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Abstract: Introductory Engineering Mathematics (a skill builder for engineers) involves developing
problem-solving attributes throughout the teaching period. Therefore, the prediction of students’ final
course grades with continuous assessment marks is a useful toolkit for degree program educators.
Predictive models are practical tools used to evaluate the effectiveness of teaching as well as assessing
the students’ progression and implementing interventions for the best learning outcomes. This study
develops a novel multivariate adaptive regression spline (MARS) model to predict the weighted
score WS (i.e., the course grade). To construct the proposed MARS model, Introductory Engineering
Mathematics performance data over five years from the University of Southern Queensland, Australia,
were used to design predictive models using input predictors of online quizzes, written assignments,
and examination scores. About 60% of randomised predictor grade data were applied to train
the model (with 25% of the training set used for validation) and 40% to test the model. Based on
the cross-correlation of inputs vs. the WS, 12 distinct combinations with single (i.e., M1–M5) and
multiple (M6–M12) features were created to assess the influence of each on the WS with results
bench-marked via a decision tree regression (DTR), kernel ridge regression (KRR), and a k-nearest
neighbour (KNN) model. The influence of each predictor on WS clearly showed that online quizzes
provide the least contribution. However, the MARS model improved dramatically by including
written assignments and examination scores. The research demonstrates the merits of the proposed
MARS model in uncovering relationships among continuous learning variables, which also provides
a distinct advantage to educators in developing early intervention and moderating their teaching by
predicting the performance of students ahead of final outcome for a course. The findings and future
application have significant practical implications in teaching and learning interventions or planning
aimed to improve graduate outcomes in undergraduate engineering program cohorts.

Keywords: educational decision making; multivariate regression spline model; student performance;
artificial intelligence in education; engineering mathematics student performance

1. Introduction

Predictive modelling can help engineering educators to design an optimal learning
and teaching practices considering the feedback generated through student performance
data. In terms of monitoring student learning through problem solving, such models
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can convey important information on continuous progress and advancement in students’
knowledge [1]. Predictive methods [2,3] are therefore a key component of learning ana-
lytics methods for dynamic learning environments to encourage students to participate
continuously in learning and teaching platforms (both in-classrooms and online) while
enabling the educators to evaluate their practice [4]. Based on such models, teaching
and learning have progressed dramatically, making them flexible and adaptable [5]. This
can help educators to present useful feedback and associated comments on continuous
assessments with a description of areas where students are excelling and specific areas that
require improvement. Most datasets comprising marks in short tests, online quizzes, or
assignments are mathematically and statistically expressible and therefore can be utilised
as inputs into learning analytics models with adaptive methods to forecast student progress
in a course and thus continuously improve teaching and learning practice.

The literature has not fully established the adoption of statistical and machine learning
predictive models, e.g., [2,3], to inform student’s short-term future progress through a
teaching semester. The present study aims to develop a student progress-monitoring
model that can be used as a vital part of the e-teaching and e-learning systems that guide
educators in making better decisions to improve their practice for optimal outcomes. Based
on the predicted performance using any current assessment, the educators can further
implement comprehensive changes in their subsequent assignment or other tasks to capture
the potential impact on the weighted course performances and final grades. If predictions
are possible, the model can help facilitate a greater understanding of how the performance
in continuous assessments improves a final grade and further identify factors that influence
the knowledge domain and course progress using different kinds of learning attributes
(e.g., online quizzes and written assignments).

In general, continuous assessment variables are based on formative assessments that
can determine a student’s level of achievement in terms of their evolving capabilities [6,7].
They may also comprise both summative and formative evaluations that form the two
kinds of student assessment procedures [8] for generating information regarding student
progression before, during, or after any particular set of sequenced learning activities [9].
This information can enable educators to improve learning outcomes [10] and predict
student performance as an essential component of a robust education system [11,12].
Considering these benefits, teachers can evaluate and improve their teaching and students’
learning processes [13] with subject-specific and general qualities when modelling students’
overall performances in a stage-by-stage approach. Subject-specific attributes, for example,
can be used to determine how far students may develop in their mastery of various
learning materials.

In terms of the published literature, the maximum likelihood estimation method has
been used to measure student knowledge levels regarding the difficulty in understanding
course learning materials. In another study, students’ self-assessment skills were inves-
tigated by determining the reasons for a student’s failure to solve a problem [14]. This
system gathered data on student development primarily based on the difficulty levels and
the problem categories. The study of [15] used self-assessment tests to improve students’
examination performance, where exam questions were adaptively created based on stu-
dents’ responses to each previously answered question. It was therefore shown that the
student’s likelihood to answer the questions correctly could be predicted based on their
knowledge levels using the item response theory and that the accuracy of the responses
and their probability distributions, i.e., the probability of the appropriate knowledge level,
in terms of concepts, were also used to grade the students.

Current studies have used classification, and regression approaches such as, but not
limited to, support vector machines, decision trees, artificial neural networks, and adaptive
neuro-fuzzy inference systems to predict student course performance [16–20]. For exam-
ple, [21] determined optimal variables to represent student attributes by developing an
efficient model to aid in clustering students into distinct groups considering performance
levels, behaviour, and engagement. The study of [22] proposed a SPRAR (students’ per-
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formance prediction using relational association rules) classification model to predict the
final result of a student at a certain academic discipline using relational association rules
(RARs), conducting experiments performed on three real academic datasets to show its
superiority. A study by Goga et al. [23] designed an intelligent recommender system using
background factors to predict students’ first-year academic performance while recommend-
ing actions for improvement, whereas Fariba [24] studied the academic performance of
online students using personality traits, learning styles, and psychological wellbeing data,
showing a correlation between personality traits and learning styles. It was noted that
this could lead learners to a higher level of learning and a sense of self-satisfaction and
enjoyment of the learning process. Taylan and Karagözoglu [25] introduced a fuzzy infer-
ence system model to assess students’ academic performance, showing that their method
could produce crisp numerical outcomes to predict student’s academic performance and
an alternative solution to address imprecise data issues. The study of Ashraf et al. [26]
developed base classifiers such as random tree, kernel ridge regression, and Naïve Bayes
methods evaluated on a 10-fold validation with filtering such as oversampling (SMOTE)
and undersampling (spread subsampling) to inspect any significant change in results
among meta and base classifiers. Their study showed that both ensemble and filtering
approaches met substantial improvement margins in predicting students’ performance
compared with conventional classifiers.

Applying classification and prediction methods, Pallathadka et al. [27] developed
Naive Bayesian ID3, C4.5, and SVM models on student performance data to forecast student
performance, classify individuals based on talents, and enhance future test performance.
Other studies, e.g., [28,29], used predicted students’ performance in massive open online
courses (MOOCs) to study students’ retention and make timely interventions and an early
prediction of an university undergraduate student’s academic performance in completely
online learning. The former proposed a hyper-model using convolutional neural network
and a long short-term memory model to automatically extract features from MOOCs raw
data and to determine course dropout rates, whereas the latter considered a cost-sensitive
loss function to study various mis-classification costs for false negatives and false positives.

The study of Deo et al. [3] has developed extreme learning machine models to analyse
patterns embedded in continuous assessment to model the weighted course result and
examination score for both mid-level (engineering mathematics) and advanced engineering
mathematics performance in on-campus and online study modes compared with random
forest and Volterra models. Using a statistical approach, Nguyen-Huy et al. [2] developed
a probabilistic model to predict weighted scores for on-campus and online students in ad-
vanced engineering mathematics. This study fitted parametric and non-parametric D-vine
copula models utilising online quizzes, assignments, and examination results to model
the predicted course weighted score. This was interpreted as the probability of whether a
student’s continuous performance, individually or jointly with other assessments, leads
to passing course grade conditional upon joint performance in online quizzes and written
assignments. Other researchers, such as [20,30,30–41], have attempted to develop several
types of classification and regression models and statistical methods for student perfor-
mance predictions using a diverse set of predictor variables. Despite their success, no single
machine learning or statistical model appears to generate universally accurate performance
for the diverse datasets representing student performance; therefore, individual differences
among these predictive models and the associated contextual factors could be considered
when predicting student course performance.

This research builds upon earlier research involving undergraduate university math-
ematics courses [2,3]. The primary contributions are to develop a novel multivariate
adaptive regression spline (MARS) model that has feature identification and regression
capabilities to explore relationships between assessment-based predictors and the target
course grade outcome. The performance of the proposed MARS model is also benchmarked
with k-nearest neighbour algorithm (KNN), kernel ridge regression (KRR), and decision
tree regression (DTR) using five consecutive years of undergraduate student performance
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datasets (2015–2019) for both online and on-campus modes of course offers. The novelty
of this research work is to develop a MARS for the first time to predict the first-year en-
gineering mathematics student performance at the University of Southern Queensland,
Australia, by employing several continuous assessment marks and the weighted scores that
are used to assign a passing or a failing grade. The remainder of the research is dedicated
to describing the novel properties of MARS with respect to related benchmark models.
Several challenges after the presentation of results are then discussed, and a final section
summarizes the conclusions.

2. Theoretical Overview and Methodology
2.1. Objective Model: Multivariate Adaptive Regression Splines (MARS)

This research presents a MARS model considering multivariate data (online quizzes,
assignments, and examination scores) for a first-year undergraduate engineering mathe-
matics course as predictors to emulate weighted scores by analysing the contribution from
basis functions derived from each feature. Figure 1 shows the schematic structure of the
proposed MARS model.

Figure 1. The architecture of the newly proposed multivariate adaptive regression splines (MARS)
model used to predict undergraduate Introductory Engineering Mathematics student performance at
the University of Southern Queensland, Australia.

In this study, a MARS model is selected based on its excellent capability to evaluate
the interactive effects of various inputs used to estimate the given predictand variable [42].
Furthermore, this particular model to determine the relative importance of any single
predictor (e.g., assignment score) or a combination of predictors (e.g., assignment + quiz
marks) on the weighted score, therefore enabling the educator to explore the complex
and somewhat non-linear relationships [2,3] based on which an assessment can affect
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(and be used to model) a final grade. In the present problem of predicting student course
performance (i.e., weighted scores), the proposed MARS model aims to select the most
optimal regressor variable such as the online quiz or the written assignment mark from a
predictor matrix set [43] without any assumptions on relationships between the respective
predictors and the predictand [44,45]. Using such input features, the proposed MARS
model generates a forecasted weighted score through the learned relationships represented
in the spline function. Each spline, while utilising an input (x) and a target (y), is split
into subgroups attached to a knot between an x and an interval in the same x to separate
the sub-group. Accordingly, data between any two knots are represented by a piece-wise
(i.e., cubic or linear) function whereby basis functions in an adjacent domain intersect
at a respective knot. Therefore, the proposed MARS model provides good flexibility in
considering the bends, thresholds, and departures from linear built using a matrix of
predictors and the predictand [46]. This can capture the non-linear features among all the
continuous performance (i.e., online quizzes, assignments, etc.) and the final weighted
course grade score datasets.

In terms of the merits of the MARS model built in this study, the regression approach
fits a given x data from a subgroup to another subgroup and a spline to another spline,
which ensures that adequate data are present in any sub-group. Therefore, the shortest
distance between the neighbouring knots is used to avoid any over-fitting of the proposed
MARS model. The basis functions, BF(x), are determined from student performance results
and later projected on the predictand (i.e., weighted score) matrix [44,45]. Considering
an X composed of the vectors (X1, X2. . . XN), the proposed MARS model is represented
as follows

Y = f (X) + χ (1)

where N = the number of training datum points and χ = the distribution of errors [46].
The MARS therefore approximates f (.) by applying BF(x) derived from each student
performance assessments with a piece-wise function: max (0, x− c) with c = the position
of a knot [47]. The function f (X) is then constructed as a linear combination of BF(x) and
its interactions:

f (X) = β0 +
n=N

∑
n=1

βnBF(X) (2)

In Equation (2), the constant β is estimated using least-squares, whereas f (X) is
applied as a forward-backward stepwise rule which can identify the knots where the
function could vary [43]. At the end of the forward phase, a large MARS model may
emerge, and perhaps may also over-fit the training data. We therefore apply a backward
phase using generalised cross-validation (GCV) regularization to individually delete one
or more basis functions. This happens up to a certain point when only the intercept term of
the model remains. The GCV (i.e., an estimator for the N-training sample’s mean square
error, MSE) [42] is

GCV =
MSE(

1− enp
N
)2 (3)

In Equation (3), the term enp = the effective number of parameters, with enp = k +
c(k − 1)/2; k = the number of basis functions in the proposed MARS model (incl. the
intercept term); c = the penalty (about 2 or 3); and (k – 1) = the hinge function knots.

2.2. The Benchmark Model 1: Kernel Ridge Regression (KRR)

To benchmark the newly developed MARS model used for the first-year engineering
undergraduate mathematics student performance predictions, we now adopt the kernel
ridge regression (KRR) method that offers an unlimited non-linear transformation of the
predictor features as regressors. Here, the strategy involves kernels and ridge regressions
that can avoid model over-fitting issues. The KRR model utilizes regularizations to capture
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the non-linear links between all predictors and the respective predictand, and therefore is
described mathematically as follows [47,48]

arg min
1
q

q

∑
0
|| f0 − y0||2 + λ|| f ||2H (4)

fo =
q

∑
p=1

αpω(xp, xo) (5)

The Hilbert normed space of Equation (4) is defined as ||.||H . For a given m×m
kernel matrix, K is developed by ω(xp, xo) from some fixed predictor variables, where y is
the input q× 1 regression vector and is the q× 1 unknown situation vector that reduces as
follows [47]:

y = (K + λqI) (6)

ỹ =
q

∑
p=1

αoω(xo, x̃) (7)

In the KRR model training stage, we aim to solve Equation (7) with high accuracy
by using linear, polynomial, and Gaussian kernels. For further details on KRR models,
the readers can consult several other references, e.g., [47–51].

2.3. The Benchmark Model 2: k-Nearest Neighbour (KNN)

The second benchmark model developed for the first-year engineering mathematics
undergraduate student performance predictions involves the k-nearest neighbour (KNN)
technique. The KNN model comprises a supervised machine learning approach for clas-
sification and regression problems. As a simple pattern recognition technique, the KNN
model is highly effective [52] in modelling a continuous target variable with local non-
parametric regressions performed using a function-based approximator [53]. This technique
can potentially discover the past data points that are most closely related to the current
sequence whilst integrating their future values to estimate the current sequence’s next
predicted value [54]. The algorithm comprises a matrix Xt with t = 1, . . . n transformed into
d-dimensional vectors

Xd, τ
t = (Xt, Xt−τ . . . Xt−(d−1)τ) (8)

In Equation (8), d = the number of lags and τ = the delay parameter. When τ is
assumed as 1, the resulting time series of vectors are:

Xd
t = (Xt, Xt, . . . . . . , Xt−(d−1)), where t = d, . . . . . . , n (9)

Here, Xd
t is a vector of d consecutive observations in the d-dimensional space. The dis-

tance between the last vector and each vector in the time series Xd
t where t = d, . . . n− 1

is computed and the k vectors nearest to Xd
n are assigned as Xd

T1, Xd
T2, . . . . . . . . . Xd

Tk.
Considering the neighbouring vectors, Xd

T1, Xd
T2, . . . . . . . . . Xd

Tk, their subsequent values,
Xd

T1+1, Xd
T2+1, . . . . . . . . . Xd

Tk+1 are averaged to obtain the predicted value of Xn+1. For fur-
ther details on the KNN model, readers can also consult many other references, e.g., [52–54].

2.4. The Benchmark Model 3: Decision Tree (DT)

The MARS model is bench-marked against a decision tree (DT) method that rep-
resents a powerful, fast, and easy-to-implement knowledge discovery and data mining
technique. A proposed DT model has the capability to determine essential patterns present
in relatively complicated datasets [55,56]. Many theorists and practitioners are constantly
developing DT-based modeling techniques to improve the process accuracy, efficiency,
and cost-effectiveness in terms of scientific and business industries based on its impor-
tance in data mining, text mining, information retrieval, machine learning, and pattern
identification problems.
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In general, a decision tree model represents the division of datasets into branches that
result in an inverted decision tree with the root node at the top. The object of analysis is
therefore a one-dimensional display that reflects the decision tree interface’s root node with
mathematical formulation. Giving a set of training vectors xi ∈ Rn, i = 1, . . . .l and a label
vector y ∈ Rl , a decision tree is generated recursively in order to partition the feature space
in such a way that the samples with the same labels or similar target values can be grouped.

Let the data comprised of Nm samples at node m be represented by Qm. For each
candidate, we split θ = (j, tm) consisting of a feature j and threshold tm, partitioning the
data into Qle f t

m (θ) and Qright
m (θ) subsets [55,56].

Qle f t
m (θ) = (x, y)| xj <= tm (10)

Qright
m (θ) = Qm

le f t
m (θ) (11)

The quality of a candidate split of node m is then computed using an impurity function
or loss function H(), which depends on the task being solved.

G(Qm, θ) =
Qle f t

m
Nm

H(Qle f t
m (θ)) +

Qright
m
Nm

H(Qright
m (θ)) (12)

We then select the parameters that minimise the impurity

θ∗ = argminθG(Qm, θ) (13)

Finally, we recurse the subsets Qle f t
m (θ∗) and Qright

m (θ∗) until the maximum allowable
depth is reached, Nm < minsamples or Nm = 1 or Nm = 1. For a detailed theory on
DT-based models, readers are encouraged to consult references, such as [55,56].

3. Research Context, Project Design, and Model Performance Criteria
3.1. Engineering Mathematics Student Performance Data

The proposed MARS (and the comparative KRR, KNN, and DT) models developed
to predict student performance in the first-year undergraduate engineering mathematics
course consider the case of ENM1500 Introductory Engineering Mathematics that is
taught at the University of Southern Queensland in Australia. The course welcomes
students entering tertiary studies who are undertaking engineering and surveying
programs but they require further skills in problem solving and basic mathematical
competencies. The course aims to integrate mathematical concepts by introducing
topics such as algebra, functions, graphing, exponential, logarithmic and trigonometric
functions, geometry, vectors in two-dimensional spaces, matrices, differentiation, or
integration. It develops mathematical thinking, interpreting, and solving authentic
engineering problems using mathematical concepts. The course also aims to enable
students to communicate mathematical concepts more effectively and express solutions
to the engineering problems in a variety of written forms.

Therefore, continuous assessments in ENM1500 comprise two online quizzes, Quiz 1
(Q1, 5%) and Quiz 2 (Q2, 5%) (marked out of 50, administered in Week 3 and Week 11,
respectively); Assignment 1 (A1, 15%) and Assignment 2 (A2, 15%), marked out of 150
(administered in Week 6 and Week 13, respectively); and an examination (EX, marked out
of 600, 60%) in Week 15 in a regular teaching semester. Based on continuous assessments
spread throughout the semester, students are awarded a grade for their weighted course
score (WS, 100%). The course was developed as part of a major program update and revi-
sion of the previous mathematics syllabus to meet the program accreditation requirements
under the Institute of Engineers, Australia (IEAust).

The School of Mathematics, Physics, and Computing in the Faculty of Health, Engi-
neering, and Sciences at the University of Southern Queensland administers ENM1500 as a
compulsory part of an Associate Degree of Engineering (ADNG) for Agricultural, Civil,
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Computer Systems, Electrical and Electronic, Environmental, Mechanical, and Mining
Engineering specializations. In addition, it is a core part of the Bachelor of Construction
Management (B. CON) for Civil and Management and Associate Degree in Construction
Management.This course is also offered to the Graduate Certificate in Science under the
High School and Middle/Primary Teaching Specialization to prepare teachers in engineer-
ing or technical subjects. To enter the course, students must have completed Queensland
Senior Secondary School Studies Mathematics A (General Mathematics) or have equivalent
assumed knowledge, and are advised to undertake an online pre-test on tacit knowledge
before commencement. This pre-test informs prospective students on areas that need to be
revised to ensure satisfactory progression, including recommendations for further work or
an alternative study plan, such as the Tertiary Preparation Program. Therefore, the diversity
of any given cohort enrolled in this course provides a rich combination of student learning
abilities and learning profiles to build and test the prescribed models to predict WS.

Our study considers five consecutive years of student performance data (2015 to
2019, i.e., a pre-COVID period) generated by merging online and on-campus course
results held three semesters per year and made available from examiner return sheets
that are official results provided to the faculty after a rigorous moderation process prior
to grade releases. The modelling data had marks for continuous internal assessments
(i.e., two online quizzes, Q1 & Q2, worth 5% each, and two major written assignments,
A1 & A2, worth 15% each), including a final examination score (EX, worth 60%) and a
weighted score (WS) (i.e., overall mark out of 100%) used to allocate a passing course
grade. The content of Q1 and Q2 had four choices per question that students could
possibly select for any given question. For both of the quizzes, there were 15 questions
(1 mark each), converted to 50 marks total per Quiz. For the assignments, both A1 and
A2 (marked out of 150) were written assignments with a set of problem-solving tasks
for entry-level engineering mathematics applications, as well as basic skill builder tasks.
For the examination, there were six long-answer-type application questions (600 marks
total) completed over two hour examination period.

An ethics application (#H18REA236) was implemented in accordance with the
Australian Code for Responsible Conduct of Research (2018) and the National State-
ment on Ethical Conduct in Human Research (2007). The research work was purely
quantitative with artificial intelligence models that were not aimed at predicting any
particular student’s performance. It did not draw upon personal information, nor did it
disclose any student records such as their name, student identification number, gender,
and socioeconomic status. Therefore, based on low risk, an expedited ethical approval
was provided with pre-conditions that any form of identification attributes, such as the
student names, gender, and personal identifiers, must be removed before processing the
student performance data.

While pre-processing the data, incomplete records were deleted entirely (e.g., students
who had not submitted assessments for particular items or did not take the exam) to
prevent bias in the proposed model. While this led to some loss of student performance
data from the original five-year record, the naturally lengthy records enabled us to use
a total of 739 complete records of quizzes (Q1, Q2), assignments (A1, A2), examination
scores (EX), and weighted score (WS) to ensure negligible effects on the capability of the
models to predict a passing or a failing grade. As missing data are a major problem for any
machine learning model, this pre-processing data procedure has ensured that any potential
bias due to a missing predictor value, for example, a missed assignment or a missed quiz
mark for a student, does not cause a loss of predictive features in the overall trained model.
This problem could arise from an incomplete record used in the MARS model training
phase and, such, it was eliminated by using data records where every assessment data
point per student had a corresponding WS value. As this research has used real student
performance dataset, there was no suitable method for the recovery of any missing point,;
therefore, the row with any missing predictor value was deleted prior to the training of the
proposed MARS model.
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3.2. Model Development Stages

Tables 1 and 2 show the first-year undergraduate engineering mathematics student
performance statistics for a five-year period between 2015 and 2019. Each years of data,
in their own, were considerably insufficient for model convergence. Therefore, individual
years of data were pooled into a global set in order to increase the size of the overall dataset
required to fully train, validate, and test the MARS model. Figure 2 investigates the extent
of association between the continuous assessments (Q1, Q2, A1, A2, and EX) and weighted
scores (WS) using scatter plots and linear regression functions.

Table 1. Descriptive statistics of ENM1500 Introductory Engineering Mathematics student perfor-
mance (2015–2019) used to construct the proposed MARS model with the predictors (inputs) as: A1:
Assignment 1, A2: Assignment 2, A3: Assignment 3, Q1: Quiz 1, and Q2: Quiz 2 with the target. The
weighted score (WS) represents the overall score used to allocate a course grade. Note that a raw
mark for each assessment had a different total with a certain percentage contribution towards the
final grade.

Statistical Property
Predictors Target
Q1/50 A1/150 Q2/50 A2/150 EX/600 WS/100
5% 15% 5% 15% 60% 100%

Mean 46.6 120.5 46.3 119.9 359.1 69.3
Median 50.0 127.0 50.0 126.0 360.0 70.0
Standard Deviation 5.5 26.0 6.7 26.4 141.1 17.3
Minimum 8.0 15.0 0.0 0.0 0.0 20.0
Maximum 50.0 150.0 50.0 150.0 600.0 100.0
Skewness −2.7 −1.2 −3.4 −1.3 −0.2 −0.2
Flatness 10.1 1.4 15.7 1.9 −0.9 −0.8

Table 2. Cross-correlation coefficients (r) of predictor and target variables and the rank of model
inputs based on strength of associations between inputs and the target.

Predictor versus Target Assessment in Teaching Week r-Value Input Rank

Q1 versus WS 2 0.407 2
Q2 versus WS 10 0.606 3
A1 versus WS 5 0.262 1
A2 versus WS 12 0.640 4
EX versus WS 13 0.967 5

Notably, the extent of the associations between online quizzes, assignments, exami-
nation scores, and the final grade differs significantly. A positive correlation between all
continuous assessment marks and WS is evident although the strength of correlation with
EX is considerably higher (with r2 = 0.9356) followed by A2 (r2 = 0.409), A1 (r2 = 0.367),
and Q1 (r2 = 0.164). For example, the lowest magnitude of a correlation is recorded between
A1 and WS, whereas the highest correlation is evident for EX and WS, whereas marginal
differences exist between the correlation coefficient of A2 and Q2 analysed against WS.

The impact of Quiz 2 on the final grade, as evidenced by the weakest correlation of
Q2 with WS, appears to be the lowest with r2 = 0.0685. Each of the assessment pieces are
administered at different times of a 15-week teaching semester; thus, using a diverse set
of information to examine the extent of association of each assessment on the weighted
score and the estimation of weighted scores resulting from the MARS model can be a
useful way to implement effective teaching practices prior to the examination period
at the end of the semester. Based on the rank noted in Table 2, the input sequence for
the proposed models is designed following the order of increasing the importance of
predictors and further testing their importance according to the individual inputs used
to predict the weighted scores.
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Figure 2. Exploring the relationships between each predictor variable and the respective target
variable. Q1 = Quiz 1; Q2 = Quiz 2; A1 = Assignment 1; A2 = Assignment 2; EX = exam score;
WS = weighted score. A least-square regression line with a best fit equation and the coefficient of
determination (r2) is shown.

In this paper, two categories of predictive modelling systems are developed. The
first is a single-input-based matrix that utilises A1, Q1, Q2, A3, and EX. These individual
models are designated as Models M1–M5. The second category of the modelling system
(designated as Models M6–M8) is a multiple-input matrix-based system where the order
of the multivariate input combination has been determined statistically. This variable
order is selected based on the magnitude of the rcross, considering the lowest to the highest
level of associations with the target variable (WS), as shown in Table 2. This research
has built further models by using a combination of the highest correlated input variables.
For example, we note that A2 and Q2 have acquired rcross = 0.606 and 0.640 (i.e., M10),
respectively, while adding the relatively low-correlated input Q1 and the lowest correlated
input A1 to further check if the less correlated input variables provide any improvements in
the predicted value of WS. Table 3 shows the proposed MARS model along with the KNN,
KRR, and DT models developed as benchmark methods to comprehensively evaluate the
efficacy of the MARS model.
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Following this specific modelling strategy, twelve distinct models are built to in-
vestigate how the different student assessment datasets impacted the student’s overall
learning or success in this first-year undergraduate engineering mathematics course
taught from Week 1 to 15. To build the proposed MARS (and the benchmark models), all
the original data are randomized in the model training phase to ensure greater model
credibility for predicting the weighted score. Subsequently, 60% (or 444 rows) of the
datasets are allocated to a training set from which 33% (or 145 rows) are selected for
model validation purposes. The remainder, 40% (or 295 rows), is used as an independent
test set to cross-validate the performance of the proposed MARS and all the other deep
learning models.

Table 3. Input combinations based on first-year undergraduate engineering mathematics student
performance data used to construct the proposed MARS model. Note that Models M1 to M5 are
based on single predictor variables, and M6 to M12 are based on multiple predictors used to model
the weighted score (WS).

Designated Model
Input Combinations Data Points/Period

(Using Predictors in Table 1) Data Period
S1, S2, S3

Total
Data

Training
(60%) Validation Testing

(40%)

M1 WS = f {A1}

2015–2019 739 records 444 145 (∼33%) of training set 295

M2 WS = f {Q1}
M3 WS = f {Q2}
M4 WS = f {A2}
M5 WS = f {EX}

M6 WS = f {A1, Q1}
M7 WS = f {A1, Q1, Q2}
M8 WS = f {A1, Q1, Q2, A2}
M9 WS = f {EX, A2}
M10 WS = f {EX, A2, Q2}
M11 WS = f {EX, A2, Q2, Q1}
M12 WS = f {EX, A2, Q2, Q1, A1}

Table 4 shows the parameter for the MARS, including the KRR, DTR, and KNN
models, whereas Table 5 shows the parameters of the most optimal MARS model trained to
predict the WS using a combination of input variables based on continuous assessments for
ENM1500. In accordance with Table 5, we note that the most accurate training performance
of the MARS model utilizes 11 basis functions whereby a linear regression model is learned
from the outputs of each basis function regressed with the target variable (i.e., WS). The
basis functions include the intercept term (i.e., 41.719), followed by a product of two or more
hinge functions). Consequently, the final prediction is made by summing weighted outputs
of all of the basis functions. This step also includes the growing and the generation phase
(i.e., the forward-stage) and the pruning or the refining stage (i.e., the backward-stage),
as illustrated in Figure 1. This step somewhat resembles the operations of the decision
tree (e.g., the DTR) model with each value of each input variable in the training dataset
considered as a potential candidate for the basis functions.

The change in the MARS model performance in the backward stage is evaluated
using cross-validation of the training dataset (i.e., generalized cross-validation, GCV;
Table 4). Notably, the optimal model (M12) attained the highest coefficient of determina-
tion (r2), the lowest mean square error, and the lowest GCV. Moreover, the number of
functions is determined automatically, as the pruning process halted when no further
improvements were made. Therefore, one benefit of the MARS model was that it only
used input variables that improved the performance of the final model, to the extent that
the bagging and random forest ensemble algorithms, and the proposed MARS achieved
an automatic type of feature selection to generate the most accurate WS values in the
testing phase.



Sustainability 2022, 14, 11070 12 of 27

Table 4. The optimal hyperparameter of the proposed (i.e., MARS) and benchmark machine learning
models (i.e., DTR, KNN, and KRR)

Model Name Hyper-Parameters Acronym Optimum

MARS Maximum degree of terms max_degree 1
Smoothing parameter used to calculate GCV penalty 3.0

KRR

Regularization strength alpha 1.5
Kernel mapping kernel linear
Gamma parameter gamma None
Degree of the polynomial kernel degree 3
Zero coefficient for polynomial and sigmoid kernels coef0 1.2

DTR
Maximum depth of the tree max_depth None
Minimum number of samples for an internal node min_sample_split 2
Number of features for the best split max_features Auto

KNN

Number of neighbours n_neighbors 5
Weights Weights uniform
The algorithm used to compute the nearest neighbours algorithm auto
Leaf-size passed leaf_size 25
Power parameter for the Minkowski metric p 2
The distance metric to use for the tree metric minkowski
Additional keyword arguments for the metric metric_params none
The number of parallel jobs n_jobs int

3.3. Performance Evaluation Criteria

This research adopts visual and descriptive statistics of the observed (WSobs) and the
predicted weighted scores (WSpred) to cross-check the discrepancy of the proposed MARS
model using an independent testing dataset not used in the model construction phase.
The testing dataset evaluations consider standardised performance metrics to comprehen-
sively evaluate the credibility of the predicted WS in ENM1500 Introductory Engineering
Mathematics. The metrics for model evaluation recommended by the American Society for
Civil Engineers are root mean square error (RMSE), correlation coefficient (r), Legate and
McCabe’s index (LM), Nash and Sutcliffe’s coefficient (NSE), and expanded uncertainty
(U95) with mathematical representations [57,58].

r =


∑N

i=1

(
WSpred,i −

−
WSObs,i

)(
WSpred,i −

−
WSObs,i

)
√

∑N
i=1

(
WSpred,i −

−
WSObs,i

)2
√

∑N
i=1

(
WSpred,i −

−
WSObs,i

)2

 (14)

RMSE =

√√√√ 1
N

N

∑
i=1

(
WSpred,i −WSObs,i

)2
(15)

LM = 1−

∑N
i=1 |WSObs,i −WSpred,i|

∑N
i=1 |WSObs,i −

WS
WSObs,i|

, 0 ≤ LM ≤ 1 (16)

NS = 1−

∑N
i=1

(
WSObs,i −WSpred,i

)2

∑N
i=1

(
WSObs,i −

WS
WSObs,i

)2

,−∞ ≤ NS ≤ 1 (17)

RRMSE =

√
1
N ∑N

i=1

(
WSpred,i −WSObs,i

)2

WSObs,i
× 100 (18)
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Table 5. Architecture of the proposed MARS model with the basis functions (BF), Co = y-intercept, y = Co ± BFx, in terms of the coefficient of determination (r2), the
mean square error (MSE), and the generalized cross-validation statistic (GCV) in the model’s training phase.

Model MARS Model Equation: y = Co ± BFx BF MSE R2 GCV

M1 y = 61.98 + 0.5219 BF1 − 0.364 BF2 3 178.9 0.38 183.8
BF1 = max(0, x1 − 109); BF2 = max(0, 109 − x1)

M2 y = 50.8 + 2.29 BF1 + 0.936 BF2 3 243.3 0.182 248.87
BF1 = max(0, x1 − 46); BF2 = max(0, 40 − x1)

M3 y = 51.7 + 0.943 B1 2 276.39 0.10 283.00
BF1 = max(0, x1 − 28)

M4 y = 25.49 + 0.642 BF1 − 0.516 BF2 + 0.333 BF3 4 167.76 0.429 173.63
BF1 = max(0, x1 − 57.5); BF2 = max(0, 61 − x1); BF3 = max(0, 120 − x1)

M5 y = 48.33 − 0.161 BF1 − 0.220 BF2 + 0.339 BF3 4 17.43 0.939 18.50
BF1 = max(0, 155 − x1); BF2 = max(0, x1 − 115); BF3 = max(0, x1 − 138)

M6 y = 72.45 + 1.878 BF1 − 0.531 BF2 − 0.822BF3 − 0.346 BF4 5 162.2 0.442 169.78
BF1 = max(0, x2 − 47); BF2 = max(0, 47 − x2); BF3 = max(0, x1 − 139); BF4 = max(0, 139 − x1)

M7 y = 71.48 + 2.777 BF1 + 307.38 BF2 − 0.5777 BF3 − 3.348 BF4 − 3.313 BF5 + 2.196 BF6 − 0.054 BF7 − 2.122 BF8 0.0757 BF9 10 154.144 0.442 169.90
BF1 = max(0, x1 − 144); BF2 = max(0, x2 − 47); BF3 = max(0, 47 − x2); BF4 = BF2 max(0, 149 − x1); BF5 = BF2 max(0, x1 − 57);
BF6 = max(0, 36 − x3); BF7 = max(0, x3 − 36) max(0, 122 − x1); BF8 = max(0, 43 − x3); BF9 = max(0, x3 − 43) max(0, 101 − x1);

M8 y = 72.62 + 0.645 BF1 0.267 BF2 +2.209 BF3 − 3.928 BF4 − 0.345 BF5 + 0.002 BF6 − 0.313 BF7 + 1.187 BF8 9 124.145 0.547 137.82
BF1 = max(0, x4 − 33); BF2 = max(0, 33 − x4); BF3 = max(0, x1 − 47); BF4 = BF3 max(0, x2 − 149); BF5 = max(0, 137 − x2);
BF6 = BF5 max(0, 146 − x4); BF7 = max(0, x2 − 137) max(0, x3 − 47); BF8 = max(0, x2 − 145);

M9 y = 46.838 + 0.105 BF1 − 0.133 BF2 + 0.151 BF3 − 0.152 BF4 + 0.002 BF5 + 0.001 BF6 7 5.081 0.982 5.60
BF1 = max(0, x2 − 205); BF2 = max(0, 205 − x2); BF3 = max(0, x1 − 77); BF4 = max(0, 77 − x1); BF5 = BF2 max(0, x1 − 109);
BF6 = BF2 max(0, 109 − x1);
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Table 5. Cont.

Model MARS Model Equation: y = Co ± BFx BF MSE R2 GCV

M10 y = 39.665 + 0.103 BF1 + 2.375 BF2 + 0.001 BF3 − 0.013 BF4 − 0.015 BF5 +0.004 BF6 +0.016 BF7 − 1.307 BF8 − 0.009 BF9 − 0.018 BF10
+ 1.427 BF11 − 2.465 BF12 +0.010 BF13 14 4.45 0.985 3.565
BF1 = max(0, x3 − 205); BF2 = max(0, 77 − x2); BF3 = max(0, 205 − x3) max(0, x2 − 115); BF4 = max(0, 44 − x1) max(0, x2 − 57.5);
BF5 = max(0, 44 − x1) max(0, 57.5 − x2) ; BF6 = max(0, x2 − 77) max(0, x1 − 44); BF7 = max(0, x2 − 77) max(0, 44 − x1); BF8 = max(0, x2 − 80);
BF9 = max(0, 205 − x3) max(0, x1 − 30); BF10 = max(0, 205− x3) max(0, 30 − x1); BF11 = max(0, x2 − 74); BF12 = max(0, 74 − x2);
BF13 = max(0, x1 − 44) max(0, 210 − x1)

M11 y = 45.628 + 0.102 BF1 − 0.115 BF2 + 0.494 BF3 −0.259 BF4 + 0.106 BF5 − 0.042 BF6 + 0.003 B7 + 0.006 B8 + 0.007 BF9 − 0.005 BF10 − 0.356 BF11
+ 0.063 BF12 − 0.015 BF13 14 3.187 0.986 4.11
BF1 = max(0, x4 − 200); BF2 = max(0, 200 − x4); BF3 = max(0, x3 − 77); BF4 = max(0, 44 − x2); BF5 = BF2 max(0, x1 − 44) max(0, x1 − 47.5);
BF6 = max(0, 77 − x3) max(0, x1 − 43); BF7 = BF4 max(0, x3 − 106); BF8 = BF4 max(0, 106 − x3); BF9 = BF2 max(0, 42 − x2);
BF10 = BF2 max(0, 37 − x1); BF11 = max(0, x3 − 81); BF12 = max(0, 81 − x3) max(0, x1 − 46.67); BF13 = max(0, 81 − x3) max(0, 46.67 − x1);

M12 y = 41.719 + 0.0999 BF1 − 0.1000 BF2 + 0.101 BF3 − 0.0999 BF4 + 0.100 BF5 − 0.102 B6 + 0.0987 BF7 − 0.0978 BF8 + 0.0989 BF9 − 0.0938 BF10 11 0.079 0.997 0.0902
BF1 = max(0, x5 − 200); BF2 = max(0, 200 − x5); BF3 = max(0, x4 − 77); BF4 = max(0, 77 − x4); BF5 = BF2 max(0, x2 − 80);
BF6 = max(0, 80 − x2); BF7 = BF4 max(0, x3 − 26); BF8 = BF4 max(0, 26 − x3); BF9 = max(0, x1 − 33.33); BF10 = max(0, 33.33 − x1);
BF11 = max(0, x3 − 81); BF12 = max(0, 81 − x3) max(0, x1 − 46.67); BF13 = max(0, 81 − x3) max(0, 46.67 − x1);
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u95 = 1.96
√

SD2 + RMSD2 (19)

where RMSD = 100
WSObs,i

√
(WSpred,i−WSObs,i)

2

N .

Note that WSObs and WSPred are the observed and predicted ith values of the WS;
−

WSObs,i and WSpred,i are the observed and predicted WS in the testing phase; and N = the
number of data points.

4. Results and Discussion

The results generated by the newly proposed MARS (and the comparative models)
are presented with respect to their predictive skills in emulating the weighted course score
used to allocate a final grade in ENM1500 Introductory Engineering Mathematics.

Table 6 compares the observed and the predicted WS, presented in terms of the
correlation (r) and root mean square error (RMSE) for diverse input combinations (i.e.,
M1 to M12). It becomes immediately apparent that the MARS model, designated as M5
with WS = f {EX} and M12 (WS = f {EX, A2, Q2, Q1, A1}), is the most accurate model
compared with M1 to M12. However, the performance of the MARS model designated as
M5 and M12 input combination appears to far exceed the performance of DTR, KNN, and
KRR models in terms of the tested error and the correlation between the observed and the
predicted weighted score.

Table 6. Root mean square error (RMSE) and correlation coefficient (r) between observed WS and
predicted WS generated by the proposed MARS model compared with three different benchmark
(i.e., DTR, KNN, KRR) models.

Designated Model Predicted Error: RMSE Correlation Coefficient (r)
MARS DTR KNN KRR MARS DTR KNN KRR

M01 14.26 16.06 15.74 14.30 0.574 0.472 0.452 0.568
M02 16.07 16.37 15.88 16.01 0.401 0.373 0.438 0.408
M03 16.93 17.21 17.66 16.81 0.269 0.222 0.184 0.285
M04 13.81 14.96 14.52 13.75 0.622 0.524 0.556 0.628
M05 5.76 6.54 5.95 5.89 0.963 0.950 0.961 0.960
M06 13.69 16.79 14.55 13.80 0.620 0.478 0.580 0.607
M07 13.69 16.73 14.32 13.77 0.620 0.496 0.597 0.608
M08 12.64 15.95 13.28 12.66 0.688 0.536 0.655 0.686
M09 4.58 5.14 4.75 4.67 0.986 0.978 0.985 0.985
M10 4.30 5.24 4.79 4.66 0.990 0.978 0.986 0.988
M11 4.21 5.05 5.21 4.64 0.991 0.978 0.984 0.990
M12 3.29 4.39 4.60 3.89 0.998 0.987 0.990 0.994

Among the input combinations for models designated as M5 and M12, we also noticed
that the model M12 used in the MARS model yields ≈ a 42% lower error, whereas that for
the DTR model is 32.9% lower, KNN is 22.7% lower, and KRR is 33.9% lower than M5. This
shows that the input combinations used in case of M12 with the variable EX, A2, Q2, Q1,
and A1 can improve the prediction of WS compared with the EX as a single input.

In a physical sense, this means that the influence of online quizzes and written assign-
ments on ENM1500 student outcomes is significant. However, it is imperative to note that
for the optimal input combination, the proposed MARS model far exceeds the performance
of the DTR, KRR, and KNN models, as measured by the errors attained in their testing
phase. This result concurs with the initial correlation coefficients stated in Table 6, where
the highest degree of agreement between the observed and tested WS is evident by the
largest r value for the case of the MARS model relative to the counterpart models.

Interestingly, we note that among the combination of single predictors, the proposed
MARS model (M5) with EX as input registers the best performance (r = 0.963; RMSE = 5.76),
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which is followed by the model with A2 (M4) and A1 (M1). Notwithstanding this, the
worst performance is registered for the case of M3 (with Q2 as input). This indicates that
Quiz 2 has the weakest influence on the weighted score while the examination score has
the strongest influence on the weighted score (or final grade for ENM1500 students).

It is noteworthy that a diverse range of model combinations prepared by adding the
predictor variables in an ascending order (i.e., M9, M10, M11, M12) reveals a significant
improvement in the accuracy of the tested dataset by a margin of ≈ 20% to a 43% reduction
in the predicted RMSE values. Similarly, in terms of the r values, the improvement for the
case of the MARS model is ≈ 2% to 4%, as we analyzed models M9 to M12, respectively. If
we only compared the results for the input combination case M12 where all of the predictor
variables (i.e., EX, A2, Q2, Q1, and A1) are used, the proposed MARS model generates the
best performance (i.e., r = 0.998; RMSE = 3.29 followed by KRR with r = 0.994; RMSE = 3.89,
DTR with r = 0.987; RMSE = 4.39 and KNN with r = 0.990; RMSE = 4.60). By contrast, the
model for the input combinations prepared in a descending order, namely M6, M7, and
M8, yielded a comparatively poor performance.

To appraise the proposed MARS model, we now show in Figure 3 the Nash–Sutcliffe’s
coefficients (Equation (17)) employed to assess the predictive skills of all models. As the
NSE is calculated as one minus the ratio of the error variance of the modelled data divided
by the variance of the observed data, a perfect model with an estimation error variance
equal to zero is expected to record the Nash–Sutcliffe efficiency of unity, whereas the model
that produces an estimation error variance equal to the variance of the observed data will
produce a trivial value of NSE. Therefore, for a model with NSE close to zero, it would have
the same predictive skill as the mean of the data in terms of the sum of the squared error.

Figure 3. Comparative analysis of machine learning methods (i.e., MARS, vs. KNN, KRR, and
DTR) employing Nash and Sutcliffe’s coefficient (NSE) computed between the predicted WS and the
observed WS in the testing phase.

Figure 3 shows that MARS model designated as M9 to M12 yielded NSE value
close to unity, although M12 (with WS = f {EX, A2, Q2, Q1, A1}) appears to be a better
fit compared with M9, M10, and M11 where EX, Q1, and A2 have been excluded from
the predictor variable list. It is also of note that DTR, KRR, and KNN are relatively
less accurate than MARS to ascertain its superior skill in predicting the weighted scores
for ENM1500 students. Interestingly, all the four algorithms with input combinations
designated as M5 produce quite an accurate simulation of WS, which concurs with Table 6,
where the same model yielded a significantly high correlation (r = 0.950–0.963) and a
relatively low RMSE (5.76–5.89). Taken together with RMSE and r values, the high NSE
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for M5 shows that the examination score remains the most significant predictor of weighted
scores. However, the importance of online quizzes and written assignments remain non-
negligible (see designated inputs and results for M9–M11).

Figure 4 compares the percentage change in the root mean square error generated by
the proposed MARS model (vs. DTR, KNN & KRR) for input combinations M1–M12. The
purpose is to evaluate the exact level of improvement attained by the MARS model against
that of the comparative counterpart models. Interestingly, the most significant improvement
in the proposed MARS model performance is attained for the input combination M12,
where it records a significant performance edge over KNN (30% improvement), followed
by DTR (≈26% improvement) and KRR (15% improvement). It is quite interesting to note
that model M5 (which attains a relatively high NSE and a relatively low RMSE: Figure 3;
Table 6) did not reveal a large improvement in terms of percentage change in RMSE values.
This seems to suggest that although EX is highly correlated with WS (Figures 2 and 3),
the inclusion of other assessment marks, such as online quizzes and written assignments,
leads to a dramatic improvement in the MARS model’s ability to predict the weighted
scores accurately. This suggests that the influence of continuous assessment remains quite
significant on the final grade of a majority of the ENM1500 students.

Figure 4. Change in the predicted value of the root mean square error (RMSE) deduced by comparing
the RSME for the proposed MARS model relative to the RSME generated by the benchmark (i.e., DTR,
KNN, and KRR) model. Note:% Change = |(RMSEMARS – RMSEDTR,KNN,KRR)/RMSEMARS| × 100.

We now compare the capability of the proposed MARS model used to predict the
weighted score using an expanded uncertainty (U95) metric calculated by multiplying the
combined uncertainty with a coverage factor (k = 1.96 that is used for an infinite degree of
freedom) to represent the errors at the 95% confidence level. In addition, the Legate and
McCabe index (LM), to more stringent metric than the NSE, is also used to benchmark the
proposed MARS model against the comparative models for a range of input combinations
(i.e., M1–M12). As shown in Figure 5 for the testing phase, the magnitude of U95 and LM
are in tandem with each other, whereby the lowest value of U95 and the highest value of
LM are attained by the proposed MARS model, particularly for the case of Model M12.

Figure 6 plots a Taylor diagram where the root-mean-square-centred difference (RMSD)
and the standard deviation are considered against the correlation coefficient of observed
and predicted weighted score of the ENM1500 students. In this case, we plotted the
objective model (i.e., MARS) in a separate panel compared with KNN, KRR, and DTR
models for the complete set of input combinations M1–M12. There appears to be a clear
separation of the results for M9-M12 from that of the other designated inputs for all four
types of models. However, the MARS model (for M12) outperforms all counterpart models
for this input combination to ascertain its outstanding ability to predict weighted scores.
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Figure 5. Evaluation of the predictive skill of all machine learning models with various input
combinations developed to predict the weighted score, shown in terms of expanded uncertainty (U95)
and the Legates and McCabe index (LM) in the testing phase. Note that the proposed MARS model
attains the highest value of LM and the lowest value of U95.

Figure 6. Taylor diagram showing the correlation coefficient between the predicted and the observed
weighted scores, including the standard deviation and root mean square centred difference for the
machine learning models (i.e., MARS, KNN, KRR, and DTR) and including different feature (or input)
combinations M1–M5, and M9–M12.

Figures 7a,b and 8a,b represent a scatterplot of the predicted and the observed WS for
the proposed MARS model and the other comparative models. According to the scatterplot,
the coefficient of determination (r2) is associated with the goodness-of-fit between predicted
and observed WS as well as a line of least-square fit with appropriate equation y = mx + c,
where “m” = the gradient and “c” = the regression line y-intercept. The proposed model
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with all predictors (i.e., M12) significantly outperformed the baseline models and all other
input combinations in terms of the highest r2 value.

When the magnitudes of these parameters are stated in pairs (m|r2), the proposed
MARS model with M12 reports the values closest to unity at 0.998|0.907 (m|r2), followed
by KRR for M12 (0.993|0.845). Additionally, the MARS model also showed a subsequent
improvement measured by the single predictor variable-based model to all the predictor-
based models (i.e., M12), signifying the contributions of all student evaluation components
in assessing the student-graded performance. Therefore, the proposed MARS model with
M12 input combination can be said to be well suited for predicting the weighted scores of
ENM1500 students.

(a)

(b)

Figure 7. Scatter plot of the predicted weighted score (WS) versus the observed WS in the testing
phase in terms of the nine different sets of feature (input) combinations used to predict WS. Least-
square regression line y = mx + C and the coefficient of determination (r2) are shown in each sub-panel.
(a) MARS, (b) KNN.
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(a)

(b)

Figure 8. Caption identical to Figure 7 except for (a) KRR and (b) DTR.

We now show the discrepancy ratio (DR) as a metric to examine the robustness
of all the developed models in Figure 9. Note that the DR metric indicates whether a
model over- or under-estimates the value of a weighted score so that a DR value close
to unity is expected to indicate a predicted value closely resembling the observed value.
Notably, across the tested data points, the proposed MARS model (with M12 as the input
combination) attained 90% and 98% of the observations distributed within the ±10% and
±30% band error, respectively. For the other input combinations, the outliers are somewhat
higher, which indicated a poor prediction by the MARS model.

Further evaluation of the proposed MARS model is accomplished by investigating the
empirical cumulative distribution function (ECDF). Here, we show the absolute predicted
error (|PE|) for the case of Model M12 in Figure 10. The figure demonstrates that about
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95 percent of all |PE| values generated by the MARS model fall within the ±5.60 error
bracket, followed by ±6.71 for the KRR, ±7.94 for the DTR, and ±8.30 for the KNN model,
respectively. The mean value of the predicted error for the proposed MARS is ≈2.824
(vs. 3.290–3.553 for KRR, DTR, and KNN models), whereas the standard deviation is≈1.688
for MARS (vs. 2.078–2.920) for a total of 295 tested values of the weighted score in an
independent testing phase. Taken together, Figures 9 and 10 demonstrate the efficacy of the
proposed MARS model to generate relatively accurate weighted scores for ENM1500 students.

Figure 9. Discrepancy ratio, DR (i.e., the predicted WS divided by the observed WS), for the proposed
MARS model within the ±10% and ±20% error bands for all tested data points.

Figure 10. Empirical cumulative distribution function (CDF) showing the predicted error |PE| for
the MARS, versus DTR, KNN, and KRR models for the model denoted as M12. Note that the MARS
model converges more rapidly for |[PE| > 2.5, compared to the benchmark models.

5. Further Discussion, Limitations of This Work, and Future Research Direction

In this research, the performance of a novel MARS model was shown to far exceed three
machine learning models for the specific case of Introductory Engineering Mathematics
(ENM1500) taught at the University of Southern Queensland, Australia. A statistical and
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visual comparison of observed and predicted weighted scores used to determine final
grades showed different levels of association of continuous assessments—evaluated both
as single predictors and a combination of predictors based on the correlation coefficient of
each assessment item (see Table 3, Table 6). Although the examination score was the most
significant indicator of success in the course in terms of statistical evaluations (Figure 2)
and results (Figures 3–10, the inclusion of online quizzes and written assignments led to a
dramatic improvement in the predicted accuracy of the final course grade. This outcome
highlights the critical role of every assessment in producing a successful grade. The effect
of each input combination (and its contributory role in leading to a successful grade) was
also notable, suggesting that the MARS model could be a useful stratagem for engineering
mathematics educators in developing early intervention programs to redefine their teaching
strategies as a semester progresses. As each assessment was spread throughout the 15-week
teaching semester, the application of the MARS model fed with each assessment mark early
into the semester could be a useful tool to develop scenarios of student success or failure.

Despite the superior performance of the MARS model, there are still some limitations
that warrant further investigation. In this study, the dataset used to train the model was
not partitioned into factors that could further limit the model’s generality. For example,
student performance data divided into gender-based, socio-economic status, pre-requisite
knowledge of mathematics, student marks based on personality traits, learning styles,
and psychological well-being could also be considered to develop separate models for
each type of student cohort. For example, Fariba [24] found correlations between such
factors that lead learners to a higher level of learning and redefine their self-satisfaction
and enjoyment during their learning journeys. To investigate such factors, a much larger
dataset from more than one academic institution with comparative specifications of their
engineering mathematics courses could provide support for developing a more robust
generic model for customised predictions of undergraduate student success at different
institutions. Furthermore, in this study, we build the MARS model by pooling all years
of data together to create a universally diverse dataset with a relatively lengthy record
(see Table 1). While this approach ensured the MARS model has enough data for the
training, validating, and testing stages, and that each years of data, in their own, were
considerably insufficient for model convergence, our study does have limitations in terms
of not considering individual years of data to train each year-by-year model. A further
study utilizing each years of data, or groups of years of data to further train the MARS
model, is warranted to check for any model discrepancies.

In a future study, one could categorize datasets into different performance thresholds
(or grades) to develop classification models that investigate the relatively poor-performing
students to be identified early, thereby allowing the educational institution’s management
to intervene and improve their performance [59]. Unfortunately, it is difficult to scale the
existing single classifier-based predictive models from one context to another or to attain a
general model across a diverse range of learners. Therefore, a classification model studying
the categorized dataset of low to moderate performers could be developed. In this study,
datasets from only one university were used, so a predictive model constructed for one
course at one institution may not apply more generally to another method or another
institution. Therefore, the concept of integrated multiple classifiers for datasets from
various universities and courses may lead to more robust and tailored strategies to predict
students’ academic success. The idea behind combining such datasets through various
classifiers is that the different classifiers, each of which are expected to use a distinct data
representation, concept, and modelling technique, are more likely to produce classification
performances with varying generalization patterns [60] that can lead to a more universal
model. Some scholars have demonstrated that the approach using multiple classifier
models that aim to minimize the classification error while maximizing the generalization
skills of the model [61]. Therefore, in future applications, the MARS model could be made
flexible, generalizable, and scalable through predictive modelling datasets using multiple
classifier systems.
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Different factors influence students’ academic performance, such as socioeconomic
status, family atmosphere, schooling history and available training facilities, relational
networks of the persons, and student–teacher interactions. These factors are parts of
the academic problems that cannot be resolved without addressing the essential aspect.
However, these factors may sometimes contribute less to some of the poor performance and
academic problems observed among students but can be attributed to the poor performance
at the psychological organization level, i.e., motivational and personality factors. In the
face of severe external resources limitation, such as socioeconomic constraints, as seen in
many rural areas, schools must rely on other resources to ensure they achieve their goals.
Although some students in rural schools may have resources to support positive academic
outcomes at home, most of them may be facing problems of resource availability and other
family-related issues such as single parenting, low socioeconomic status, low parental
education, etc., which may lead to low performance and risk of dropout. These issues could
be the subject of further investigation to extend the use of MARS or other approaches to a
more diverse set of targeted outcomes.

6. Conclusions

Predicting student performance is a crucial skill for educators, not only for those
striving to provide their students with the opportunity to be productive in their fields
of study but also for those educators who need to manage the teaching and learning re-
sources required to deliver a quality education experience. In this study, the undergraduate
Introductory Engineering Mathematics student weighted scores were predicted success-
fully using continuous assessment marks by developing a new multivariate adaptive
regression splines (MARS) model using specific datasets from the University of Southern
Queensland, Australia.

The model was constructed using ENM1500 (Introductory Engineering Mathematics)
data over five years from the University of Southern Queensland, Australia, to simulate
the overall student marks leading to a grade using online quizzes (Q1 & Q2), written
assignments (A1 & A2), and the final examination score (EX). The model simulations
showed that the examination, assignments, and quizzes together could be used to model
the weighted score, although there was a significant influence of each assessment on the
weighted score. Based on statistical and visual analysis of predicted and real weighted
scores, a MARS model captured the dependence structure between the predictor and the
target variable. Compared with a decision tree regression (DTR), kernel ridge regression
(KRR), and k-nearest neighbour (KNN) model, the MARS model was able to capture the in-
teraction between variables perfectly as an efficient and fast algorithm during computation
and was very robust to the outliers in the weighted score. The MARS model registered the
lowest predicted root mean square error (RMSE) 5.76% vs. 5.89–6.54% for the three bench-
mark models, attaining the highest correlation of ≈ 0.963 vs. 0.950–0.961. With assignments
and quiz marks added to the input list, the MARS model accuracy improved significantly,
yielding a lower RMSE (3.29%) and a larger correlation of 0.998 for predicted vs. observed
WS. This demonstrated the usefulness of the model to educators. In particular, the models
developed can assist the educators in demonstrating how future students learning needs
in terms of, or evidenced by, continuous assessments such as assignments may impact
their examination performance. The predicted student marks in these assessments can help
educators to reflect on their teaching strategies, or to identify deficits in teaching methods,
their effectiveness, and student’s unique learning styles for a more productive planning
and early intervention to prevent failures. The results confirmed that the proposed MARS
model was superior to four other benchmark models, as demonstrated by the lowest ex-
panded uncertainty and the highest Legates–McCabe index, with a Taylor diagram and
empirical error plots for comparing predicted and observed weighted score. Therefore,
such models can be used as an early intervention tool by using early assessments (e.g.,
quizzes or assignments) to predict either examination outcomes or final grades.
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We conclude that this study used only students’ quizzes, examination, and assignment
results to construct machine learning regression models, and therefore has ignored some
of the other personal variables that may influence student outcomes. These variables are
socioeconomic status, family atmosphere, schooling history and available training facilities,
relational networks, student–teacher interactions, and many others. While the study has
aimed to develop a flexible, generalizable, and scalable predictive modelling approach for
predicting student course performance from ongoing assessment, the inclusion of factors
that may impact personal performance in a future learning analytics model could possibly
enhance the capability of the machine learning algorithm to extract patterns relating to
grades from such data. This can therefore assist institutions in effective course health
checks and early intervention strategies, and also modify teaching and learning practices
to promote quality education and desirable graduate attributes.
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Abbreviations
The following abbreviations are used in this manuscript:

MARS multivariate adaptive regression splines
KNN k-nearest neighbour
KRR kernal ridge regression
DTR decision tree regression
MOOCs massive open online courses
SVM support vector machine
GCV generalized cross-validation
BF basis function
MSE mean square error
ADNG Associate Degree of Engineering
B.CON Bachelor of Construction Management
A1 Assignment 1
A2 Assignment 2
Q1 Quiz 1
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Q2 Quiz 2
EX examination score
WS weighted score
RMSE root mean square error
MAE mean absolute error
WI Willmott’s index
NSE Nash–Sutcliffe coefficient
LM Legates and McCabe’s index
RRMSE relative RMSE
RMAE relative MAE
WSobs observed (real) weighted score
WSpred predicted weighted score
U95 expanded uncertainty
r correlation coefficient
r2 coefficient of determination
DR discrepancy ratio
ECDF empirical cumulative distribution function
|PE| predicted error
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