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Abstract: A large-scale renewable-based sustainable power system requires multifaced techno-
economic optimization and energy penetration. Due to the volatile and non-periodic nature of
renewable energy, the uncertainty of renewables combined with load uncertainties significantly
impacts the operational efficiency of renewable integration. The complexities in balancing demand,
generation, and maintaining system reliability have introduced new challenges in the current dis-
tribution system. Most of the associated challenges can be effectively reduced by using a battery
energy storage system (BESS) and the right techniques for handling uncertainties. In this paper, a
distributionally robust optimization (DRO) technique with a linear decision rule is formulated for the
unit commitment (UC) framework for optimal scheduling of a distribution network that consists of a
wind farm, solar PV, a distributed generator (DG), and BESS. To cut the energy cost per unit, BESS
plays an important role by storing energy at an off-peak time for on-peak-time use with relatively
lower prices. For the all-time minimum overall systems cost, the distribution system requires an
optimal size of the BESS to be connected to provide optimal scheduling of DGs. Three case studies
are formulated using an IEEE 14 bus system (converted from MW to kW to match the BESS size
available in the market) and solved with the proposed distributionally robust optimization technique
to achieve the maximum operating point with an optimal capacity of BESS, i.e., wind, solar and
hybrid. Each case study has its own optimal 30-min interval schedule for DGs along with the optimal
capacity of BESS. The cost comparison with and without BESS and its impact on the start-up and
shut down of DGs is reported with all the dynamic economic dispatch results, including the battery’s
state-of-charge profile. The proposed technique can handle the uncertainties in renewables and
allows economical energy dispatch and optimal BESS sizing with comparatively lower computational
processing and complexities.

Keywords: unit commitment; battery energy storage systems; wind-farm uncertainty; distributionally
robust optimization; solar pv uncertainty; distributed generators

1. Introduction
1.1. Motivation

Due to depletion of fossil fuels decade after decade with the rise in energy demand,
renewable energy sources are a better alternative for the energy demands of the emerging
population of the earth. In addition, the climate of the earth is severely impacted due to
carbon emissions coming out of the energy generation plants using these types of fuels.
To cut the usage of fossil fuels, renewable energy sources play a major role, i.e., solar
photo-voltaic (PV) and wind power. These sources are the most abundantly available
energy sources around the world [1,2]. Due to the volatile and non-periodic nature of
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renewable energy, the complexities in balancing load with generation and maintaining
system reliability have introduced new challenges in the current distribution system [3].
These uncertainties cost money in terms of making the whole system capable of dealing with
unwanted circumstances, i.e., optimum economic dispatch and sensible unit commitment,
while considering other sources of energy to minimize the total system cost.

1.2. Literature Review

Unit commitment determines when a particular unit should be started so that, at a
given time when the power is needed, it can be provided because each unit needs time
to startup and shutdown. These startups and shutdowns have an economic impact in
terms of fuel, manpower, apparatus, and other related costs [4,5]. On the other hand, the
economic dispatch of the generating units determine how much power each unit produces
at a certain time to cope with the load and overcome losses due to the transmission network.
Ultimately, to minimize the cost of the generating units, scheduling of the generating units
is performed based on the load profile data, whether it is one day ahead or one hour [6]. The
problem of economic dispatch and UC becomes more complex when there is an intermittent
and uncertain renewable energy source, i.e., solar PV.

For better approximations and more reliable results, more historical data is needed to
access the true distribution of the data, i.e., the normal distribution, mean, variance, stan-
dard deviation, and probabilities of specific events that behave periodically [7]. Similarly,
high penetration of renewable sources means more and more historical data is needed
to deal with the uncertain profile of those renewable sources [8–10]. Handling this data
distribution is performed in [11] using a method proposed to adjust the parameter of
the distribution in distributionally robust optimization. Unit commitment and energy
management/economic dispatch in [12,13] use distributionally robust optimization with
chance constrained. A method proposed in this system uses mean and variance for the
distribution set to handle uncertainty in renewable energy sources for the micro-grid and
performs the energy dispatch by not considering unit commitment as constrained to reduce
the start-up/shut-down cost.

The uncertainty of wind and solar power needs to be modeled to use for the current
power generation system [13,14]. There are many models proposed to deal with the
uncertainty of wind power generation so that the UC of all the generating units becomes
possible. From the numerous uncertainty models proposed for UC over the last decade,
stochastic programming [15,16] is being extensively explored to improve the scheduling
of UC decisions under wind farm uncertainty [17,18]. The method proposed in [19] uses
an alternative scenario selection method to check consistency with the moments of a wind
time series and to explicitly specify the modelers that are believed to significantly influence
the performance of the unit commitment schedule. Nevertheless, stochastic programming
performs a lot of computations pertaining to various scenarios to outline and formulate
the expected results. This leads to undesirable computational time and space as well as
requiring a bigger processing unit. To address a large number of scenarios for a given
problem, some advanced scenario selection algorithms [18] and decomposition techniques
have been developed, i.e., at the first stage, mixed-integer programming provides the
results and modeling approaches for deterministic UC, i.e., priority listing, Lagrangian
relaxation, and dynamic programming; later on, stochastic programming changes the
conventional way of solving such UC problems [20,21]. Then, combined stochastic UC
and robust UC formulations are introduced for unit commitment decisions to overcome
problem solving time required due to the larger set of scenarios in stochastic optimization
and the conservativeness of the robust optimization; the weights of the events for the robust
and stochastic parts in the objective function are adjusted by the system operator to obtain
optimal and time-saving results [22]. However, a feasible and effective realization requires
an optimal compromise between the degree of accuracy and computational time.

Besides the aforementioned methods above, a comprehensive formulation of security-
constrained unit commitment with compressed air energy storage and wind generation
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is developed in [23]. Simultaneous optimization of energy and ancillary services with
storage is proposed and justified with case studies and results. With the help of case
studies, the impact of compressed air energy storage on both economical and technical
aspects is reported. Pumped hydro energy storage is also an option for storing the energy
in a dynamic economic dispatch problem where unit commitment is a major part of
reducing the cost of power produced by thermal generators. This type of energy storage is
being used in [24], where deterministic unit commitment and interval unit commitment
formulations are modeled that co-optimize the UC and pumped hydro energy storage
decisions considering hydraulic limits constraining the pumped hydro energy storage. The
study is performed on the system for day-ahead decisions and the results are reported.
It employs the stochastic unit commitment model to solve the small-scale (available)
wind power.

The optimal sizing of BESS in a system that includes renewable resources is discussed
in many papers due to the uncertainties of the renewable resources that could be overcome
with the integration of the BESS. Reference [25] suggested a method to find the optimal size
of BESS integrated with wind turbines and considered wind and load uncertainties. Two
parts of the operational strategy are proposed in [26] for distribution companies. Those
two parts are day-ahead and real-time, where, in day-ahead, the load, wind, solar, and
prices should be forecasted and in real-time, the gap between the forecasted and real value
is considered. The objective here is to locate BESS in the network to minimize the cost
and the loss by developing a highly nonlinear model for the network and BESS. Stochastic
planning formulation for BESS in a micro-grid using Monte Carlo simulations (MCS) is
proposed in [27]. Although uncertainties in wind generation are considered, the network
constraints are neglected. Reference [28] used a similar Stochastic approach but with a
Radial IEEE distribution system nonlinear model to simulate the line and voltage limits.
A deterministic approach to optimize the battery sizing and location in the distribution
network is proposed in [29]. The effects of uncertainty in wind power resources using
the point estimate method (PEM) are enlisted in [30], where the naturally inspired PSO is
combined with the tabu search (TS) to solve the problem. For the optimum size and location
of the storage system, the stochastic mixed integer linear programming (MILP) technique
is used in the distribution system to minimize the costs of investment and operation [31].
In [32], two levels of the profit-maximizing strategy were introduced, including planning
and control. For optimal BESS planning and control in the primary control market, a
framework has been developed to achieve the goal. This developed framework provides
the balance between the capital cost and the operating cost considering the energy capacity
factor. BESS degradation was considered here as a weighting factor that depends on the
BESS lifetime.

The charging and discharging rate (C), or the rate at which the power is provided
by the battery at any instant, is directly related to battery size. For the better operation
of energy storage, an optimum value of the charging and discharging rates of the battery
play a major role [33,34]. By using a smaller battery size but larger power requirement, the
battery will discharge more quickly than its rated power discharge, which will not only
reduce the battery life but also damage the battery cell by increasing the temperature of the
battery due to higher power losses inside the battery [35,36]. With a small storage capacity
and lesser charging and discharging rates, the battery will not be fully charged/discharged
as compared to the bigger storage size for the same power requirement.

For a high penetration of renewable energy sources, more historical data will be
required for distribution to be more contracted and to achieve true distribution (i.e., normal
distribution) for any uncertain parameter, which makes the optimization model more
complex in terms of solving techniques, i.e., the quantization of the normal distribution
curve for each event generated by the CPLEX compiler [8]. To deal with the distribution,
ref. [11] proposed a method to address economic dispatch and energy management, using
distributionally robust optimization with chance constrained, which uses only mean and
variance for the distribution set to forecast wind for the micro-grid, and performs the
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energy dispatch, but unit commitment constraints are not considered for units scheduling.
In [12], UC is performed with DRO using chance constrained for wind-farm uncertainty,
but the impact of BESS on unit scheduling is not studied. According to the model solved
through chance constrained, the total cost of the system increases with a higher confidence
bound due to an uncertainty error. Due to rapid change in the total system cost using DRO
and chance constrained, this model creates the research gap for improvements in terms
of handling the distribution curve. In addition, the chance-constrained transformation
increases the optimization complexity if the distribution is precisely modeled over a set
of linear values for random numbers [37]. In addition, with higher uncertainties, chance
constraint becomes more computationally complex for random numbers [38]. An ambiguity
set method was developed in [39] which was based on historical data. In fact, more
historical data gives more ambiguous sets and, consequently, a less conservative solution.
The case study conducted in this paper shows that the more information and maximum
confidence bound in uncertainty an error is, the lower will be the system total cost. A
model discussed in [40] describes the estimated and real energy consumption by an energy
storage system. The proposed model estimates the energy consumption by electric vehicles
with traffic flow theory and mechanics of locomotion. The author focuses on the percentage
usage of ESS in terms of estimated and actual usage of ESS by using floating cara data
(FCD) with available data provided by information and communications technology (ICT)
devices.

As discussed above, the impact of ESS on UC with uncertainties of RES is not discussed
with the help of distributionally robust optimization. Some topics in the literature are
near to the topic discussed in this research work. A robust optimization approach for
designing an off-grid solar-powered charging station is proposed to provide electric vehicles
(EVs) with electricity and hydrogen vehicles (HV) with hydrogen using deterministic
mixed-integer linear programming (MILP) and robust optimization in [41]. Therein, a
robust optimization approach was employed to design the charging station based on the
different levels of system robustness against the uncertainties. This stochastic approach
provides worst-case solutions for the uncertainties, i.e., either the smallest or the largest
outcome for the uncertainty to minimize or maximize the objective function. Due to worst-
case outcomes, this model gives a robust solution. The sizing and siting of the RES for
the local distribution system having solar PV uncertainty are designed using DRO and
cone relaxation techniques. By using the cone relaxation technique, the DRO becomes
mixed-integer second-order cone programming (MISOCP) [42]. The second-order cone
programming (SOCP) makes the system more complex, and the solution time also increases
as compared to the linear decision rule where nonlinear functions (equations) are linearized
by finding their respective linear coefficients for their cumulative linear function (equation).

1.3. Contribution

In this paper, a method is developed to demonstrate the impact of BESS on the DG
schedule and total cost of the system under hybrid uncertainty using a distributionally
robust optimization approach. In the proposed model using distributionally robust opti-
mization with a linear decision rule, the ambiguity set gives the freedom to not only control
the distribution but also the computational burden by providing the dual gap between the
random variables and the auxiliary variables [43]. A linear decision rule has an advantage
over the chanced constrained as this method provides the vicinity to the solver to adopt the
complexity of choosing the value from the random distribution by using the duality gap
given by the solver. These gaps are the stages for the linear piece-wise function over the
quadratic function of the probability distribution which grows moderately with the stages
that are involved by the solver in terms of the dual gap. In light of the above literature and
propositions, BESS is not being considered with UC for solar PV and wind-farm uncer-
tainty using distributionally robust optimization. However, BESS, as shown in Figure 1,
not only reduces the startup cost of DGs under given conditions but also mitigates the
problem/challenges associated with the randomness of the wind farm and solar PV by
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providing power to the system with high ramp up as well as acting as a storage tank [44–46].
The behavior of the BESS as a storage tank also provides the energy at peak load time
by storing the energy at off-peak load time. In this way, at an off-peak time, the surplus
energy produced by the generators having the least cost is stored to BESS to be used at
peak load time, which reduces the running cost of the generators by generating power with
a significant figure.

Figure 1. The schematic diagram of the proposed system having distributed generator, solar PV,
wind-farm, and battery energy storage system.

The significance of this model includes its flexibility in adding more DGs, solar PVs,
wind farms, and ESSs. The contribution of this paper includes:

1. Optimal battery energy storage system sizing with the unit commitment of DG’s/thermal
units on an IEEE 14 bus system, considering day-ahead solar PV and wind-farm
uncertainties by using a distributionally robust optimization technique with a linear
decision rule and distribution of the uncertain solar PV and wind output data.

2. Cost comparison with different sizes of battery energy storage system on the unit
commitment of DG’s/thermal units. Where the day-ahead 30-min duration of unit
commitments with battery energy storage systems are discussed.

The inclusion of BESS has an important impact on the system, as it reduces the system
startup cost as well as adhering to the uncertain behavior of solar PV energy.
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1.4. Paper Organization

The remainder of the paper is organized as follows: Section 2 describes the problem at
hand. Mathematical modeling of UC and ambiguity matrix construction with DRO using
hybrid generation is discussed in Section 3. Four case studies are conducted in Section 4:
1—sample distributionally robust optimization, 2—an IEEE 14 bus system with optimal
BESS (30-min of solar PV data), 3—an optimal BESS for an IEEE 14 bus system (30-min
wind data), 4—the optimal BESS for hybrid RESs under given loads. The results obtained
through these case studies illustrate the significance of the model proposed. Finally, the
conclusion followed by future work, and acknowledgments, are listed in Section 5.

2. Problem Description

Unit commitment provides the necessary scheduling data required for optimal oper-
ation between generation and demand because each unit needs time to startup and shut
down. These startups and shutdowns cost money in terms of fuel and some other costs
related to manpower and apparatus. Therefore, to minimize that cost, scheduling of the
generating units is performed based on the load profile data, whether it is one day ahead or
one hour. The problem of economic dispatch and UC becomes more complex when there
is an intermittent and uncertain renewable energy source, i.e., solar PV and wind farms.
The uncertainty of solar PV and wind farms needs to be modeled for use in the current
power generation system. There are many models proposed to deal with the uncertainty
of solar PV and wind-farm generation so that the UC of all the generating units becomes
possible. The complexity of the problem may be reduced if an energy storage system were
to be introduced to overcome the sudden changes so, that the load duration curve and
the uncertain output of solar PV and wind farm will become smooth and output power
requirements from all the thermal generators will be met at all times at the minimum cost.

3. Problem Methodology
3.1. Mathematical Formulation of Unit Commitment

The unit commitment model listed below provides here and now solution while con-
sidering the deterministic wind power output in (1). Likewise, UC model with deterministic
solar PV is listed in (2).

Ξ(x, o) = min ∑
t∈τ

{
∑
k∈κ

(ck,t + zk,t) + Psur ∑
b∈β

pcur
b,t

}
(1)

Ξ(x, ψ) = min ∑
t∈τ

{
∑
k∈κ

(ck,t + zk,t) + Psur ∑
b∈β

pcur
b,t

}
(2)

The deterministic mathematical model for the UC with hybrid RES is described in (3). This
model is derived linearly from the above two models for wind farms and solar PV in (1)
and (2), respectively.

Ξ(x, o, ψ) = min ∑
t∈τ

{
∑
k∈κ

(ck,t + zk,t) + Psur ∑
b∈β

pcur
b,t

}
(3)

s.t.
zk,t ≥ Cs

k(xk,t − xk,(t−1)) ∀k ∈ κ, t ∈ τ (4)

ck,t ≥ ak pt
k,t + bkxk,t k ∈ κ, t ∈ τ (5)

∑
k∈κ

pt
k,t + ∑

l∈Λ
ps

l,t + ∑
j∈J

pw
j,t + ∑

b∈β

pd
b,t = ∑

b∈β

Db,t + ∑
b∈β

pc
b,t + ∑

b∈β

pcur
b,t ∀t ∈ τ (6)

∑
b∈B

LCFg,b

(
∑
k∈κ

pt
k,t + ∑

l∈Λ
ps

l,t + ∑
j∈J

pw
j,t + pcur

b,t − Db,t

)
≤ LCg ∀g ∈ L, ∀t ∈ τ (7)
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− ∑
b∈B

LCFg,b

(
∑
k∈κ

pt
k,t + ∑

l∈Λ
ps

l,t + ∑
l∈J

pw
j,t + pcur

b,t − Db,t

)
≤ LCg ∀g ∈ L, ∀t ∈ τ (8)

Pkxk,t ≤ pt
k,t ≤ Pkxk,t ∀k ∈ κ, ∀t ∈ τ (9)

0 ≤ ps
l,t ≤ sl,t + ψl,t ∀l ∈ Λ, ∀t ∈ τ (10)

0 ≤ pw
j,t ≤ wj,t + oj,t ∀l ∈ J , ∀t ∈ τ (11)

pt
k(t−1) − pt

k,t ≤ RDk · xk,t + Pk(1− xk,t) ∀k ∈ κ, ∀t ∈ τ (12)

pt
k,t − pt

k,(t−1) ≤ RUk · xk,(t−1) + Pk

(
1− xk,(t−1)

)
∀k ∈ κ, ∀t ∈ τ (13)

In the above formulation, the objective function in (3) includes startup cost zk,t, gener-
ation cost ck,t and power loss pcur

k,t . Startup cost and generation cost is calculated through
(4) and (5), respectively. In (4), Cs

k is the fixed startup cost for unit k, xk,t is the binary
variable for generator status at time t, xk(t−1) is the binary variable for generator status at
time t− 1 and xk,t − xk(t−1) gives the binary difference “1” if a particular DG was turned off
at time t− 1 and it is turned on at time t and “0”, if a particular DG was turned on at time
t− 1 and it is still turned on at time t. In (5), ak is the generator kth first-order cost parameter,
and bk is the generator kth second-order cost parameter. The Equation (6) represents the
power balance between the generation and demand, as pt

k,t is the power generated by the
kth DG unit at time t, ps

l,t is the power generated by the lth solar PV unit at time t, pw
j,t is

the power generated by the jth wind-farm unit at time t, pd
b,t is battery discharge by the

battery storage connected to bth bus at time t, pc
b,t is battery charge (acting as a load) by

the battery storage connected to bth bus at time t and Db,t is the load demand at bth bus
in time t, pcur

b,t is the power surplus/loss at bus b in time t, if it is negative then there is
power surplus at bus b in time t and if positive then it is load shedding at bus b in time t.
The dc power flow model confines the power transmission below the line capacity LCg
in inequalities (7) and (8) [47]. The maximum and minimum capacity of the DG units is
defined in (9). In (10), solar PV generation is less than the maximum capacity of the solar
PV unit l at time t and (11) defines that the wind-farm generation is less than the maximum
capacity of the wind-farm unit j at time t. The ramp-up RUk and ramp-down RDk limits of
DG units are enforced in (12) and (13).

3.2. Power Flow Model through Transmission Lines

The distributionally robust optimization with the linear decision rule model used in
this paper solves the UC problem by using mixed integer linear programming (MILP). The
DRO with linear decision rule is a two-stage optimization model, where unit commitments
are determined at the first stage with the help of MILP and economic dispatch and cost
calculations in the second stage with the standard normal distribution of the random
variables used in the model to obtain the expectation of the random variable presenting
the uncertainty of wind and solar. The second stage of the optimization makes the system
nonlinear, but DRO solves the model with MILP by using the linear decision rule. The
linear decision rule transforms the nonlinear model to its equivalent linear model. Similar
is the case for power flow through the transmission lines by using Newton–Raphson and
Gauss–Seidel; the DRO model solves the equivalent linear model of the nonlinear equations
related to voltages, phase angles, and impedances in a network containing nodes/buses.
Instead of finding the linear model for these methods, dc power flow is also one of the
linear models being used to give an estimation of power flow and overcome the challenge
being faced by the DRO method. The Q-power flow and Q-losses are not considered at this
stage to make the problem simple, but the AC power flow can also be conducted using the
distflow method at a later stage to examine the exact Q-power flow and Q-losses and their
impacts on ESS.
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The power flows through the transmission lines in the proposed model are modeled
using the DC power flow method as listed in (14), the net active power injection Pb at
bus b is the difference between power generation and the power demand at that bus, i.e.,
Pb = PGb − PDb.

Pb =
N

∑
b′=1

Bbb′(θb − θb′) (14)

where Bbb′ is the reciprocal of the reactance between bus b and bus b′, and θb and θb′ are the
voltage angles of bus b and bus b′, respectively. The active power flow PLbb′ between buses
b and b′ can be calculated from (15). These line flows are confined in the form of (7) and (8),
as discussed earlier.

PLbb′ =
1

XLbb′
(θb − θb′) (15)

where XLbb′ is the reactance of line between bus b and b′.

3.3. Battery-Energy-Storage-System Modeling

The objective function for the battery energy storage system modeled is described in (16),
where the cost and charge cycles of BESS are minimized so that the overall cost of the system
is minimized, as discussed in the here and now objective functions in (1), (2) and (3)

CT
B(o, ψ) = min ∑

b∈β

{
∑
t∈τ

C f ix pd
b,t + C f ixSOCmax

b + BT
count,b

}
(16)

s.t.
SOCb,t = SOCb,t−1 + (pc

b,tηc − pd
b,t/ηd)∆t ∀b ∈ β, ∀t ∈ τ (17)

pc,min
b,t ≤ pc

b,t ≤ pc,max
b,t ∀b ∈ β, ∀t ∈ τ (18)

pd,min
b,t ≤ pd

b,t ≤ pd,max
b,t ∀b ∈ β, ∀t ∈ τ (19)

SOCmin
b,t ≤ SOCb,t ≤ SOCmax

b,t ∀b ∈ β, ∀t ∈ τ (20)

SOCmax
b,t ≥ 0 ∀b ∈ β, ∀t ∈ τ (21)

The state of charge of the battery is also linked to its efficiency of charging ηc and dis-
charging ηd in (17). Maximum/minimum charging and discharging of the battery are
constrained in (18) and (19), respectively. In (20) battery’s state of charge is also restricted
with minimum and maximum limits. Most importantly, the constraint for battery sizing
is listed in (21), where the maximum size of BESS with the minimum objective cost is
determined through (23).

To minimize the BESS charge and discharge cycles for optimum battery life, an algo-
rithm is listed in Algorithm 1 to count for charge (Bc

count,b) and discharge (Bd
count,b) cycles at

bus b for a complete time period during which the optimization and UC is performed.

BT
count,b ≥ max(Bc

count,b, Bd
count,b) ∀b ∈ β (22)

BCb = max(SOCmax
b,t ) ∀b ∈ β, ∀t ∈ τ (23)

The total charge/discharge cycles count (BT
count,b) is calculated using (22). This constraint in

the objective function forces the battery to optimally charge and discharge, which helps the
battery to have a longer life. Long-lifespan BESS has the least O&M cost with respect to
those having a shorter lifespan.
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Algorithm 1 Battery charge/discharge cycle counter

t← 1
Bc

count,b ← 0
Bd

count,b ← 0
if Pd(t− 1) > 0 & Pc(t) > 0 & SOC(t) ≤ 20% then

Bd
count,b ← Bd

count,b + 1
end if
if Pc(t− 1) > 0 & Pd(t) > 0 & SOC(t) ≥ 80% then

Bc
count,b ← Bc

count,b + 1
end if

3.4. Distributionally Robust Optimization Model

The models demonstrated in (3) and (16) are used to formulate the solar PV uncertainty
based on (25) and wind-farm uncertainty based on (24) that have an average value (sl,t)
of the solar PV output and average value (wj,t) of the wind-farm output produced with
difference between expected and actual power (ψ̃l,t) and (õj,t), respectively.

w̃j,t = wj,t + õl,t ∀j ∈ J , ∀t ∈ τ (24)

s̃l,t = sl,t + ψ̃l,t ∀l ∈ Λ, ∀t ∈ τ (25)

Both models share the same steps to derive the model for distributionally robust optimiza-
tion. Therefore, in this paper, a distributionally robust optimization model with solar-PV
uncertainty is derived to obtain the ambiguity matrix. Based on past data, the mean solar-
PV output for the upcoming year can be determined. The difference between expected
and actual power (ψ̃l,t) is acting as an uncertain variable in the proposed model. The
ambiguity set for uncertain variables in distributionally robust optimization is constructed
using the information based on past data, i.e., mean, standard deviation, variance, and
confidence bound. In the proposed two-stage problem, UC problem in (26)–(28) gives the
here-and-now solution but the model (26)–(28) is intractable in its current form.

min sup
M∈I

EM{Ξ(x, õ, ψ̃)} (26)

s.t.
x ∈ ζ (27)

x ∈ {0, 1}|κ|×|τ| (28)

where κ is the set of all generators. The set ζ in (27) represents the feasibility region of x
defined by minimum up/down time constraints. The objective function minimizes the
expectation of function Ξ(x, ψ̃) under a distribution M, which is the worst-case distribu-
tion over an ambiguity set I. The function Ξ(x, ψ̃) indicates the economic dispatch cost
associated with UC decision x, under solar PV output outcome ψ, which can be calculated
by solving the second-stage problem. Simple deterministic UC problem considering mean
solar-PV output (sl,t) can be modeled in a matrix form as in (29) and (30).

min Ξ(x) (29)

s.t.
Ax ≤ b (30)

However, considering uncertainty in the output as having the difference between
actual and mean value of the solar-PV output (ψ̃) under worst-case distribution, the
expected cost Ξ(x) can be formulated using (31).

Ξ(x) = sup
M∈I

EM{Ξ(x, õ, ψ̃)} (31)
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where
Ξ(x, õ, ψ) = min qTy (32)

s.t.
Ax + by ≤ h(õ, ψ) (33)

The facilitating vector h(õ, ψ) is defined as

h(õ, ψ) = h0 + ∑
e∈S

ho
r or + ∑

r,e∈S
hψ

e ψe (34)

The second-stage recourse decisions are represented by a vector (y) in (32). All the con-
straints for second stage problems are presented by (33), where the recourse decisions
represented by (y) are directly related to the first stage decisions (x). All the constants
in (33), i.e., h0, ho

r and hψ
e , define the function at right side of the constraint in (33) and these

constants are directly affected by the uncertain variables or and ψe.

3.4.1. Modeling Ambiguity Parameters for Solar-PV Uncertainty

To facilitate above model an ambiguity set construction is needed as in (35).

Iψ =

M ∈ Pψ(R|S|) :

ψ̃ ∈ R|S|
EM{ψ̃} = 0
M{ψ̃ ∈ V} = 1
EM{vi(ψ̃)} ≤ Γi ∀i ∈ I

 (35)

where Pψ(R|S|) denotes the set of all probability distributions on R|S|. The expected value
of the random variable ψ̃ is 0, which enforces the mean error signal to be “0” and sum
of the probability for all outcomes for ψ̃ is 1. Function vi in (35) incorporates distribution
information into the ambiguity model. The uncertainty set in (36) specifies the lower bound
V−l,t and the upper bound V+

l,t of each random variable ψl,t.

V =
{

ψ ∈ RS : V−l,t ≤ ψl,t ≤ V+
l,t ∀l ∈ Λ, ∀t ∈ τ

}
(36)

To obtain the expectation of each function vi under ambiguous distributions easily, the
ambiguity set in (35) needs to be further extended in (37). Here, an auxiliary variable is
introduced to make the ambiguity set in (37) less conservative.

Hψ =

Oψ ∈ Pψ(R|S| ×R|I|) :

(ψ̃, α̃) ∈ R|S| ×R|I|
EOψ
{ψ̃} = 0

Oψ

{
(ψ̃, α̃) ∈ V̄

}
= 1

EOψ
{α̃i} ≤ γi ∀i ∈ I

 (37)

The ambiguity set in (37) needs to be extended further to incorporate joint distribution
information for the auxiliary variable as well as the influence of the uncertain variable. The
joint distribution for the auxiliary and uncertain variables is presented in (38).

V̄ =

(ψ, α) ∈ R|S| ×R|I| :

ψ ∈ V
vi(ψ) ≤ αi ∀i ∈ I
αi ≤ max

ψ∈V
vi(ψ) ∀i ∈ I

 (38)

In expression (38), the function vi is restricted by the auxiliary variable ai so that the
ambiguity parameter I having all possible outcomes in (35) holds if set H is valid in (37).
To solve the objective function with given constraints, the above ambiguity set needs to be
linearized with a linear decision rule, as depicted in (39) having auxiliary random variables.

yn(ψ, α) = y0
n + ∑

e∈S
yψ

ieψe + ∑
r∈S

yα
irαr ∀i ∈ I (39)
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The Equations (31) and (33) are re-arranged in the form of Equations (40) and (41) so that
the linear decision rule can be applied.

Ξ(x) = sup
M∈I

EM{Ξ(x, ψ̃)} = sup
M∈I

EM
{

qTy(ψ̃)
}

(40)

where y is the recourse decision which depends on ψ̃ and is expressed as

y(ψ) ∈ arg min
{

qTy : Tx + Wy ≤ h(ψ)
}
∀ψ ∈ V (41)

By applying the principle of linear decision rule on Equations (40) and (41), the
proposed model can be converted to (42)–(43).

Ξ̄(x) = min sup
O∈H

EO
{

qTy(ψ, α)
}

(42)

s.t.
Tx + Wy(ψ, α) ≤ h(ψ) ∀(ψ, α) ∈ V̄ (43)

These results are taken from [47]. Now, the model discussed in (2) and (3) with the
uncertainty model of solar PV can be solved by using an ambiguity set for the distribution
of RES’s data for uncertain variables, i.e., characteristics of the distribution with the help
of (42)–(43), which makes the model tractable.

3.4.2. Modeling Ambiguity Parameters for Wind Uncertainty

The ambiguity-parameters modeling for wind uncertainty follows the same steps as
discussed in the previous section. The ambiguity matrix for wind is derived from the same
method as the ambiguity matrix for solar but with different variables and parameters. The
ambiguity set and extended ambiguity set for wind farms are listed in (44) and (48).

Io =

M ∈ Po(R|S|) :

õ ∈ R|S|
EM{õ} = 0
M{õ ∈ V} = 1
EM{vi(õ)} ≤ Γi ∀i ∈ I

 (44)

where Po(R|S|) denotes the set of all probability distributions on R|S|. The expected value
of the random variable õ is 0, which enforces the mean error signal to be “0” and sum
of the probability for all outcomes for õ is 1. Function vi in (44) incorporates distribution
information into the ambiguity model. To obtain the expectation of each function vi under
ambiguous distributions easily, the ambiguity set in (44) needs to be further extended in (45).
Here, an auxiliary variable is introduced to make the ambiguity set in (45) less conservative.

Ho =

Oo ∈ Po(R|S| ×R|I|) :

(õ, s̃) ∈ R|S| ×R|I|
EOo{õ} = 0
Oo
{
(õ, s̃) ∈ V̄

}
= 1

EOo{s̃i} ≤ γi ∀i ∈ I

 (45)

The model discussed in (1) and (3) with the uncertainty model of wind farms is solved
by using an ambiguity set (45) for the distribution of RES’s data for uncertain variables, i.e.,
characteristics of the distribution.

4. Results and Discussions

Case studies were performed in this paper with the help of the ambiguity sets devel-
oped in the previous section and the objective functions discussed above are now tractable
models due to the linear decision rule implemented in (42)–(43).
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4.1. Example Case Study for DRO Illustration with One DG for an Instance

In this section, a sample case study was conducted with a distributed generator and
a solar PV for an instance. This sample case study elaborates the recourse action for all
solar PV outcomes in an instance to achieve the worst-case expected cost objective. Here,
demand is D = 280 kW, mean solar PV output is ψ̄ = 40 kW, and penalty cost for load loss
is Psur = 150 USD/kW. To simplify the problem and to elaborate on the initial method for
solving with BESS, one can take SOCmax = 0 kWh, which means there is no storage in this
example, and eventually power charge or discharge for BESS pc/pd = 0 kW. The generation
cost coefficients a and b are 1.7× 10−7 USD/kW and 16.57× 10−3 USD/kW, respectively,
where the startup cost for the generator is USD 890. The upper and lower limit for the
generator is P = 240 kW and P = 20 kW, respectively. The ambiguity matrix for the solar
PV uncertainty is listed in (46). The duality gap for this example is 0.01.

H =

O ∈ P0(R2) :

EO{ψ̃} = 0

O


−10 ≤ ψ̃ ≤ 10
max{ψ̃, 0} ≤ α
α ≤ 10

 = 1

EO{α} ≤ 5

 (46)

In the ambiguity matrix construction in Equation (46), in line one, the mean value of error
in solar PV output is 0; in lines, two to four, the upper and lower bound of the confidence for
the mean value of the solar PV output is from −10 to 10 which means if the mean solar PV
output at a particular instance is 40 kW, then the uncertainty in the output power ranges from
30 to 50 kW; in line five, the expected positive error should be less than 5 kW. The worst-case
expected cost for the sample case is found to be USD 753.9106 using CPLEX 12.9.0.

4.2. Optimum Battery Sizing and Its Impact on Unit Commitment in an IEEE 14 Bus System

After promising results obtained from the above sample case study using the DRO
technique, the following case studies include solar PV, wind farm, and a BESS using an IEEE
14 bus system having four generators each connected to bus 1 to 4, respectively, [48] for a
24 h time period with a 30-min interval. These case studies elaborate the recourse action
for all solar-PV and wind-power outcomes in a day to achieve the minimum expected
cost objective. Data for battery storage is shown in Table 1; similarly, each distributed
generator is shown in Table 2. The load profile for this case study is shown in Table 3.
Solar-PV-output power data for a 200 kW solar PV is taken from [49] where the ambiguity
matrix for the solar-PV uncertainty is listed in (47). The wind-power output data for a
700 kW wind farm is taken from [50], where the ambiguity matrix for the wind uncertainty
is listed in (48). To make this case study realistic in terms of BESS, wind farm, and solar PV,
all the generator’s data is converted from MW to kW, and their respective prices are also
converted from USD/MW to USD/kW. The mean output power of the solar PV for 30-min
intervals provided by the source, as shown in Figure 2, is a bit tailored and converted from
MW to kW to show the UC schedule. Similar is the case with wind power, as shown in
Figure 3. Load flow limits are considered as per IEEE 14 bus system data in kW having a
load capacity factor LCFgb for each transmission line in all the case studies conducted here.
In all the below case studies, the duality gap of 0.001 and the penalty cost for load loss of
Psur = 125 USD/kW were used.

Table 1. The data for battery energy storage system (BESS) integrated with unit commitments and
dynamic economic dispatch [49].

Parameter SOC0 SOCmax Pd
max Pd

min Pc
max

Value 200 kWh 1 MWh 0.25C 0 0.25C

O&M cost
Parameter Pc

min ηc ηd Cvar C f ix

Value 0 95% 90% USD 0.31/kWh USD 10/kW-year
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Hψ =


Oψ ∈ Pψ(R2) :

EOψ
{ψ̃} = 0

Oψ


−5% ≤ ψ̃ ≤ 5%
max{ψ̃, 0} ≤ a
a ≤ 5%

 = 1

EOψ
{a} ≤ 5%


(47)

Ho =


Oo ∈ Po(R2) :

EO{õ} = 0

Oo


−5% ≤ õ ≤ 5%
max{õ, 0} ≤ s
s ≤ 5%

 = 1

EOo{s} ≤ 5%


(48)

Table 2. Thermal unit’s data for dynamic economic dispatch and unit commitments [51].

ag bg cg Pmin
g Pmax

g RU0
g RD0

g
(USD/kW) (USD/kW) (USD/kW) (kW) (kW) (kW) (kW)

1.2× 10−7 14.80× 10−3 89 28 200 40 40
1.7× 10−7 16.57× 10−3 83 20 290 30 30
1.9× 10−7 16.21× 10−3 70 20 260 50 50
1.5× 10−7 15.55× 10−3 100 30 190 30 30

The 30-min solar-PV output data from solar plates and wind-power output data from
wind farms are shown in Figures 2 and 3, respectively. In ambiguity matrix (47) for solar
PV, the upper and the lower confidence bound is ±5% of the mean value of the solar-PV
output and the expected value of error is 0. The expected positive error should be less than
5% of the mean value of the solar-PV output at a particular instance. Likewise, in ambiguity
matrix (48) for wind power, the upper and the lower confidence bound is ±5% of the mean
value of the wind power output and the expected value of error is 0. The expected positive
error should be less than 5% of the mean value of the wind power output.

Table 3. Load/demand profile used with IEEE 14 bus system having 30-min interval.

Time Load Time Load Time Load Time Load
(hr) (kW) (hr) (kW) (h) (kW) (h) (kW)

0:00 525.30 6:00 525.30 12:00 665.38 18:00 756.02
0:30 530.45 6:30 526.59 12:30 675.68 18:30 759.63
1:00 535.60 7:00 527.88 13:00 685.98 19:00 763.23
1:30 540.75 7:30 529.16 13:30 696.28 19:30 766.84
2:00 545.90 8:00 530.45 14:00 706.58 20:00 770.44
2:30 542.30 8:30 537.92 14:30 720.74 20:30 773.53
3:00 538.69 9:00 545.39 15:00 734.91 21:00 776.62
3:30 535.09 9:30 552.85 15:30 749.07 21:30 779.71
4:00 531.48 10:00 560.32 16:00 763.23 22:00 782.80
4:30 529.94 10:30 586.59 16:30 761.43 22:30 729.76
5:00 528.39 11:00 612.85 17:00 759.63 23:00 676.71
5:30 526.85 11:30 639.12 17:30 757.82 23:30 623.67
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Figure 2. Expected solar-PV output and its upper/lower bounds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hr)

150

200

250

300

W
in

d
 P

o
w

e
r 

O
u

tp
u

t 
(k

W
)

Expected Wind Power P
w

Upper Bound of Wind Power P
w

max

Lower Bound of Wind Power P
w

min

Figure 3. Expected wind output and its upper/lower bounds.

4.2.1. Solar-PV Uncertainty with 30-Minute Interval Unit Commitments

The “Here and Now” decisions of the unit scheduled for a 24-hour time period without
BESS are shown in Figure 4; on the top of the figure, a colored square shows the status
of a particular generator at a certain time instance as “turned on” while no square shows
the status of a particular generator at a certain hour as “turned off”. The “Wait and See”
decisions in terms of economic dispatch for each generator are also shown in Figure 4 on
the bottom, where all “turned on” generators are providing power with optimal dispatch
and their individual contribution is shown to meet the load demand in the distributed
generation system.

The UC schedule in Figure 4 shows that the generator P4
gen becomes active from 4:30

to 11:00 p.m. in a 24-hour time period. The load demand from 4:30 to 11:00 p.m. can also be
achieved by using generator P2

gen power at an off-peak time using energy storage from 5:00
a.m. to 12:00 p.m. Utilizing power from other active generators at peak time, the generator
P4

gen is avoided, which reduces the start-up cost as shown in Figure 5. By turning on/off
the generator more than once a day, the total system’s cost also increases. The frequency
of turning on/off the generators is multiplied by the generator’s start-up and shut-down
cost, which increases the total system cost. The BESS can reduce more costs if a generator is
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turned on more than twice, because BESS can provide power at that time when the power
is needed and store energy at off-peak times when there is a surplus to save costs from both
sides. Therefore, the BESS also saves energy from being lost and provides the necessary
backup when it is needed.
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Figure 4. Unit commitment schedule with power contribution from each distributed generator after
incorporating solar-PV output power to the system with 30-min duration without using BESS and
LCFgb = 1.0 for each bus.
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Figure 5. The power contribution and the status of each distributed generator after incorporating
solar-PV output power to the system with optimal capacity of BESS and LCFgb = 1.0 for each bus.

The total system cost observed without using BESS is USD 11,112.1 and the total system
cost observed using optimal BESS of 1520 kWh having 0.25C of charge and discharge rating
is USD 9334.1. The cost with optimal BESS has a significant improvement (+16%). Battery
profile is also shown in Figure 6, where the BESS mostly stores the energy when it is
available through the solar PV and generator P2

gen. Later on, this energy is given to the
system to relax not only generator P4

gen but generator P1
gen, as shown in Figure 5.
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Figure 6. Charging and discharging power and hourly energy stored in the battery having BESS
capacity optimized to 1520 kWh.

The empirical cumulative distribution function with the size of BESS is shown in
Figure 7, where the reader has the freedom to choose the battery size based on the compro-
mise with the total system’s cost. The cost effectiveness observed with the optimal use of
BESS is +16%, as listed above, so the cost effectiveness will be multiplied with normalized
battery usage to obtain the significance of BESS over the current IEEE 14 bus system.
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Figure 7. Empirical cumulative distribution graph considering solar PV having optimal BESS capacity
of 1520 kWh.

The whole system took 139.04 s to solve the problem with optimum objective value
for 24 h operation of all scheduled distributed generators.
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4.2.2. Wind-Farm Uncertainty with 30-Minute Interval Unit Commitments

The UC schedule without BESS in Figure 8 shows that, from 3:30 a.m. to 10:00 a.m.,
the generator P2

gen and P3
gen are active but P2

gen is providing a small amount of power as
compared to P3

gen due to the reason of being active during that period to avoid shut-down
and startup costs, as after that period of time the system needs P2

gen badly. The start-up
cost for generator P2

gen is higher than P3
gen, but the running cost of generator P2

gen is lower
than that of generator P3

gen. Now comes the role of BESS, as shown in Figure 9, when the
optimal size of the battery having a capacity of 558.13 kWh is placed inside the system. The
generator P2

gen is producing power at its peak by providing the power to the system with
a relatively low running cost per unit and the rest of the power is being provided by the
BESS to meet the load for the time duration specified above.
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Figure 8. Unit commitment schedule with power contribution from each distributed generator after
incorporating wind power to the system with 30-min duration without using BESS and LCFgb = 1.0
for each bus.
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Figure 9. The power contribution and the status of each distributed generator after incorporating
wind power to the system with optimal capacity of BESS and LCFgb = 1.0 for each bus.

The total system cost observed without using BESS is USD 7499.8 and the total system
cost observed using optimal BESS of 558.13 kWh having 0.35C of charge and discharge
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rating is USD 6336.3. The cost with optimal BESS has significant improvement (+15.51%).
The battery profile is also shown in Figure 10, where the BESS initially stores the energy
from 1:30 a.m. to 2:30 a.m. and then delivers this power to the system to turn off generator
P3

gen for the above mentioned time. Later on, BESS stores energy to be used at the end of the
day to turn off generator P3

gen again for reducing the cost incurred due to the generator’s
P3

gen higher running cost.
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Figure 10. Charging and discharging power and hourly energy stored in the battery having battery
capacity optimized to 558.13 kWh.

The empirical cumulative distribution function with the size of BESS is shown in
Figure 11, where the reader has the freedom to choose the battery size based on the compro-
mise with the total system’s cost. The cost effectiveness observed with optimal use of BESS
is +14.56%, as listed above, so the cost effectiveness will be multiplied with normalized
battery usage to obtain the significance of BESS over the current IEEE 14 bus system.
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Figure 11. Empirical cumulative distribution graph considering wind farms having optimal BESS
capacity of 558.13 kWh.
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4.2.3. Hybrid Uncertainty with 30-Minute Interval Unit Commitments

The unit commitment schedule without BESS in Figure 12 shows that, from 0:00 a.m.
to 5:00 a.m., the generator P2

gen and P3
gen are active but P2

gen is providing a small amount of
power as compared to P3

gen and then is turned off from 5:30 a.m. to 12:00 p.m. due to the
reason of being active during that period of time to avoid shut down and startup costs, as
after that period of time the system needs P2

gen badly. The start-up cost for generator P2
gen

is higher than P3
gen but the running cost of generator P2

gen is lower than that of generator
P3

gen. Now comes the role of BESS as shown in Figure 13, when the optimal size of the
battery having a capacity of 712.99 kWh is placed inside the system. The generator P2

gen is
providing the power to the system with a relatively low running cost per unit and the rest of
the power is being provided by the BESS to meet the load for the time duration of 5:30 a.m.
to 12:00 p.m. The most important thing can be observed by looking to Figures 12 and 13,
the total system cost for a day without using BESS is USD 6404.1 while the system cost
with BESS has reduced to USD 5874.9, which is 8.26% less than the total system cost
without BESS.
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Figure 12. Unit commitment schedule with power contribution from each distributed generator after
incorporating hybrid power to the system with 30-min duration without using BESS and LCFgb = 1.0
for each bus.
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Figure 13. The power contribution and the status of each distributed generator after incorporating
hybrid power to the system with optimal capacity of BESS and LCFgb = 1.0 for each bus.
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Total system costs also increase by turning on/off the generator more than once a day.
The frequency of turning on/off the generators is multiplied by the generator’s start-up
and shut-down cost, which increases the total system cost. The BESS can reduce more costs
if a generator is being turned on more than twice because BESS can provide power at that
time when the power is needed and store energy at off-peak times when there is a surplus
to save cost from both sides. Therefore, the BESS also saves energy from being lost and
provides the necessary backup when it is needed.

There is a total of three cycles of charging and discharging being utilized for 24 h in
the current IEEE 14 bus system. The battery behavior and its contribution to the system
can be seen in Figure 14, where the battery’s charge and discharge cycles and the state
charge in the battery at any time for a 24-hour time period are shown. With a 0.35C of
charging/discharging rate, the total cost of the system including BESS is changing with the
storage size of BESS. Initially, without the battery energy storage system, the total system
cost is USD 6404.14. The total system cost is at its peak, and this cost gradually decreases to
USD 5874.9 and then increases due to the battery cost. The increasing behavior is due to
the size of BESS as the size of BESS increases, but the battery utilization remains ineffective
after a certain limit.
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Figure 14. Charging and discharging power and hourly energy stored in the battery.

The BESS available in the market normally have a continuous charging and discharging
rate ranging from (0.1C to 0.4C or 10% to 40% of C) of the battery energy storage system, as
according to the General Electric with their energy storage unit “RSU-4000” [52]. This is due
to several reasons, i.e., battery temperature, battery life, and its continuous charging and
discharging capabilities. Due to high charging and discharging rates, the inner temperature
of the battery increases, which needs to be cooled enough to make the optimum temperature
for the battery, otherwise it may burn the battery or at least create power losses and reduce
the battery life. For high charging and discharging rate batteries, cooling systems are
needed which cost money. In addition, due to high temperature, power losses inside the
battery increase, due to which the battery will become unable to supply the rated power
for which it is designed. Therefore, the optimum range of the charging and discharging
rate (C) for heavy-duty BESS in the industries is (0.25C to 0.35C).

The BESS power and capacity optimization can be observed in Figure 15, where the
mesh plot shows the system objective cost for battery capacity and power (C-rate). In
Figure 16, the empirical cumulative distribution function with the size of BESS is shown,
which gives an overall perspective on selecting the battery size based on the compromise
with the total system’s cost. The cost-effectiveness observed with the optimal use of BESS is
8.26%, as listed above, so the cost effectiveness will be multiplied with normalized battery
usage to obtain the significance of BESS over the current IEEE 14 bus system.
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Figure 15. Total system cost vs battery capacity with charging/discharging rates ranging from 0.05C
to 1C.
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Figure 16. Empirical cumulative distribution graph considering hybrid system having optimal BESS
capacity of 712.99 kWh.

Figure 17 shows the whole picture of the economic dispatch by distributed generators,
wind farm, solar PV, and battery energy storage systems. The system is balanced, which
means the load demand is fulfilled by the power supplied through sources discussed in
this paper.
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Figure 17. Total system’s demand vs generation (including distributed generation, wind-farm, solar
PV, and optimal capacity of BESS).

4.3. Comparison with Similar Studies

The IEEE RTS 24 bus system is investigated here with DRO as well as the stochastic
through scenario approach in current research work. The results obtained through the
DRO technique are compared with the stochastic approach presented in [53] with the IEEE
24-Bus system. The system used in [53] is an IEEE 24-Bus system with a time span divided
into 24 1-hour time slots having two wind farms connected at buses 10 and 17, and three
ESS installed on buses 10, 17, and 20. The system has ten thermal units for scheduling to
obtain the overall minimum generating cost while undermining the line limits. The cost for
energy not served used in that case study is 200 USD/MWh. The data for thermal units,
ESS, hourly load, and mean wind power are provided in [53].

Total system cost objective comparison between distributionally robust optimizations
and stochastic optimization with penetration level 100% over various forecasting accuracy
variances for an IEEE RTS 24-Bus is presented in Table 4. The total system’s cost obtained
through the scenario approach is less than the deterministic cost against 100% penetration
of RES and a variance of 0.1. This cost is the worst-case solution and, hence, conservative
for the IEEE 24-Bus system. However, the total cost of the system with the same parameters
obtained with DRO is slightly higher as compared to stochastic, which means the proposed
method in the current research has a less conservative solution while handling uncertainties
with more than one uncertain parameter. In addition, the value of the stochastic solution
(VSS) with stochastic optimization in Table 4 has higher variations as compared to the VSS
with DRO, which shows the robustness as well as the accuracy of the method.

Table 4. Total system cost objective comparison between distributionally robust optimizations and
stochastic optimization with forecasting accuracy variance 0.1 over various penetration level (IEEE
RTS 24-Bus).

Wind Forecast Stochastic Optimization Distributionally Robust Optimization

Accuracy Total Cost (USD) VSS Total Cost (USD) VSS

Percent Deterministic Stochastic USD % Deterministic DRO USD %

100 1,482,836 1,404,468 78,367 5.285 1,482,836 1,411,223 71,613 4.829

80 1,543,488 1,506,339 37,148 2.407 1,543,488 1,512,588 30,899 2.002

60 1,643,850 1,618,083 25,766 1.567 1,643,850 1,627,354 16,496 1.003

40 1,753,050 1,740,145 12,905 0.736 1,753,050 1,747,797 5252 0.300

20 1,884,530 1,880,827 3702 0.196 1,884,530 1,881,773 2756 0.146
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Similarly, total system cost objective comparison between distributionally robust optimiza-
tions and stochastic optimization with penetration level 100% over various forecasting accuracy
variances for an IEEE RTS 24-Bus is presented in Table 5. With different wind-forecast-accuracy
variances, both models are tested to claim the same behavior of using the DRO model as dis-
cussed above. The results obtained through DRO with various wind-forecast-accuracy variances
with 100% RES penetration also prove that the DRO model gives a less conservative and more
robust solution as compared to stochastic optimization through scenarios.

Table 5. Total system cost objective comparison between distributionally robust optimizations and
stochastic optimization with penetration level 100% over various forecasting-accuracies variances
(IEEE RTS 24-Bus).

Wind Forecast Stochastic Optimization Distributionally Robust Optimization

Accuracy Total Cost (USD) VSS Total Cost (USD) VSS

Variance Deterministic Stochastic USD % Deterministic DRO USD %

0.1 1,482,836 1,404,468 78,367 5.285 1,482,836 1,411,223 71,613 4.829

0.075 1,465,605 1,403,389 62,216 4.245 1,465,605 1,408,875 56,730 3.871

0.05 1,447,095 1,399,777 47,318 3.27 1,447,095 1,419,318 27,777 1.919

0.025 1,427,307 1,396,437 30,869 2.163 1,427,307 1,410,691 16,616 1.164

Therefore, from the above three cases, it is concluded that BESS has a major impact on
unit scheduling. It reduces the startup cost of the generators and extra power generated due
to the ramp up and ram down limits is stored to BESS in order to minimize the generation
cost for peak times. Similarly, the cold cost of all the generators participating even in a single
hour of that particular day is saved. All of the above case studies were solved with Xprog
V1.0, a MATLAB-based platform by using IBM ILOG CPLEX Optimization Studio V12.6.3;
the system requirements were a 64-bit Windows 11-based operating system with 16GB RAM.

5. Conclusions

Optimal sizing of a battery energy storage system using the ambiguity-based para-
metric model of distributionally robust optimization with a linear decision rule for grid-
connected distributed generators along with uncertain wind farm and solar PV was devel-
oped to achieve the optimal scheduling of the distributed generation with optimal battery
energy storage system capacity and power rating. The uncertainty of wind farms and solar
PV is modeled through DRO by developing their respective ambiguity sets with mean,
minimum, and maximum output for each time step (30-min) and each RES. The DRO
model employed in this research provides less conservative solutions under uncertainty
as compared to other models, i.e., the robust optimization model and adopted robust
optimization model. Accordingly, the effect of BESS on unit commitment is examined
with three different case studies conducted with solar-PV, wind-farm, and hybrid uncer-
tainties on distributed generators over a 24-hour time period. These case studies show
that the schedule of UC observably changes with BESS placement in the system. Further,
the optimal capacity of BESS also reduces the maximum operating point of distributed
generators by providing power to the system at peak times and storing energy in BESS at
off-peak times. The optimal size of BESS is established, which is inclusive of the practical
startup and shut down of distributed generators. This study also discussed the effect
of the economical aspect of BESS size on unit scheduling, although with an increment
in BESS capacity reducing the start-up cost, nevertheless, the initial investment of BESS
economically limits this function; this trade-off defines the efficacy of scheduling-based
optimization algorithms. The case studies discussed in this paper have the beauty of not
having a complex system to make it more complex for the reader to understand the model
proposed here; for future work, these case studies can be extended to multiple energy
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storage systems to evaluate the cost-effectiveness.
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Nomenclature
Sets and Indices for UC Model

τ/t Time interval set
ζ Feasible time constraints for minimum up/down time
κ/k DG unit set
β/b Buses in the system
Λ/l Solar PV units
L/g Transmission line
J /j Wind-farm units

Constants for UC Model

Pk Upper limit of generator k
Pk Lower limit of generator k
RDk RD limit of generator k
RUk RU limit of generator k
pd,min

b,t Minimum power that storage can provide while discharging at bus b at time t
pd,max

b,t Maximum power that storage can provide while discharging at bus b at time t
pc,min

b,t Maximum power that storage needs while charging at bus b at time t
pc,max

b,t Maximum power that storage needs while charging at bus b at time t
Db,t Load demand at bus b during time t
ak Generator k cost parameter
bk Generator k cost parameter
Cs

k Fixed start up cost for unit k
SOCmin

b,t Minimum state of charge at time t and bus b
SOCmax

b,t Maximum state of charge at time t and bus b
∆t Time step of storage for time t
ηc Efficiency of charging the battery
ηd Efficiency of discharging the battery
LCg Line capacity of line g
LCFg,b Load capacity factor of line g connected to bus b
Psur Penalty surcharge for load loss
C Charging and discharging rates of the battery
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Decision Variables for UC Model

ck,t Unit k generation cost at time t
Bc

count,b Battery’s charge cycle count at bus b
BT

count,b Total charge and discharge cycle count for battery at bus b
pw

j,t Wind-farm unit j generation at time t
pcur

b,t Power surplus/generation loss at bus b on time step t
pt

k,t DG unit k generation at time t
ps

l,t solar PV unit l generation at time t
xk,t Binary variable for generator status i.e.,UC
zk,t Unit k start up cost at time t
pd

b,t Power that battery can provide (as a source) at bus b in time t
pc

b,t Power that battery(as a load) needs at bus b in time t
SOCb,t State of the charge at time t and bus b
Bd

count,b Battery’s discharge cycle count at bus b

Parameter Set for Uncertainty Model

ψ̃l,t Random variable for solar PV uncertainty error for unit l at time t
V+

l,t Maximum error in solar PV uncertainty for unit l at time t
V−l,t Minimum error in solar PV uncertainty for unit l at time t
V Set of all uncertainties for random variables under linear constraints
V Extended set of uncertainties for random variables defined under linear constraints
Oψ Distribution for occurrence of random variables ψ̃ and α̃ together
s̃ Auxiliary random variable for wind
õj,t Random variable for wind-farm uncertainty error for unit j at time t
EM Expectation within distribution M
I Ambiguity matrix with given distribution of random variable õ
H Extended form of ambiguity set I
I/i Index for distribution of random variable
J Events describing the distribution of each random variable vl,t
M Random variablesψ̃ distribution
Oo Distribution for occurrence of random variables õ and s̃ together
S/e, r Set of random variables
α̃ Auxiliary random variable for solar PV

Others

Ξ(x) Expected worst-case distribution recourse cost
Ξ(x, o, ψ) UC cost based on decision of x under economic dispatch,with wind-farm o and solar PV ψ

CT
B (o, ψ) The running cost of the battery under economic dispatch, considering the

recourse action
of wind-farm o solar PV ψ uncertainty

Abbreviations
The following abbreviations are used in this manuscript:

UC Unit commitment
DRO Distributionally robust optimization
DG Distribution generation
RES Renewable energy sources
RO Robust optimization
BESS Battery energy storage system
ESS Energy storage system
PV Photo voltaic
MILP Mixed integer linear programming
SOCP Second-order cone programing
C Charge and discharge rate
VSS Value of stochastic solution
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