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Abstract: This study proposes a simultaneous optimization model that considers flow assignment
and vehicle capacity for the problem of transit network design to determine the route structure and
frequencies simultaneously. The problem is focused on reducing the total travel time and the number
of transfers. A heuristic algorithm is developed to solve this problem. In the proposed algorithm, the
initial routes are generated according to a changing demand matrix, which can reflect the real-time
demand with transfers and ensure that the direction of route generation maximizes the percentage
of direct service. A regulating method for a sequence of stops is used during route generation to
guarantee the shortest trip time for a formed route. Vehicles are allocated to each route according to
the flow share. The concept of vehicle difference is introduced to evaluate the distinction between
actual allocated vehicles and required vehicles for each route. The optimization process of frequencies
based on vehicle difference can ensure that the solution meets the constraints. Two scale networks are
used to illustrate the performances of the proposed method. Results show that route structure and
frequencies can be optimized simultaneously through the proposed method. Different scenarios are
created to test the algorithm properties via various parameter values. The test result indicates that
the upper bound is a key parameter to balance the proportion of direct service and average in-vehicle
travel time (AIVTT), and the increased number of planning routes can improve the proportion of
direct service.

Keywords: heuristics; transportation; transit network design; simultaneous optimization

1. Introduction

Transit network design has received major attention because of its significance in
alleviating urban traffic congestion and air pollution. Public transport plays a key role in
urban resident travel. For example, in Chengdu, China, over 3 million travelers complete
their trips by bus, suggesting the necessity of a well-designed transit network for urban
development. Studies on public transit service design have mainly focused on route
structure design [1–7], frequency determination [8–11], timetable setting [12–15], vehicle
scheduling [16–19], crew scheduling [20], fare policy [21,22], and data mining [23–29], or a
combination of these topics [30–33].

Previous studies about transit network design can be classified into two groups: op-
timizing the route structure and service frequencies separately [2,34–36] and optimizing
the route structure and service frequencies simultaneously [30–33,37]. For example, Kılıç
and Gök et al. [2] focused on route structure optimization, whereas Huang et al. [10]
concentrated on frequency setting based on an existing transit network. Combining
these works, Szeto and Jiang et al. [31] simultaneously optimized the route structure and
frequency setting.

The optimization objective of this problem is associated not only with transit route
structure but also with corresponding service frequencies. Transit route structure and
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corresponding service frequencies determine flow assignment, and whether service capacity
can meet travel demand is also closely related to both. These factors indicate the significance
of simultaneously determining the route structure and corresponding service frequencies.

The transfer issue cannot be ignored in the optimization objective. Passengers always
complain that no direct service exists to complete their travels because of the discomfort
and inconvenience caused by transfers [30]. Some passengers even find alternative travel
modes, such as car, taxi, and motorcycle, when the number of transfers exceeds their
expectations. Baaj and Mahmassani [38] considered the existence of transfers but ignored
the number of transfers in their proposed network design method. Kılıç and Gök et al. [2]
introduced the penalty of time cost for each transfer to reduce the number of transfers.
A similar method was used by Szeto and Wu [32], who emphasized the importance of
improving the direct service when the transit service is designed.

In addition to the transfer issue, the assignment problem among different routes
occurs when more than one route can serve passengers. Two flow types must be assigned
during the design process, including the flow on familiar routes and the flow on multiple
routes. Common routes indicate more than one route serving the same pair of stops with
the same path, whereas multiple routes suggest more than one route serving the same
pair of stops with different paths. Different network representations, such as hyperpath
graph representation and route-section representation, are applied to deal with the flow
assignment among competition routes [39–43]. Hyperpath graph representation highlights
the attractive routes, but considerable dummy boarding and alighting stops must be
added, complicating the network. Route-section representation can reduce the number of
links, simplify the network complexity, and ease the handling of the assignment problem.
However, the attractive routes should be determined in advance when the route-section
representation is used.

In-vehicle congestion issue is another factor for determining whether the optimized
results can be applied to practice. To simplify the transit network design problem, some
studies assumed that the bus load is unlimited [2,44,45]; however, the optimized results are
challenging to apply to actual planning. Two modeling streams, namely, capacity constraint
and congestion cost function, are adopted to improve the practical performances of the
optimized results. The capacity constraint is set to avoid the flow on the link of routes
exceeding the maximum capacity, and the congestion cost function is a penalty function
to decrease the congestion on vehicles. Capacity constraint is more realistic to ensure that
capacity meets travel demand. Nevertheless, we cannot obtain a feasible solution when the
total capacity is insufficient.

Newell and Salzborn et al. [18,46] used an analytical method to solve single-route
design and optimization, but the method was difficult to apply to the network problem.
Metaheuristics, such as genetic algorithm [7,19,44], simulated annealing [47–49], and artifi-
cial bee colony [31,32,50], are popular for solving the problem.

A heuristic algorithm is accordingly developed in the current study. Routes are
generated according to a changing demand matrix, which can maximize the direct service.
The sequence of stops for each route is regulated to ensure the shortest path for the formed
route. The initial frequencies are set in terms of the flow share, and a neighborhood search
heuristic is proposed to tackle the frequency optimization. In the frequency-determining
process, a concept of vehicle difference is introduced to ensure the solution satisfies the
capacity constraint.

The main contributions of this study are as follows:

(1) A simultaneous optimization model is formulated for the transit network structure
and frequency problem considering flow assignment and vehicle capacity.

(2) A heuristic algorithm is developed to solve the transit network design problem, in
which routes are generated based on accumulated flow, and the frequency for each
route is set according to flow share. A new concept of vehicle difference is also
introduced to reflect the difference between actually assigned vehicles and required
vehicles for guiding the process of regulating frequencies.
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(3) The model and algorithm are applied to different scale networks. The properties of
the proposed model and algorithm are examined, and the different performances for
various scenarios through different parameter values are discussed.

The remainder of this paper proceeds as follows. Section 2 presents the simultaneous
optimization model, following the notations and assumptions used in this study. Section 3
describes the proposed algorithm procedure and numerical experiments. Section 4 dis-
cusses the performance evaluation. Finally, Section 5 concludes the study and discusses
future research.

2. Problem Formulation
2.1. Assumptions

Several classical assumptions are made for the model setting according to previous
studies on the transit network problem as follows: (i) Passengers arrive at stops randomly.
(ii) Passengers select a route from attractive routes to their destinations, and we assume that
all routes that pass through an origin and destination (OD) pair are the attractive routes
for the OD pair to simplify the problem. (iii) Passengers prefer selecting a path without
transfer, and they board the first available bus to their destinations. (iv) The headways of
vehicles follow the exponential distribution. (v) Travel demand is predefined and fixed
during the planning period. (vi) For simplicity, the capacity of each vehicle is the same.

2.2. Model Setting
2.2.1. Objective Function

As in the literature [32], the objective function is formulated in terms of the number
of passengers without direct service and the total travel time for the passengers with
direct service.

min
x f

z = w1 ∑
i∈N,j∈N,i 6=j

dij Mij + w2 ∑
i∈N,j∈N,i 6=j

dijtij
(
1−Mij

)
(1)

Equation (1) is the representation of the objective function, which is the weighted sum
of the passengers without direct service and the total travel time for the passengers with
direct service.

2.2.2. Constraints

(i) Calculations of variables

The calculations of some variables for the objective function are as follows:

tij = tw
ij + tv

ij i, j ∈ N (2)

tw
ij = 0.5· 1

∑r∈Rij
fr

i, j ∈ N (3)

tv
ij = ∑

r∈sij

δr
ijt

rv
ij (4)

trv
ij = xr

ijcij + ∑i,j,k∈N xr
ikthr

kj

(
tr
kj + cik + s

)
i, j ∈ Nr, r ∈ Rij (5)

Mij =
num
∏

r=1

(
1− thr

ij

)
i, j ∈ N (6)

thr
ij = xr

ij + ∑i∈N,j∈N,k∈N,i 6=j 6=k xr
ikthr

kj r = 1 to num (7)

Constraint (2) is the calculation of tij, which is the sum of AIVTT and waiting time
from stop i to stop j, and constraints (3) and (4) are the calculations of waiting time and
AIVTT from stop i to stop j, respectively. Constraint (5) is the calculation of in-vehicle
travel time from stop i to stop j through route r. Constraint (6) is the calculation of Mij,
which estimates the existence of a direct service for passengers from stop i to stop j. The
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value of Mij is 0 if at least one route passes through stop i and stop j simultaneously, and
1 otherwise. Constraint (7) is the calculation of thr

ij, which estimates whether route r can
provide the direct service for the demand from stop i to stop j. The value of thr

ij is 1 if the
direct service can be supplied by route r, and 0 otherwise.

(ii) Constraints for route structure

The constraints for route structure are as follows:

∑i∈N∪o,i 6=j xr
ij −∑i∈N∪o,i 6=j xr

ji = 0 j ∈ N, r = 1 to num (8)

∑i∈N∪o,i 6=j xr
ij ≤ 1 j ∈ N, r = 1 to num (9)

∑j∈N∪o,j 6=i xr
ij ≤ 1 j ∈ N, r = 1 to num (10)

∑i∈N,j∈N,i 6=j xr
ij ≤ Smax r = 1 to num (11)

Constraint (8) ensures that each stop on a route, excluding the dummy stop, has
preceding and following stops. Constraints (9) and (10) guarantee that any stop in the
network can be visited by a determined route at most once. Constraint (11) limits the
number of stops for a route.

(iii) Constraints for frequencies

∑
r∈R

2 frtr

η
≤ n f leet (12)

tr = ∑
i,j∈Nr

xr
ij
(
cij + s

)
− s (13)

Constraint (12) describes that the fleet size of the determined routes cannot exceed the
given maximum fleet size. Constraint (13) is the calculation of single-trip time of route r.

(iv) Constraints for capacity

CSr
i(i+1) ≤ frCap i ∈ (Nm

r U No
r ), r ∈ R (14)

CSr
i(i+1) =

{
boardr

i i ∈ No
r

CSr
(i−1)i + boardr

i − alightr
i i ∈ Nm

r
(15)

Constraint (14) depicts the flow in the segment from stop i to stop i + 1 for route r per
unit time. The flow in each segment can be calculated by constraint (15).

(v) Constraint of flow assignment

The flow assignment is based on the method proposed by De Cea and Szeto et al. [32,40].
A normal network is first converted into a route-section network. Different routes serving
the same pair of stops, called attractive routes, are then aggregated as one section. Com-
petition among different routes can be handled by this method. Flow assignment can be
described by

dr
ij =

fr
∑r′∈Rij

fr′
r, r′ ∈ R and i, j ∈ N (16)

Equation (16) is the expression of the assignment to each route from the flow between
each demand pair.

3. Solution
3.1. General Scheme of the Proposed Algorithm

The general scheme of the proposed algorithm is presented in Figure 1. The steps of
this algorithm can be described as follows.
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(a) The parameters, including those for the planning area, such as number of stops,
number of routes, maximum available fleet size, bus capacity, maximum number of
stops for a planning route, shortest path matrix, travel demand matrix, and those for
the algorithm, such as stopping criteria, are initialized.

(b) The initial route structure is generated according to the predefined parameters.
(c) The vehicles for each determined route are allocated with the limit of maximum

available fleet size.
(d) After determining the route structure and corresponding frequencies, the travel

demand can be assigned to each route in terms of the principle presented by the
flow assignment.

(e) The efficiency of the solution to meet the capacity constraint (14) is evaluated; if the
answer is yes, the next step is performed; otherwise, the vehicles are regulated among
routes until the solution satisfies the constraint.

(f) The objective function value for the feasible solution is calculated according to Equation (1).
(g) The frequencies of the determined transit network are optimized.
(h) The stop criterion is checked; if the algorithm meets the stop criterion (the iteration

reaches 500 generations), then the algorithm procedure is terminated, and the best
solution is the output; otherwise, the next step is performed.

(i) The route structure is optimized by adding and deleting stops in the routes.

Figure 1. Flowchart of the proposed algorithm.

After the general scheme for the proposed algorithm is introduced, the procedure for
each step is elucidated.
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3.2. Procedure of Initial Route Generation

The initial route generation is completed in two steps: stop selection for unformed
routes and insertion of selected stops into unformed routes.

3.2.1. Stop Selection

Each stop is selected to maximize the direct service during the procedure of route
generation. A travel demand matrix is changed continuously to reflect the demand without
direct service during the stop selection procedure; that is, a new stop is selected according
to the changing matrix.

Table 1 presents the process of stop selection and the corresponding changes for the
travel demand matrix by using four stops that are defined as N1–N4 ∈ N. A pair of stops is
first determined to maximize the passengers without transfer. N3 and N4 become unformed
routes, and the demand matrix is changed from Table 1a to Table 1b. The stop N2 is then
selected to maximize the direct service for the current demand matrix, and the changing
matrix is changed from Table 1b to Table 1c.

Table 1. Illustration of changing demand matrix: (a) Original demand matrix; (b) Changing matrix;
(c) Changing matrix.

(a) (b) (c)

Stops N1 N2 N3 N4 Stops N1 N2 N3 N4 Stops N1 N2 N3 N4

N1 0 1 2 3 N1 0 1 2 3 N1 0 1 2 3
N2 1 0 4 5 N2 1 0 4 5 N2 1 0 0 0
N3 2 4 0 6 N3 2 4 0 0 N3 2 0 0 0
N4 3 5 6 0 N4 3 5 0 0 N4 3 0 0 0

3.2.2. Combination and Sequence

A descent search heuristic is used for each selected stop to obtain the improved
combination of a new stop and the unformed route. This process aims to optimize the
sequence of stops for the minimum trip time, which does not depend on frequencies. The
steps are outlined as follows:

For each selected stop
Combine the selected stop with an unformed route to form a new unformed route Rn, set the

selected stop as the first stop for the new unformed route, and set Rn as the optimal structure Ro
n.

Calculate the length of Ro
n and define the length as Les

Calculate the number of stops of the unformed route Nu
Set i′ = 1

While i′ ≤ Nu
i′ = i′ + 1

Change the sequence of Ro
n and set the selected stop as the i′-th stop in the new unformed route to

form a different new unformed route R′n
Calculate the length of R′n and define the length as Le

If Le < Les
Make R′n as Ro

n and Le as Les
endif

endwhile
output the optimal structure Ro

n and the shortest path Les for the new combined unformed route
Next selected stop
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Until the number of stops meets the predefined number, an unformed route becomes
a formed route, which indicates that the route generation is complete.

Different from routes generated randomly, the initial routes obtained by the above-
proposed procedure can improve the direct service and minimize the trip time for the
determined stops.

3.3. Allocating Vehicles for the Initial Routes

Vehicles are allocated to the designed routes according to the flow share, which can be
mathematically expressed as follows:

nr
veh = d

∑i∈Nr ,j∈Nr dij

∑i∈N,j∈N dij
·n f leete r ∈ R. (17)

The vehicles for each route accord to the flow share, and the rule of round down is
used to make the number of vehicles an integer. The total vehicles assigned to routes are
less than the predefined available fleet size because the integral principle is round down.
Therefore, the unassigned vehicles are allocated randomly to routes.

3.4. Flow Assignment

The flow assignment is based on the principle described by the constraint of flow
assignment in Section 2. The flow is assigned to the attractive routes according to the
frequency share.

3.5. Judgment of Constraints

After determining the travel demand of each route, a vehicle difference is introduced
to evaluate the difference between the actual allocated vehicles and the required vehicles to
meet the capacity constraint (14).

VDr = nr
veh − d

max(CSr
i(i+1))

do
e r ∈ R and i ∈ (No

r ∪ Nm
r ) (18)

The positive value of VDr suggests that the vehicles for the route r are sufficient to
meet the capacity constraint (14), whereas the negative value of VDr indicates that the
capacity constraint (14) is not satisfied.

3.6. Vehicle Regulation

Vehicle regulation is necessary to change the vehicles of routes when the capacity
constraint (14) is violated. The regulating procedure is outlined as follows:

For each route
if the VDr for route r is negative

define a new variable TD = 0
while TD ≤ 0

r1 with maximum VDr1
TD as sum of VDr and VDr1

if TD > 0
move −VDr + 1 vehicles from route r1 to route r and update −VDr for all routes

else
move VDr1 vehicles from route r1 to route r and update −VDr for all routes

endif
endwhile

endif
next route in the proposed solution
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The virtue of using VDr to determine the number of vehicles to move among routes is
that VDr can reflect the difference between actual allocated vehicles and required vehicles.
Thus, the number of vehicles for moving directly can be determined.

In the proposed vehicle regulation, we will add −VDr + 1 vehicles to the route r if
the value of VDr is negative, which is one more vehicle than required. The constraint will
be met by adding −VDr vehicles if the assignment to route r is invariable. However, the
frequency of route r increases with additional vehicles, thereby increasing the assignment
to the route r. In this condition, the addition of −VDr vehicles will violate the constraint
with the increasing flow assignment.

3.7. Objective Calculation

The objective function value is calculated via Equation (1), following the step of vehicle
regulation.

3.8. Frequency Optimization

The frequency optimization procedure is developed according to the method proposed
by Szeto and Wu (2011), in which the vehicles are moved one by one among routes. The
operation of the vehicle movement will be accepted if the solution becomes more optimal,
whereas the operation will be abandoned if the solution worsens or is unchanged.

3.9. Termination

Two stopping criteria are used in this algorithm.
Criterion (i): the tolerance of objective values during successive iterations < preset tolerance
Criterion (ii): iteration > set stall iteration
Criterion (i) is used to stop the algorithm when the objective values for the successive

several iterations are sufficiently close, which implies that the latest solution is probably optimal.
Criterion (ii) is used to stop the algorithm when the iterations reach the preset stall

iteration. Criterion (ii) is a complement for criterion (i), which avoids long computation time.

3.10. Route Structure Optimization

Different neighborhood search operations, namely, (a) stop removal and (b) stop
insertion, are developed to generate neighbor solutions for the route structure optimization.

3.10.1. Operation of Stop Removal

The operation of stop removal is used to delete some stops from the determined route
structure in order to search for a more appropriate transit network. Stops from the routes
are randomly selected, and new transit networks are obtained by removing the selected
stops. A new route structure will replace the original transit network if the objective is
more optimal than the old one. Otherwise, the new route structure will be abandoned.

3.10.2. Operation of Stop Insertion

Different from the operation of removing a stop based on random rules, stop insertion
aims to decrease the travel demand without a direct service, which is similar to route
generation. Each inserted stop is imported to the shortest route with consideration of
constraint (11). The new route structure will be abandoned if the performance of the transit
network service cannot be improved.

4. Numerical Examples

Two scale networks are used to evaluate the properties of the proposed method
through analyzing the results.
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4.1. Small-Scale Network
4.1.1. Data

A small-scale network composed of 15 stops and the corresponding travel demand
are presented in Figure 2 and Table 2 respectively. This classic case has been used by many
researchers [2,4,37,51] to examine the attributes of the proposed model and algorithm for
the transit network problem.

Figure 2. Small-scale network.

Table 2. Travel demand of the small-scale network.

Stops 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0
2 400 0 50 120 20 180 90 90 15 130 20 10 10 5 0
3 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0
4 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0
5 80 20 60 50 0 50 25 25 10 120 20 15 5 0
6 150 180 180 100 50 0 100 100 30 880 60 15 15 10 0
7 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0
8 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0
9 30 15 15 15 10 30 15 15 0 140 20 5 0 0 0
10 160 130 45 240 120 880 440 440 140 0 600 250 500 200 0
11 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0
12 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
13 35 10 10 10 5 15 10 10 0 500 95 70 0 45 0
14 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.1.2. Parameters

The planning route number is set to 4, the maximum bus load is 100, the average dwell
time at a stop is 1.5 min, the number of stops in a route ranges from 4 to 8, and the fleet size
is 60. Criterion (i) sets the tolerance of successive 10 generations as 0.01; criterion (ii) sets
1000 generations as the stall iteration.



Sustainability 2022, 14, 11097 10 of 17

4.1.3. Results

The optimized results are presented in Table 3. Columns 2 and 3 are the route structure
and the vehicles for each route, respectively. The trip time and headway of each route are
calculated according to the route structure and the vehicle assignment.

Table 3. Optimized route structure.

Route Label Route Structure Vehicles Trip Time Headway

1 13-11-10-7-6 17 60 3.53
2 10-8-6-3-4-2-1 22 82 3.73
3 1-5-12-11-10-14-13 15 130 8.67
4 11-7-8-3-2-4-5 6 84 14.00

The proportion of direct service can reach 92.42%. The value of the optimized objective
function value is 333,000. In Table 3. the route structure indicates the stop sequence of a
route. Each bus line is connected according to the shortest path in the network, the path
13-11-10-7-6 is the shortest path from 13 to 11, the shortest path from 11 to 10, the shortest
path from 10 to 7, and the shortest path from 7 to 6, thus forming 13-11-10-7-6 bus line.

4.2. Medium-Scale Network
4.2.1. Data

A medium-scale network with 127 stops is shown in Figure 3 to evaluate the properties
of the proposed method for the transit network problem [2,52]. The travel demand is
different from the original data and is 5% of the data because the planning time is an hour.

Figure 3. Medium-scale network.

4.2.2. Parameters

The planning number of routes is set to 60, the maximum bus load is 100, the average
dwell time at a stop is 1.5 min, the number of stops in a route ranges from 12 to 25, and the
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fleet size is 900. Criterion (i) sets the tolerance of successive 10 generations as 0.01; criterion
(ii) sets 5000 generations as the stall iteration.

4.3. Analysis of the Proposed Algorithm
4.3.1. Initial Route Structure

The proposed generation is compared with the random generation in Table 4 to
illustrate the properties of the proposed initial route structure. The proposed generation
procedure can achieve a higher proportion of direct service with lesser total trip time than
random generation.

Table 4. Comparison of initial route structure.

Methods of Generation Proportion of Direct Service Total Trip Time

Random generation 70.26% 27,695
Proposed generation 94.86% 11,919

4.3.2. Initial Frequencies

In Table 5, the initial frequency is compared with the optimized frequency in a deter-
mined route structure to test the properties of the proposed initial frequency setting. The
initial frequency is close to the optimized frequency for a determined route.

Table 5. Comparison of initial and optimized frequencies.

Initial Frequencies Scenario Optimized Frequencies Scenario

Objectives value (mins) 33,250,015.89 33,153,646.8

4.3.3. Computation Time

In the proposed algorithm, a bus difference is introduced to guide the vehicle reg-
ulation, in which the precise number of regulated vehicles can be determined directly.
Otherwise, the vehicles need to move one by one to avoid violating the capacity constraint.
Two routes are selected to illustrate the computation time with and without bus differ-
ence in Table 6. The computation time can be decreased by 35.7% with the application of
bus difference.

Table 6. Comparison of computation time with and without bus difference.

With Bus Difference Without Bus Difference

Computation time (s) 0.09 0.14

4.3.4. Comparison with Genetic Algorithm

In order to evaluate the proposed algorithm, we compare the computation times and
the objective values for the genetic algorithm and the proposed one in Table 7 using the
small-scale network. It is observed the proposed algorithm can obtain a better solution
with less computation time, which indicates the efficiency of the proposed algorithm.

Table 7. Comparison of computation time with and without bus difference.

Genetic Algorithm Proposed Alogrithm

Computation time (s) 150 s 90 s

Objective values (min) 353,000 333,000

4.4. Analysis of Results

The performances of the proposed algorithm to solve the transit network problem are
summarized as follows:
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(i) The proportion of direct service is high because the route generation is based on the
changing matrix of travel demand.

(ii) The route is the shortest path because of the sequential optimization for route structure.
(iii) The initial frequency setting is close to the optimal solution for the determined transit

network by the principle of vehicle assignment, which is based on the flow share.
(iv) Computation time can be saved by setting a bus difference to determine the direction

and step size and reassigning the vehicles to routes.
(v) The proportion cannot be increased to 100% because of the following reasons: (1) the

number of routes is insufficient to accomplish the goal, and (2) the distances are too
long and the flow is limited for some pairs of OD, leading to inefficiency in the design
of direct service for these OD.

4.5. Analysis of Parameters

Route generation is based on a changing demand matrix, which can reflect the demand
without direct service. A pair of OD will be 0 on the changing matrix when direct service is
developed during the route generation. We only focus on the existence of direct service
and ignore the in-vehicle travel time between the formed path and the shortest path, which
will cause long in-vehicle travel for some passengers in spite of the short distances between
origins and destinations. An upper bound is set to adjust the changing rule for the changing
demand matrix to solve the problem. The changing demand matrix for a pair of OD will be
unaltered if the in-vehicle travel time exceeds the set upper bound. Although direct service
is available, the route generation will regard the pair of OD as a direct service OD. The
upper bound can be mathematically expressed by

UBij = γ · tshort
ij i, j ∈ N (19)

where UBij is the upper bound for passengers from stop i to stop j, tshort
ij is the in-vehicle

travel time from stop i to stop j by the shortest path, and γ is the coefficient for UBij.
An interesting phenomenon is that the in-vehicle travel time may be saved when

UBij is close to the shortest path. However, saving is obtained at the cost of reducing
the proportion of direct service. Figure 4 depicts the proportion of direct service for
different UBij in different scale networks. Figure 5 presents the corresponding AIVTT for
the passengers with a direct service.

Figure 4. Proportion of direct service for different UBij in different scale networks.
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Figure 5. AIVTT for the passengers with direct service.

Figure 4 indicates that the performances of setting UBij are different for different
scale networks. In the medium-scale network, the percentage of direct service exhibits an
increasing tendency when γ ranges from 1 to 4, whereas fluctuation occurs in the interval
from 5 to 10. In the small-scale network, the percentage keeps fluctuating in the entire
value range. Figure 5 shows a similar shape of the AIVTT with direct service, suggesting a
contradiction to optimize the percentage of direct service and in-vehicle travel time.

The results indicate that UBij actively balances the in-vehicle travel time and the
percentage of direct service for a medium-scale network that ranges from 1 to 4 of γ. UBij
has no effect when the value of γ is more than four. The actual in-vehicle travel time in the
determined route structure is rarely greater than UBij, because UBij is too large to affect
the route structure. For the small-scale network, the feasible region of solutions is small,
causing the in-vehicle travel time route structure to be close to the time on the shortest path.

Possible solutions to regulate the contradiction between the proportion of direct
service and the AIVTT include expanding the fleet size and increasing the number of routes.
Figure 6 presents the relationship between the percentage of direct service and the number
of planning routes with the same other parameters for the medium-scale network. The
small-scale network has a similar property throughout our experiment. The transit network
can offer efficient service by expanding the predefined number of routes. However, an
additional subsidy is required.

Figure 6. Proportions of direct service for different numbers of planning routes.
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5. Conclusions

In this study, a model and a heuristic algorithm are developed to optimize the route
structure and its corresponding frequencies simultaneously. Flow assignment and bus
capacity are considered. Two scale networks are introduced to examine the properties of
the proposed heuristic algorithm. The significant conclusions are as follows:

(i) The proposed model and heuristic algorithm can simultaneously optimize the route
structure and its corresponding frequencies with minimum travel time and transfer
for different scale networks.

(ii) Although the neighborhood search method is used to improve the route structure
with the predefined number of routes, the proportion of direct service cannot reach
100%. An absolute direct service for all travel demands is consequently unreasonable
to pursue. Providing direct service for the OD pairs with long distances and limited
flow is inefficient and costly when the resource is limited.

(iii) The introduction of an upper bound can improve the algorithm. For a medium-scale
network, the upper bound is a useful parameter to balance the two contradictory sub-
objectives in the objective function. However, a small-scale network has a minimal
response to the parameter, thus suggesting that different performances may appear
with the same model and algorithm.

(iv) The proportion of direct service is not only sensitive to the upper bound but is also
related to the number of routes. Direct service can be improved by increasing the
number of routes if the subsidy is sufficient.

(v) This algorithm currently tests an ideal hypothetical network. In the actual network,
the algorithm can be applied to practice in combination with GIS tools.

In this study, we assume that the travel demand, in-vehicle travel time, and dwell
time are predefined. However, the transit demand varies within a day, week, month,
or year. Numerous attributes such as fare, travel time, frequency, walking time, routing
and transferring, stop location, comfort and inconvenience elements, information, socio-
economic factors, land use, and security affect transit demand [22]. In-vehicle travel time is
associated with road traffic situations, driving behavior, and vehicle performance. Dwell
time at stops is an increasing function of the number of passengers boarding and alighting at
stops [53–55]. Hence, an interesting project for future studies should consider the stochastic
factors in the transit network, including the running time and the arrival of passengers.
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The main symbols in this work are defined as follows:
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N set of stops in the network;
Nr set of stops of route r;
No

r starting stop of route r;
Nd

r ending stop of route r;
Nm

r intermediate stops of route r;
i, j, k induces of stops;
r, r′ induces of routes;
R set of routes;
z objective function of the problem;
w1 weight of the travel without direct service;
w2 weight of the travel time;
dij travel demand from stop i to stop j per unit time;
Mij binary variable, in which Mij = 0 if the passengers from stop i to stop j can complete

their travels without transfer and Mij = 1 otherwise;
tij sum of AIVTT and waiting time from stop i to stop j;
tw
ij average waiting time from stop i to stop j;

tv
ij AIVTT from stop i to stop j;

trv
ij in-vehicle travel time from stop i to stop j through route r;
fr frequency of route r during the planning period;
δr

ij proportion of the travel demand assigned to route r from stop i and stop j per unit time;
xr

ij binary variable, in which xr
ij = 1 if the route r passes through stop i and stop j

continuously and xr
ij = 0 otherwise;

cij in-vehicle travel time from stop i to stop j by the shortest path;
thr

ij binary variable, in which thr
ij = 1 if the route r passes through stop i and stop j, that is,

passengers from stop i to stop j can complete their travels without transfer by route r;
and thr

ij = 0 otherwise;
s average dwell time at each intermediate stop for all routes;
Rij set of routes that can provide the direct service from stop i to stop j
num number of routes for the network;
Smax maximum number of stops for a route;
tr single-trip time of route r;
η time conversion unit in this study, in which α = 60 min/h;
n f leet maximum given fleet size for the planning network;
CSr

i(i+1) flow on the segment from stop i to stop i + 1 for route r per unit time;
Cap maximal load of a bus;
boardr

i number of passengers who board a bus at stop k through route r after assignment per
unit time;

alightr
i number of passengers who alight from a bus at stop k through route r after assignment

per unit time;
dr

ij flow assignment to route r from stop i to stop j;
sij section from stop i to stop j; and
Smax maximum number of stops for a route.
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