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Abstract: The introduction of autonomous vehicles (AVs) and shared autonomous vehicles (SAVs)
is projected to enhance network performance and accessibility. The future share distribution of
AV and SAV is not yet apparent, nor is which of these two future transport modes will become
dominant. Therefore, this research deploys a simulation-based dynamic traffic assignment using
Visum software to investigate the impact of varying the share distribution of AVs and SAVs on
Budapest’s network performance and consumer surplus in three projected future traffic scenarios
for the years 2030 and 2050 compared to the Base scenario for 2020. The three future scenarios are
presented and characterized by different penetration rates of AVs and SAVs to reflect the uncertainty
in the market share of these future cars as follows: Mix-Traffic scenario for 2030, and AV-Focused and
SAV-Focused scenarios for 2050. The results revealed that the emergence of AVs and SAVs would
improve the overall network performance, and better performance was observed with increasing the
share distribution of SAVs. Similarly, the consumer surplus increased in all future scenarios, especially
with increasing the share distribution of AVs. Consequently, the advent of AVs and SAVs will improve
traffic performance and increase consumer surplus, benefiting road users and authorities.

Keywords: autonomous vehicles; traffic flow; dynamic traffic assignment; macro-modeling; Visum;
shared mobility

1. Introduction

The vehicle industry, policymakers, and academia pay attention to rapid global re-
search and innovation connected to autonomous vehicles (AVs), shared autonomous ve-
hicles (SAVs) [1], and their projected appearance on roadways [2,3]. Due to their benefits,
AVs and SAVs are projected to dominate automobile markets [4]. Additionally, several
laws relating to the deployment of AVs and SAVs have been effectively implemented in
many nations and areas [5]. Thanks to the evolution of information and communication
technology and mobile solutions, ride-sharing services have become more popular in sev-
eral cities since the 2010s [6]. Such services provide users with cheaper and more versatile
commuting options [7]. Moreover, they are associated with lower vehicle ownership [8]
and greenhouse gas emissions [9]. Because of their rising popularity and cheaper travel
costs compared to privately owned vehicles, shared mobility services are predicted to
prosper in the future and provide the first appearance of self-driving cars in the frame
of SAVs [10]. This is especially true with electric SAVs, which are expected to be widely
adopted and provide a more viable society [11,12]. Furthermore, SAVs are expected to
emerge as a demand-responsive service [13].

The benefits of automated vehicles are predicted to be significant, notably in terms of
traffic safety, energy usage, and accessibility [14]. In terms of traffic, AVs and SAVs will
assist in relieving congestion by lowering the number of accidents due to human mistakes,
shortening headways, and optimizing the use of intersections [15]. Furthermore, as these
vehicles do not require human interaction to finish the journey, users of AVs and SAVs
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may better use their travel time by doing other activities like studying or relaxing instead
of monitoring the road or navigating [16]. Nevertheless, AVs and SAVs are anticipated
to boost the number and mileage of the trips driven by providing new groups of users,
who were before unable to travel by cars owing to various considerations such as age
or disability, with more flexibility in commuting, resulting in increased traffic [14]. As a
result, the impacts of AVs and SAVs on road congestion are yet unclear [17], and they may
exacerbate existing traffic issues [18]. Furthermore, the research studies on self-driving
vehicles’ influence on various areas of mobility, such as traffic performance, travel behavior,
and social welfare, are rapidly growing [19]. This study introduces AVs and SAVs together
utilizing the simulation-based dynamic traffic assignment (SBA) using Visum software for
the city of Budapest to answer the following research questions:

1. What effects do AV and SAV deployments in Budapest have on the following traffic
performance parameters (TPP): average and maximum queue lengths, delays, volume,
density, utilization (scaled density), velocity, and vehicle kilometers traveled (VKT)?
What are the implications of implementing AVs and SAVs concerning consumer
surplus (CS)?

2. How do varying the share distribution of AVs and SAVs affect traffic performance
and CS?

To that end, we compare the impact of deployment of AVs and SAVs on Budapest’s
network traffic performance and CS in alternative future traffic scenarios to the Base
scenario, which describes the current traffic situation in Budapest based on projected travel
demand for the year 2020. Three possible future traffic scenarios are presented, each
characterized by varying AV and SAV replacement rates of conventional vehicles (CC), to
reflect the uncertainty in self-driving vehicles’ emergence possibilities based on projected
travel demand for the years 2030 and 2050. The travel demand of the developed scenarios
was obtained from The Centre for Budapest Transport (BKK) projections for the respective
years. The Mix-Traffic scenario for 2030 combined CC, AVs, and SAVs as all coexisting on
the network. Two more alternative future scenarios are based only on the inclusion of AVs
and SAVs in the network and were set for the year 2050, with the AV-Focused scenario
implying a strong reliance on commuting by privately owned AVs, and the SAV-Focused
scenario implying a high reliance on using the fleet of SAV.

As this research investigates the implications of introducing new mobility solutions
and alternative vehicles, including conventional, electrical, and automated vehicles, along
with introducing a shared mobility system, it is related to the following concepts, which
amount to relevant current and future challenges: sustainable mobility at the urban level
and the possibility of preparing national, local, and regional transport plans [20,21]. Sus-
tainable mobility as a service (MaaS) includes managerial components “sharing mobility”
and material components “autonomous mobility” [22]. While the evolution of mobility
concerns people’s future mobility patterns [23].

The rest of the work is presented as follows: an explanation of the Budapest network
model, as well as the SBA framework for AVs and SAVs, which was built using the Visum
software and utilized in this study in Section 2. Then Section 3 delves deeper into the
development of future traffic scenarios. After presenting and discussing the results in
Section 4, the research’s conclusions are emphasized Section 5.

2. Research Methodology

This section goes through the dynamic traffic assignment framework while providing
an outline of the Visum software developed by Planung Transport Verkehr (PTV) and the
Budapest transport model, Egységes Forgalmi Modell (EFM), adopted in this research; and
provides a comprehensive overview of AV and SAV implementation methods.

2.1. PTV Visum and EFM Macroscopic Model

Budapest is Hungary’s capital, with a community of over 1.76 million people who live
in a 525-square-kilometer space and more than 4.61 million travelers visiting annually [24].



Sustainability 2022, 14, 10952 3 of 19

PTV Visum software has been used to design Budapest’s transport network. Visum is a soft-
ware for traffic macroscopic simulation, which can model various modes of transportation
and simulate their traffic demands utilizing calculated Origin-Destination (O-D) matrices
while keeping in view a specified road network. It lets users integrate network data from a
wide variety of providers, like Open Street Map. Moreover, it is often utilized to design as
well as evaluate transport networks, initiatives, and solutions, involving individual and
collective traffic patterns. This is built on the well-known four-step modeling approach (viz.,
trip generation, trip distribution, mode choice, and route assignment). The Visum software
was picked for this research to plan and examine the implications of different possibilities
of emerging AVs and SAVs in future traffic situations. The key reasons for choosing it
are: the essence of the evaluation, which is a macro-simulation that depends on different
features of traffic flow, including density, velocity, volume, and delay; the provision of a
fully prepared network model for Budapest in Visum titled the EFM Model, which contains
relevant information like O-D matrices, free-flow velocity, and traffic volumes; and Visum
can assign and evaluate new modes of transportation (i.e., AVs and SAVs).

BKK used Visum software to produce the EFM Model for the city of Budapest and
the vicinity. It comprises over 30,000 links that symbolize mainly roads and rails, as well
as their actual traffic characteristics like permitted velocity, permissible types of vehicles,
and the number of lanes. Around 15,000 nodes indicate the beginning and ending of every
link, as well as the network’s intersections. 1200 zones were defined as the origin and
destination of the network’s trips. The model was created and calibrated with information
from a critical examination of traffic situations in 2014 that took into account a list of
factors, including population, motorization, and economic situations. The three aspects
of macroscopic modeling are included in the EFM Model (i.e., demand model, network
model, and impact model). Likewise, the model provides a prediction of travel demand
for the years 2020, 2030, and 2050, taking into consideration demographic estimations,
motorization projections, and the effects of economic growth; these anticipated travel
demands were used during the modeling process of future traffic scenarios. The following
traffic prediction Equation (1) was used in the model:

Ct = S/
(

1 +
(

S− C0

C0

)
.e
−g0 ·S·t
(S−C0)

)
(1)

where Ct is the motorization value throughout the given year, S is the motorization concen-
tration degree (saturation), C0 is the base year’s motorization degree, g0 is the growth rate,
and t is the number of years since the base year.

Moreover, the EFM model is calibrated and validated for every mode of transport
(i.e., taxis, freight transport, bicycles, and public transport (PuT)) in a careful way to emulate
an accurate depiction of the traffic situations of network components with a small error
range, thus providing reasonable estimations. The O-D matrices were calibrated utilizing
around 240 cross-sections spaced across the city, and the estimated tolerance was calculated
using the Geoffrey E. Havers (GEH) formula. The calibration results revealed that the
values of cross-sectional traffic are tolerable relative to the counted traffic values. Since
this investigation utilized SBA rather than static equilibrium assignment, a supplementary
calibration was conducted to validate that the model is applicable to dynamic traffic
assignment. The GEH function has been used for the new calibration with the highest
value of 5 as an appropriate tolerable limit, similar to the first calibration. The calibration
results show that 86% of the measured sections have a GEH index less than 5, which is
recommended as it shows a good match between the modeled traffic volumes and observed
traffic volumes [25].

In conclusion, the EFM Model is expertly developed and depicts an accurate version of
the Budapest transport network; it can be applied to design, create, and accurately predict
transport modifications in Budapest and its vicinity.

For more information related to the EFM model and the Visum Software, see [26,27].
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2.2. SBA Implementation for AVs

The automation degree and the provision of appropriate infrastructure are key at-
tributes in incorporating AV and SAV driving behavior into the transport network. If a
segment of the network supports Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) connectivity, AVs and SAVs can interact with one another, enabling the automated
cars to drive in a defined headway and even form platoons. In this paper, such network
links are termed “S/AV-ready”. The following two sub-sections cover the AV modeling
approach and the parameters of dynamic traffic assignment, followed by a description of
the applied utility function, the selected value of travel time (VOTT), and the CS calculation
method in the final sub-section.

2.2.1. SBA Reaction Time

The influence of the emergence of AVs and SAVs in Budapest’s network on traffic
performance and CS is investigated in this research. The first task was to implement AV
and SAV behavior using SBA into the Budapest network. SBA, in PTV Visum, models the
network by using the car following model approach. The following vehicle response, in
AV and SAV context, is based on the vehicles in front and the vehicle itself. When two
driverless cars approach one another, for example, there would be a shorter headway than
that when AVs or SAVs follow CCs. In other terms, different vehicle combinations are
used to simulate AVs and SAVs, considering the reaction time factor. Therefore, the link
attribute “SBA is reaction time factor transport system dependent” was used as it allows a
consideration of the transport system of the vehicle itself and the transport system of the
vehicle in front to identify the following vehicle’s behavior. Consequently, on links where
the attribute “SBA is reaction time factor transport system dependent” is activated, the
reaction time factor can be defined for the following vehicle, and this is how the following
vehicle’s behavior was identified.

In typical settings, the SBA reaction time factor for CCs is generally equivalent to 1.
Due to the shorter reaction time needed by AVs and SAVs for stopping, this value lowers
as the degree of automation in the cars rises. This implies a tighter headway and greater
link capacity. For instance, when two links have identical functionalities, such as the lane
numbers and maximum allowed velocity. However, the SBA reaction time factor for the
first link is 0.5 and for the second link is 1.0, then the capacity of the first link is greater
than the capacity of the second because of the narrower headways, resulting from reduced
reaction time.

Previous studies adopted a module to reflect the increase in capacity resulting from
tighter headways and a lower reaction time factor needed by automated vehicles, where
they found that the capacity increases by a factor of 1.5 and 1.2 in the case of fully automated
vehicles operating on the network at a penetration rate of 100% and 50%, respectively [15,28].
According to PTV Group [27], the capacity in SBA can be calculated from Equation (2):

C = 3600l/(r +
e
v
) (2)

where C is the SBA capacity [veh/h], l is the number of lanes, e is SBA effective vehicle
length [m], v is the link’s velocity [km/h], and r is SBA reaction time factor. In this research,
the assumed penetration rates for AVs and SAVs are 50% and 100% for the years 2030 and
2050, respectively. Consequently, the required change in capacity (i.e., 1.2 and 1.5) was
achieved by setting r values to 0.65 and 0.5, respectively.

This research looks at Level 5 driverless cars. As an outcome, six main categories
defining the SBA reaction time factor were assigned, taking into account the various
combinations of the transport network. Table 1 illustrates that when both the leading and
following vehicles are automated, the SBA reaction time factor has the lowest value of
0.5, as the time needed for braking is lower due to a faster reaction time which implies
narrower headways and more space. Suppose the leading vehicle is not automated and
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the following vehicle is. In that case, the SBA reaction time factor rises to 0.65, and it is
presumed to be 1 among other forms of CC.

Table 1. Factor values of SBA reaction time factor.

Category No. 1 2 3 4 5 6

Leading Vehicle AV AV SAV Other TSys Other TSys Other TSys

Following Vehicle AV SAV AV AV SAV OtherTSys

SBA reaction time
factor–PrTSysx-PrTSysy 0.5 0.5 0.5 0.65 0.65 1

Note: TSys: Transport System, PrTSys: Private Transport System.

2.2.2. Parameters of SBA

The SBA models can be used to simulate a complex flow of traffic, which provides
useful operational solutions for applications in real-time [29]. The SBA model was built
in three steps. The first is a network system that was expertly developed and planned
by using EFM Model. Throughout this step, the network was adjusted to be S/AV-ready,
which separated driverless vehicles from CCs across the network by separately detecting
the features of each transport mode (i.e., CC, AV, SAV).

The analysis period (AP) is defined in the second step. The EFM model used travel
demand percentage share to define the standard time series. In this research, the morning
rush hour (7:00–8:00) was defined as AP since it contains the highest share of private
transport demand for one hour (7.15%) relative to daily traffic demand.

The SBA model’s outcome reliability is calculated by evaluating each iteration’s varia-
tion in volume to a specified tolerance level, which defines the acceptable inaccuracy in the
final solution. Reducing the tolerance limit produces more accurate findings but increases
the computational time [30]. Consequently, determining the parameters influencing traffic
assignment results in the SBA procedure is the third step. The termination condition, which
sets traffic assignment duration, is among the SBA parameters utilized in this study. When
one of two conditions, the maximum number of iterations or maximum gap, is achieved,
the traffic assignment ends. Greater iteration numbers produce more accurate and credible
findings but take much longer computational time. In this study, due to computational
limitations, the maximum number of iterations was set to 10 and the maximum gap was
0.01. It might happen that the maximum gap condition is met, yet some vehicles continue
in the system, hindering the termination condition from being achieved. A third criterion,
the maximum number of additional iterations, is set and generated here to verify that all
vehicles have left the network following the last iteration.

2.2.3. Parameters of the Model and Calculation of CS

Typically, the utility function is defined by cost, time, or distance. These three param-
eters are used in the EFM Model in a combined manner. In every situation, distribution
parameters are applied to differentiate between time and distance and calculate the pro-
portion of time and distance for specific motorists and PuT branches. Additionally, the
EFM model modifies these parameters among origin and destination zones to increase the
accuracy of results (including vehicle travel distance and access time, PuT distance and
traveling time, transfer numbers, and parking charges). The utility function is used in the
model’s third stage, “Mode Choice”, to distinguish traffic between departure and arrival
points based on transport modes. This approach is carried out using a logit model, wherein
users choose the route with the maximum utility for the intended trip. “UCar” represents
the utility function for vehicle drivers; see Equation (3). Equation (3)′s constant and param-
eters were determined using stated preference survey data, which was conducted during
the creation of the EFM model by BKK [26,31,32].

UCar = ASC + βcost ∗ cost + βtime ∗ time + βPC ∗ PC + βPT ∗ PT + βWT ∗WT (3)
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where ASC is alternative-specific constants (ASC = 1.05), β is the factor that illustrates each
of the variable sensitivity, PC is the parking charges (βPC = −0.015), PT is the search time
for parking (βPT = −0.1416), and WT is the time used for walking (βWT = −0.0904). The
values of each of βcost and βtime are −0.002 and −0.1, respectively.

The impedance function is utilized in the assignment procedure to allocate each user
the route choice. Usually, the impedance function determines the user’s route by cal-
culating travel cost parameters such as trip distance and time. The impedance, in this
research, was calculated using the following criteria: trip length, trip time, toll value,
and Tehertilt, which relates to the “Freight Transport Strategy for Budapest” by estab-
lishing limited mass areas for cargo transportation to regulate vehicle entry and alleviate
environmental consequences.

Rather than using a volume delay function (VDF), like in static assignment, the SBA in
Visum uses a reaction time factor. Consequently, static assignment governs AV execution by
modifying the passenger car unit (PCU), which changes the travel time on links due to VDF.
Using the reaction time parameter in SBA to deploy AVs, on the other hand, will largely do
AV execution in terms of capacity. SBA was used in this study’s modeling method because
it provides several benefits over static traffic assignment. Simulating the flow of traffic with
SBA, for example, corresponds to congestion and travel time; if the link inflow is higher
than the link outflow, the link will experience greater density and reduced velocity; static
assignment methodologies, on the other hand, do not instantly link traffic throughput
with physical indicators characterizing congestion, such as velocity or queue length [33].
Furthermore, SBA illustrates travel options in greater detail and is able to analyze a variety
of modern traffic management approaches [34].

VOTT is an essential part of the modeling procedure since it can transform the di-
mension of time into financial worth. VOTT would be factored into the generalized cost
function, ultimately determining which path users should take. VOTT diminishes in AV
and SAV environments because users can use their travel time for other things such as
reading, working, or resting instead of monitoring the road while driving. Several research
papers have looked into the possibility of reducing VOTT in the era of AVs and SAVs
utilizing different methodologies, the most common of which is supposing one or more
coefficients for the prospective decrease in VOTT [4]. AVs are deemed private cars in
this study, whereas SAVs are employed in the context of a dynamic demand-responsive
ride-sharing system (DRS), implying that AVs have more privacy and luxury (i.e., fewer
constraints) than SAVs.

Consequently, the VOTT for AVs and SAVs is assumed to equal 50% and 75% of the
VOTT for CCs, respectively. The VOTT for CC is 6871 Hungarian Forints (HUF)/h for a
work-related trip, according to the latest CBA guide on transport infrastructure projects
in Hungary, where 1 HUF is equal to 0.0029 USD (Google, 10 April 2022). Lastly, VOTT
changes by users (e.g., low-income vs. high-income) and by travel purpose (e.g., work-
related vs. non-work-related trip); taking these factors into account will yield more reliable
outcomes. Nevertheless, because it was outside the focus of this study, users were not
divided into distinct categories, and journeys were not distinguished based on particular
features of the trip. This limitation could be addressed in later research.

The CS concept was utilized, in this research, to approximate the user’s benefits or
losses from the emergence of AVs and SAVs in the network. CS calculates the difference in
consumer expenses like travel time and travel cost between the “Do-Minimum” situation
(without any intervention, the Base scenario) and “Do-Something” situation (in this study,
future traffic scenarios) to determine whether users’ benefits increased or decreased in
the new situation. For that purpose, the Rule of Half (RoH) is appropriate here because it
approximates how deploying AVs and SAVs will impact CS [35]. As per Winkler [36], the
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application of the RoH based solely on observed costs (i.e., trip operation cost and travel
time) is appropriate. As a result, the CS is determined using Equation (4).

∆CS = ∑
i

∑
j

1
2
(gc0

ij − gc1
ij)(T

0
ij + T1

ij) (4)

where ∆CS is the change in CS, gc0 and gc1 are the trip’s generalized cost before and
after AVs and SAVs emergence, respectively, and T0and T1 are the number of trips before
and after AVs and SAVs emergence, respectively. The trip generalized cost function (gc)
calculates the trip’s costs and was estimated as shown in Equation (5).

gc = UCar/βcost (5)

where in this situation, the operation cost and travel time attributes vary as a result of
the intervention, and travel cost can be obtained as follows: the distance traveled during
the trip in kilometers multiplied by the cost of operation per kilometer which equals
24.45 HUF/km according to BKK, plus the travel time in hours multiplied by the VOTT in
HUF/h.

2.3. SAV Modeling by SBA

The SAV scheme was designed using a DRS. As a result of this application, the O-D
matrices (i.e., zone demand) were disaggregated to node-level by dispatching the zone
demand to the assigned nodes via a random process inside a buffer area of 20 m that
determined the spatiotemporal characteristics for each trip request. This was accomplished
using Visum’s Generate Trip request procedure, which includes beginning and ending
nodes, loading/unloading points, and preferred departure and arrival times for every trip
request. Furthermore, because of the anticipated advantages and expected high penetration
rates of pure-electric vehicles in the near future [11,37], this study deployed an SAV fleet
comprised of pure-electric vehicles. The following two sub-sections illustrate the SAV
system modeling and SAV supply modeling.

2.3.1. Conceptual Framework of the Simulation of an SAV System

The operation of DRS for SAVs starts when a user requests a trip at a certain location
and time. The trip requests are then assigned to the SAV, which goes to the closest load-
ing/unloading point rather than the exact location of the trip request. Similarly, the users
would be provided with directions from their location to the closest loading point; noting
that, from the SAV’s and user’s location to the loading point, the search of shortest path is
executed. The assigned SAV must arrive at the loading point within the maximum arrival
time calculated by Equation (6):

Maximum AT = EDT + IDT + MIN (MAX ((DF− 1) ∗ IDT, ADT), MDT) (6)

where the arrival time is represented by AT, the earliest departure time is EDT, the ideal
travel time is IDT, the detour factor is DF, the acceptable detour time is ADT, and the
maximum detour time is MDT.

The detour factor is calculated by dividing the real (including detouring) travel time by
the ideal (excluding detouring) travel time, with a maximum detour factor of 2, a maximum
detour duration of 30 min, and a usually acceptable detour time of 10 min.

Users get into the SAV if it meets the maximum arrival time constraint and arrives at
the loading point. Using the shortest path, the SAV leaves for the closest loading point to
the final user destination while continuing to look for trip requests considering the capacity
of the SAV, the accepted detour factor, and power constraints. When the passengers exit
the SAV at the closest unloading point, they walk to their final destination and the SAV
continues driving to the next loading/unloading point, using the shortest path.
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Before each assignment, the electric power level in SAVs is checked to guarantee that
they will be able to finish the assigned trips smoothly, with a maximum range of 150 km
per charge for a four-seat SAV. If this is not the case, the SAV would be sent to the closest
charging point. Similarly, if a car is idle for more than 30 min, it will also be directed to the
closest charging point or car parking place.

2.3.2. Supply Modeling of SAV

Infrastructure and SAV fleet size are included in the supply modeling of DRS of
SAVs. Defining the service area of SAVs in the network, parking spaces, charging points,
and loading/unloading points are all part of the infrastructure supply modeling process.
Similarly, the SAV fleet supply modeling entails defining the fleet size of SAVs and their
features, on-road behaviors, and interactions with other automobiles. The rest of this
section explains the most significant aspects of supply modeling in more detail.

The SAV service area is 475 km2 in Budapest and contains 906 zones. Most of these
zones, which consist of inner-city zones, have a medium to high demand intensity. Through-
out operating, SAVs are allowed to exit the allocated zone; however, loading/unloading of
passengers is only permissible within the defined zone of the SAV service area.

Passengers and SAVs can travel on allowed walking paths and private vehicle links,
respectively, but not alternative types of links. Visum’s function walking transport mode
[DRT Walk] was used to distinguish the walking routes of passengers from their location to
the loading point and from the unloading point to their end location.

Inside the SAV service area, accessible loading/unloading points by walking and
private vehicles were constructed at 1979 points. Despite users’ preference for door-to-door
service, our model simulation environment does not enable it, necessitating the creation of
loading/unloading points over the network.

The fleet size (i.e., the number of active and idle SAVs) should be identified to efficiently
meet the users’ trip requests. Accordingly, in each scenario, the optimum SAV fleet size
required to meet the demand of the generated trip requests inside the service area during
the AP was identified by running a warm-up simulation consisting of twenty different
random seed values of the function “Generate Trip Request and Tour Planning Procedures”.
This approach yielded twenty different numbers for the necessary fleet size; additionally,
these values represent the number of trip requests and their spatial-temporal randomness.
In each scenario, the average of these values, obtained from the warm-up simulation, was
used to calculate the size of the SAV fleet, which was 1100, 1640, and 4387 in the Mix-Traffic
scenario, in the AV-Focused scenario, and the SAV-Focused scenario, respectively.

Various studies predicted a decrease in the necessary car parking slots, notably in the
city center, with the emergence of SAVs [38], so parking spaces were assigned at seven
nodes (already existing parking locations in Budapest) inside the service area. As stated
before, the SAV fleet is entirely comprised of electric vehicles. As a result, charging stations
were installed at 10 points throughout the service area, primarily at parking spaces, petrol
stations, and established electric vehicle charging sites. Additionally, before the assignment,
the charging period and power status of the battery are checked; charging the battery from
0 to 80 percent requires 4 h, and from 80 percent to 100 percent needs 3 h. Carrying an
optimization to assign the SAV facilities locations, comprising charging stations, parking
spaces, and loading/unloading points, is necessary to enable more efficient servicing of
the SAV fleet; it can be carried out using the Capacitated Facility Location Problem (CFLP).
Nevertheless, because implementing such an application would broaden the study area,
this constraint is left for a subsequent study. Figure 1 depicts the SAV’s service area, the
loading/unloading points as well as the charging facilities and parking spaces.
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Figure 1. Loading/unloading points (Pu/Do), parking and charging area locations inside the SAV
service area.

The adopted SAV model in this research depends on a real-time sharing system. In
other words, the dispatcher receives only the spatiotemporal information about the trip
requests when a passenger requests a trip, noting that booking an SAV in advance is not
possible here. Therefore, a module that allows dynamic online dispatching is required.
The vehicle routing problem (VRP) is suitable in this case as it provides the possibility of
dynamically serving the maximal number of trip requests by utilizing the SAV fleet [39].
The VRP module was deployed within the tour planning procedure in Visum, which
connects the generated trip requests (demand), SAV fleet (supply), and SAV infrastructure
(loading/unloading point, parking, and charging areas) for the dispatching process. Various
constraints were considered while executing the tour planning procedure; some of them
were addressed before in this section, including vehicle capacity, charging duration of the
battery, maximum detour factor and time, maximum range per charge, and inactive time.
Other constraints were related to passengers, including the maximum allowed waiting
time as well as desired pick-up and arrival time. All these constraints were considered
within the assignment process.

3. Proposed Future Traffic Scenarios

This study compared the impact of the emergence of AVs and SAVs on traffic and CS
in three distinct future traffic scenarios to the Base scenario. The alternative future scenarios
seek to encompass the different possibilities for the advent of AVs and SAVs in Budapest
in the years 2030 and 2050. The future scenarios’ travel demand was derived from BKK
predictions for the relevant years. The overall predicted demand stayed the same; however,
a change took place by substituting CC in the private travel demand with the assumed
proportion of AV and SAV in each scenario. The creation of O-D matrices for AVs and SAVs
was accomplished by multiplying every cell in the O-D matrix of private travel demand
by the relevant diffusion percentages for AV and SAV in every scenario considering their
service area zones. Simultaneously, the proportion of CC in the private travel demand
matrix was reduced by the same percentage as the diffusion percentages of AV and SAV. In
the years 2020, 2030, and 2050, the total predicted private travel demand was 2.16, 2.23, and
2.31 million trips per day, respectively. Although the modal shift may occur from various
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modes of transport like PuT and cycling, this study examined the effect of substituting CC
in the private travel demands with AV and SAV while assuming the modal split stays the
same and comparing the results to the Base scenario in terms of traffic performance and CS.

The first scenario, Base scenario, utilizes the expected private travel demand for
Budapest in 2020 without including AVs or SAVs. For pragmatic reasons, the expected
travel demand for the year 2020 was chosen above the actual travel demand, which was
markedly reduced as a result of the COVID-19 pandemic and restrictions applied; thus,
rather than compare such low travel demand with much higher ones for the year 2030
and 2050, we used the projections of private travel demand in all investigated scenarios
that would provide more consistency in the results. The Mix-Traffic scenario is the second
scenario, which uses the forecasted travel demand for Budapest in 2030 and blends CC,
AV, and SAV modes. By 2030, it is projected that self-automated vehicles will be on the
roads [4], and passengers may switch to AV and SAV. However, owing to their expected
initial high prices, the adoption of automated vehicles might be limited [2,40]. As a result,
in this scenario, the primary mode of private transport is CC, which accounts for 50 percent
of private travel demand, trailed by AV and SAV, which account for 40 and 10 percent of
demand, respectively. The simulated region depicted in Figure 2 reflects Budapest and its
vicinity.
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Full substitution of CCs by AVs and SAVs was assumed in the second and third
scenarios, where BKK’s predicted travel demand for Budapest in 2050 was utilized in the
simulation procedure. Many studies anticipated that AVs would completely or largely
replace CCs by 2050 [1,3]. The relative distribution of AVs and SAVs, on the other hand, is
still unclear, as is which of these two future modes will become the dominant transport
mode [15]. Thus, two alternative scenarios were created to reflect the two possibilities
for the introduction of AVs and SAVs. In the AV-Focused scenario, CCs in Budapest’s
private travel forecasted demand for 2050 were replaced by AVs and SAVs, with AVs
accounting for 85 percent and SAVs for 15 percent. In this scenario, it is assumed that
the majority of vehicle owners and those with access to private vehicles will change from
CCs to privately owned AVs, with just 15 percent switching to SAVs. Contrarily, in the
SAV-Focused scenario, the SAV mode is considered to be easily obtainable, widely available,
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and has a high adoption rate of 40 percent of private travel demand, compared to 60 percent
for the AV mode. SAV fleets are projected to operate on city streets in the near future to
accommodate travel demand, as ride-hailing companies spend heavily on establishing
SAV fleets in cities as an alternate form of transportation [41]. Chen & Kockelman [11]
anticipated that a fleet of electric SAVs might account for between 14 and 39 percent of
the mode share in a mid-sized city under specific conditions. Based on these results, the
expected penetration rates of SAVs for the second and third scenarios were chosen as
15 and 40 percent, respectively. The rest were assigned to AV mode.

4. Results and Discussion

The findings reported in this section show the influence of the introduction of AVs
and SAVs on TPP and the change in CS in the proposed future traffic scenarios compared
to the Base scenario. The examined TPPs are average and max queue length, delay, volume,
density, utilization, velocity, and VKT. The following paragraphs explain each of these
parameters and the change in CS.

The SBA queue length outputs show the average and maximum queue lengths (lane
average and lane max) on the link edges assigned to lanes in meters at each analysis time
interval (ATI). It is derived by multiplying the average accumulated vehicle length on the
lane during the ATI by the proportion of time spent waiting for vehicles at the end of a lane
divided by the ATI. The effect of implementing AVs and SAVs in the network on average
and maximum queue lengths differs according to their penetration rates. Considering
the summation of average queues accumulated on each link in the network for every
scenario shows that the highest value occurred at 8:00 AM in the Base scenario, where
the summation of average queues was 60 km. This value decreased significantly, when
deploying AVs and SAVs in the road network by 78%, 93%, and 99% for Mix-Traffic, AV-
Focused, and SAV-Focused scenarios, respectively. SBA handles queues dynamically and
passes on congested vehicles to the next time interval; in the case of the last ATI, the queue
would be dissolved in the extension time interval. Noting that the smaller SBA reaction
time parameter changes the behavior of following vehicles by reducing the headways;
consequently, more vehicles can pass over a link in one hour before queues form.

The SBA max queue length shows the maximum queue length accumulated on each
link at each ATI. Figure 3 depicts the summation of the average queue length on the left
y-axis and the maximum of the SBA max queue length on the right y-axis for each scenario
in the whole network at 8:00 AM. The maximum of max queue length (i.e., the longest
queue occurred in the network at 8:00 AM in every scenario) followed a similar pattern to
average queue length, where it decreased by 44%, 45%, and 95% in Mix-Traffic, AV-Focused,
and SAV-Focused scenarios, respectively. In a wider perspective, the percentage change in
the summation of SBA max queue lengths on all links in the network yields again a similar
pattern of the change in the summation of average queue length with approximately the
same percentages.

The SBA calculates delay by comparing the travel time in a network with no volume
(t0) to the average travel time when the volume is taken into account (tcur) during the AP.
Figure 4 shows the percentage changes in delay due to the emergence of AVs and SAVs
into the road network for each scenario. The percentage change in delay illustrates that
deploying self-driving vehicles into the road network significantly reduced the delays. In
the Mix-Traffic scenario, the delays were decreased by 77%, and a further reduction took
place in AV-Focused and SAV-Focused scenarios at 94% and 97%, respectively. The reason
behind such reduction refers to the reduction in queue lengths, which implied that vehicle
waiting times at the end of the links was much smaller. Additionally, the reduction in traffic
volumes as a smaller number of SAVs replaced many CCs, which resulted in fewer traffic
volumes on the links and smaller difference between t0 and tcur, consequently reducing
the delays. It was noticed that the emergence of AVs and SAVs in the network reduced
the summation of average queue lengths and the delays by almost the same percentage in
every scenario.
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Figure 3. SBA queue length (summation of average and maximum of max) @ 8:00 AM for
all scenarios.
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Figure 4. Delay in each scenario during the AP and percentage of changes in traffic delays for three
proposed future scenarios compared to Base scenario.

The SBA calculates the volume for each link in the network as the count of vehicles that
crossed the network links during the AP [Veh/h]. Although implementing Avs would cause
shorter headways, which would most likely generate more capacity due to better utilization
of the roads, resulting in more vehicles passing through a certain point within a certain
time unit (i.e., capacity), the traffic volume decreased in the investigated future traffic
scenarios. The reason behind this reduction is associated with replacing CCs with SAVs.
In the Mix-Traffic, AV-Focused, and SAV-Focused scenarios, 1100, 1640, and 4387 SAVs
served 15,945, 24,775, and 66,066 trips of private travel demand during the AP, respectively.
Figure 5 shows the total volume in the network in all scenarios during the AP and the
percentage reduction in the volume for the proposed future traffic scenarios compared to
the Base scenario. The volume decreased with increasing the penetration rate of AVs and
SAVs, and the maximum reduction was reached in the SAV-Focused scenario at 45%.
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Figure 5. Total volume in each scenario during the AP and percentage of change in traffic volume for
three proposed future scenarios compared to Base scenario.

SBA density is a simulation’s output that refers to the average number of vehi-
cles per kilometer on the link during ATI. Similar to the previously investigated TPPs
(i.e., queue length, delay, and volume), the density was reduced when including AVs and
SAVs in the simulation procedure. The reduction in average traffic density during the AP
compared to the Base scenario was 16%, 25%, and 55% for the Mix-Traffic, AV-Focused, and
SAV-Focused scenarios, respectively. Figure 6 illustrates the reduction in average density
resulting from the emergence of AVs and SAVs during AP at each ATI. It is evident that a
higher replacement rate of CCs by SAVs affected the average density more; for instance,
the average traffic density at 8:00 AM in the Base scenario was 5.8 [Veh/km], and it was
reduced to 4.2, 3.4, and 2 [Veh/km] for the Mix-Traffic, AV-Focused and SAV-Focused
scenarios, respectively.
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Figure 6. Average traffic density for all scenarios.

SBA utilization is an output attribute obtained during the simulation and correspond-
ing to scaled density. It shows how much of the link’s capacity is being used based on
the fundamental diagram, which connects volume and density values. A visualization of
the SBA utilization attribute at 8:00 AM that compared the three proposed future traffic
scenarios to the Base scenario is depicted in Figure 7. The green color in the figure illustrates
less traffic on the links allowing more cars to use it until reaching the critical density; hence
utilization is improved, whereas the red color shows the opposite. The most significant
effects on utilization occurred in the city center and on the ring around Budapest in all
scenarios, with a noticeable increase in the green color and diminishing red color as the
replacement rate of CCs by AVs and SAVs increases. The comparison showed that the
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maximum improvement in the network took place in the SAV-Focused scenario, followed
by AV-Focused and Mix-Traffic scenarios.
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SBA velocity attribute is calculated from SBA length, including the vehicle and the
link lengths, and the average travel time of vehicles that crossed the link during the AP.
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Then, the average velocity of all vehicles that used that link is sorted in Visum as a link
attribute. The average vehicles’ velocity in the whole network (i.e., the average of all link’s
average velocities) increased with the advent of the AVs and SAVs. The average vehicles’
velocity for all links in the network and the percentage increment in the velocity in the
future traffic scenarios compared to the Base scenario are depicted in Figure 8. The velocity
increased with the emergence of AVs and SAVs by 2% in the Mix-traffic scenario, 4% in the
AV-Focused scenario, and more increment took place in the SAV-Focused scenario to reach
5% compared to the Base scenario.
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Figure 8. Average velocity in each scenario during the AP and percentage of change in traffic velocity
for three proposed future scenarios compared to Base scenario.

In reference to the Base scenario, the results revealed that VKT increased in the Mix-
Traffic scenario by 18%. On the contrary, it decreased in the AV-Focused scenario by 2%,
and by 36% in the SAV-Focused scenario. The reduction in the VKT was associated with the
reduction in the volume. It is worth mentioning that if the boarding passengers in SAV have
the same destination, the trip is considered one trip. Otherwise, passengers with different
destinations are considered as several trips. For example, if two passengers board together
and head towards the same destination, this is counted as one trip of the demand. However,
if these two passengers have two different destinations, they are counted as two trips of
demand. This shows the effect of SAVs on reducing the number of private transport trips by
personal car through applying the DRS to serve the private travel demand. However, one of
the major characteristics of self-driving vehicles is the ability to drive unoccupied [42], and
this aspect was investigated here. The total VKT by SAVs increased with the increment in
the share distribution of SAVs, where more than 96% of VKT, which SAVs covered in every
scenario, were occupied trips. Table 2 shows all scenarios’ total, occupied, and unoccupied
VKT in kilometers.

A statistical analysis of the acquired data was utilized to find the significant differences
between the three proposed future traffic scenarios (Mix-Traffic, AV-Focused, and SAV-
Focused) and the Base scenario for each parameter in the TPPs described above. Friedman
and Wilcoxon signed-rank tests (non-parametric tests) were used to compare future traffic
scenarios to the Base scenario since the data did not fit a normal distribution. The Friedman
test with Bonferroni correction revealed that the distribution of all TPPs among the possible
combinations (i.e., Mix-Traffic–Base, AV-Focused–Base, and SAV-Focused–Base) is not
the same.
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Table 2. VKT [km] in the network during AP.

VKT [km] Base Mix-Traffic AV-Focused SAV-Focused

Total VKT 17,228,943 20,510,993 16,923,120 10,991,717
Total VKT by SAV - 82,673 128,518 466,572

Occupied VKT - 79,629 124,094 453,275
Unoccupied VKT - 3044 4424 13,297

For pairwise comparisons, the Wilcoxon signed-rank test was used for all pairings
that had different distributions according to the Friedman test. The results showed a
significant difference for all TPPs in the investigated combinations (p < 0.001). Table 3
shows the Z-values and effect sizes (r) obtained by dividing the z value by the square root
of observations (N). The effect size increased with the increment in AV and SAV share
distribution; moreover, higher values for (r) were noticed in the SAV-Focused scenario.
Exceptions were found in the case of (AV-Focused scenario–Base scenario) for VKT, where
the effect size had a smaller value than in (Mix-Traffic scenario–Base scenario).

Table 3. Wilcoxon signed-rank test results for investigated TPP.

TPP
Mix-Traffic–Base AV-Focused–Base SAV-Focused–Base

Z r Z r Z r

Delay −19.940 a 0.11 −52.255 a 0.30 −60.033 a 0.34

Average Queue
Length −26.792 a 0.15 −48.064 a 0.28 −64.769 a 0.37

Max Queue Length −26.359 a 0.15 −47.633 a 0.27 −64.388 a 0.37

Average Density −20.623 a 0.12 −42.973 a 0.25 −98.263 a 0.56

Volume −76.876 a 0.44 −78.007 a 0.45 −112.498 a 0.65

Average Velocity −41.129 b 0.24 −56.012 b 0.32 −60.978 b 0.35

VKT −69.995 b 0.40 −30.744 a 0.18 −102.861 a 0.59

Note: a. Based on positive ranks (p < 0.001); b. Based on negative ranks (p < 0.001).

The user’s benefit (i.e., CS) resulting from the emergence of AVs and SAVs is displayed
in Figure 9. It can be noticed that the emergence of AVs and SAVs caused a positive change
in CS in all scenarios. The increased CS is reasonable considering the lower assumed
VOTT for AVs and SAVs in this research. The highest increment in the CS occurred in
the AV-Focused scenario, and the positive change in CS was approximately the same in
Mix-Traffic and SAV-Focused scenarios.
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5. Conclusions

The introduction of AVs and SAVs into the transportation sector is anticipated to
provide several benefits with regard to the road network. However, the share distribution
of AV and SAV is not yet evident. Therefore, three alternative future traffic scenarios
reflecting various AV and SAV emergence possibilities were devised to explore the potential
consequences of varying AV and SAV penetration rates on the network performance and
total change in CS in the city of Budapest.

In the modeling procedure for the Base and future traffic scenarios, the forecasted
travel demands for Budapest for the years 2020, 2030, and 2050 were used. The future
traffic scenarios consisted of the inclusion of CCs, AVs, and SAVs for 2030 in the Mix-Traffic
scenario and the replacement of all trips made with CCs by AV and SAV modes for 2050 in
the other two scenarios. This included two separate approaches: (1) AVs were considered
to be widely utilized as a private self-driving vehicle in the AV-Focused scenario, and
(2) SAVs were assumed to be largely used in the SAV-Focused scenario. The simulation
was carried out using the SBA with Visum software based on an existing and validated
traffic model, the EFM Model.

The utilization of a professionally designed and calibrated EFM model; deploying
SBA in the network loading process within the assignment and involving the forecasted
travel demand of the investigated years (2020, 2030, and 2050) in the analysis allow for
more stable results in terms of network performance and changes in CS. In addition, the
DRS was used to model the SAV system, taking into account several essential qualities that
are predicted in SAV structures, such as in-route check and acceptance of other trip requests
based on detour factor, the vehicle power level and recharge, and time constraints for the
vehicle to pick-up a request. However, this research can be further extended by overcoming
some limitations. In this study, only private transportation modes are taken into account
while analyzing the implications of the emergence of AVs and SAVs; therefore, this research
can be expanded to examine the impact of such emergence on the mobility behavior of
people, such as mode choice. As mentioned earlier, VOTT can be assigned for different
categories of users and based on trip purpose. Similarly, using an optimization method to
determine the locations of the SAV facilities, including loading/unloading points, charging
stations, and parking spaces would allow more efficient application of the SAV fleet.

The results show that the advent of AVs and SAVs in the Budapest network will
enhance the TPPs and increase the CS. The network performance witnessed additional
improvements with a higher replacement rate of CCs by SAVs, where the lowest queue
lengths, minimum delays, maximum velocities, and lowest VKT took place in the SAV-
Focused scenario, followed by AV-Focused and Mix-Traffic scenarios, respectively. Similarly,
the CS increased in all future scenarios, especially with increasing the share distribution
of AVs (i.e., AV-Focused scenario). Hence, road users and authorities will benefit from
the emergence of AVs and SAVs; however, a higher replacement rate of CCs by SAVs will
have a more positive impact on traffic status, while a higher replacement rate of CCs by
AVs will increase road user’s benefits. The improved network performance might induce
additional travel demand, which may necessitate applying travel demand management
like road pricing [43,44]; this aspect was not analyzed here as it falls beyond the research
scope. Moreover, this research analyzed the implications of replacing CCs with AVs and
SAVs in alternative future scenarios while assuming no changes would occur in the modal
share; however, it could be interesting for future research to broaden the research area to
cover the impact of AVs and SAVs on the public’s mobility behavior, mode choice, and the
possibility that a great part of mobility could involve public transport.
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