 94.5%

Voltage gain of step-up
mode PV-DC bus

1+N
1−D

1+N
1−D

N
1−D

N
1−D

1+N
1−D

N
(1−D)D

Voltage gain of step-down
mode DC bus-Battery

1−D
1+N D 1−D

N
1−D

N
1−D
1+N

(1−D)D
N

Switching frequency 100 kHz 50 kHz 100 kHz 50 kHz 50 kHz 40 kHz
Isolated NO NO Yes Yes NO Yes

Operational mode 3 4 3 3 3 4

5. Conclusions

This paper proposed a novel three-port bidirectional DC–DC converter. The steady-
state analysis of the component design and the experimental results verified the feasibility
and practicability of the proposed converter. The proposed converter had the following
advantages: (1) a simple structure; (2) only one set of complementary signals used in each
stage, providing simple control; (3) leakage inductance recovery; (4) multiple operating
stages, which improved the practicability of the proposed converter; and (5) an electrical
isolation feature to protect the low-voltage input side. Finally, in terms of the measured
efficiency, the highest efficiency of the PV output stepped up to the high-voltage-side mode
was 95.5%, and the highest efficiency of the PV terminal stepped down to the battery
was 97.8%. The highest efficiency was 94.5% when the battery was stepped up to the
high-voltage side, and the highest efficiency was 93.4% when the high-voltage side was
stepped down to the battery.
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