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Abstract: Coal mining can cause significant local environmental damage while driving the regional
economy of an area. The key index of net primary productivity (NPP) measures the amount of
energy made available in an ecosystem and serves as a useful metric for understanding vegetation
restoration in mining areas. This study used a CASA model to estimate the vegetation NPP of the
Ordos area of the Shendong coal fields from 2000 to 2019. Model output, human factors, and regional
meteorological data were subjected to trend analysis, significance testing, partial correlation analysis,
and residual analysis. The NPP data generated by a CASA model inversion approximated measured
data to a reasonable degree. The average annual NPP of the vegetation in the study area from 2000
to 2019 was 44.51 g C/m2 a. In general, NPP showed a fluctuating upward trend, with slower
increases before 2011 and more rapid increases after 2011. The trend exhibited considerable spatial
heterogeneity. Areas with increasing NPP accounted for 21.54% of the study area and occurred mainly
in the Dongsheng District, the Kangbashi District, and areas bordering the Ejin Horo Banner. Analysis
detected consistent spatial variation between NPP and each factor in the study area. NPP is positively
correlated with precipitation and human activities and negatively correlated with air temperature.
The change in vegetation cover depended on both human activity and meteorological conditions. In
terms of the strength of influence on vegetation NPP, human activity exceeded climate, followed by
temperature and precipitation. Although the NPP of vegetation in the region directly affected by coal
mining shows a trend of improvement, it is still lower than that in the natural growing region. In the
next step, the ecological restoration of vegetation should be further strengthened to achieve regional
ecological balance.

Keywords: net primary productivity (NPP); CASA; Shendong coal; impact factor

1. Introduction

Modern civilization depends strongly on hydrocarbon-based energy sources [1], which
have generally progressed from wood to whale oil, coal, oil, and gas. Coal has driven indus-
trialization, electrification, and transportation to support the expansion of human survival
and material culture [2]. Countries experiencing rapid economic development based on
coal energy sources find their economic base and stability to be tied to coal production [3].
The Inner Mongolia Autonomous Region is a key area of China’s westward migrating coal
mining strategy [4]. Its coal resources are widely but densely distributed in the Mengdong
and Mengzhong mining areas [5]. Together, these represent a hundred million tons of
the national large coal base. The Mengzhong mining area is located in Ordos City, Inner
Mongolia and includes the Shendong coal fields. The area hosts thick, undeformed coal
seams suitable for large-scale, mechanized subsurface mining. The area overlying the
mines represents an ecologically fragile area subject to subsidence and collapse. In the case
of subsidence and collapse, mining of subsurface coal seams removes support and thereby
disrupts the overlying surface. Mine subsidence has harmed vegetation, soil, and other
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aspects of the local ecosystem. Negative environmental impacts detract from the economic
benefits of large-scale mining [6]. Over time, the original ecological vegetation is gradually
degraded and only distributed in sporadic areas. Relatively speaking, the proportion of
artificial vegetation increases year by year [7]. Vegetation represents a major component
of terrestrial ecosystems and a key factor for measuring their health [8]. Net vegetation
primary productivity (vegetation NPP) tracks energy flows and overall ecosystem health.
NPP also measures an area’s contribution to the global carbon cycle.

To date, the primary methods for estimating NPP have been field measurements
or model simulations. Field measurements have traditionally used sample surveys and
distributed observations of above-ground and soil biomass [9]. The expenses and technical
requirements of this method preclude its use over wide areas and longer time intervals.
Meanwhile, NPP model simulation methods generally use one of three approaches. The
models themselves are referred to as climate-related statistical models (statistical methods),
light energy utilization models (parametric models), and physiological and ecological
process models (mechanistic models) [10]. Each model type carries with it advantages and
drawbacks. Climate models produce results with relatively high uncertainty because they
do not consider vegetation-related information [11]. Light energy utilization models include
light energy transfer and conversion processes, but these remain somewhat uncertain [12].
Process models require many parameters that are either uncertain or difficult to obtain [13].
Mechanistic models are complex and may use inaccurate assumptions. While uncertainties
also affect NPP modelling approaches, researchers adopt these due to their better coverage
and greater scope relative to traditional field surveys. NPP modelling can effectively
constrain the understanding of regional ecological health [14]. Due to its utilization of
satellite remote sensing technology, the CASA model has been widely used in estimating
NPP in terrestrial ecosystems and in global carbon cycle research. The CASA model
uses vegetation photosynthetic processes and light energy utilization as a basis [15] for
estimating dynamics and spatiotemporal variability in NPP at the regional and global
scales [16].

For mining areas, NPP can be used as a unified scale standard to measure the changes
to the ecological environment in mining areas. By accurately estimating the biomass
in the mining area, the spatial pattern, changing trend characteristics, and response to
climate change of vegetation NPP can be quantitatively analyzed, thereby reflecting the
ecosystem health of the mining area. Monitoring variation in vegetation NPP can expand
the understanding of the effectiveness of restoration and mitigation strategies. The results
are of great significance for understanding the mechanisms of the effect of climate change on
the vegetation change process in the terrestrial ecosystem in the mining area, the ecological
restoration of the mining area, and effective governance [17].

Researchers have adopted a range of model approaches for studying vegetation
or other ecological parameters in coal mining areas [18–22]. Additionally, the research
mainly focuses on analyzing the relationship between the temporal and spatial variation
characteristics of NPP and coverage in mining areas and their influencing factors. For
example, Hao Chengyuan and other scholars used EOS/MODIS satellite remote sensing
data to analyze the NPP of the ecosystem in the Lu’an mining area from 2001 to 2006,
and conducted research and analysis from the perspective of time and space. Human
activities such as farming are closely related, and the spatial heterogeneity is mostly related
to natural factors such as annual precipitation. However, combined with domestic and
foreign research, few studies have addressed NPP in the Shendong mining area, and very
limited historical data are available. At the same time, the Shendong mining area (Ordos)
mostly involves mechanized underground mining. Compared with other mining areas,
studying the changes in the surface vegetation NPP can provide corresponding research
references for other mining-concentrated mining areas.

This study used the CASA model to simulate the spatio-temporal dynamics of the
vegetation NPP in the Shendong mining area of Inner Mongolia from 2000 to 2019. The
study also analyzed climate factors to determine both the qualitative and quantitative
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aspects of environmental health in Shendong. The results can help inform mitigation and
restoration strategies and promote the sustainable and scientific development of the land
and its resources.

2. Materials and Methods
2.1. Study Area

The study area is located within the broad northward arc of the Huang He River, in
a zone between the Ordos Plateau and the northern edge of the northern Shanxi Plateau.
To the north lies a transition zone abutting the Maousu Desert, and to the south lies an
eastern section of the northern edge of the Loess Plateau in northern Shanxi [23]. As a
typical hill and gully terrain, most of the area consists of sand dunes and other arid climate
landforms. The terrain gradually increases in elevation from southeast to northwest, with a
series of higher-elevation drainage divides occurring roughly in the middle of the study
area. The elevation ranges from 1200 to 1400 m. The climate is categorized as a middle
temperate continental climate. The winter is long and cold, and the summer is hot and
short. Temperatures in spring and autumn change sharply. The relatively low annual
rainfall is typically discretely concentrated, and the annual rainy season varies greatly. Rain
depends on seasonal winds from the south in the summer, from the east in late autumn,
and from the northwest in early spring. The annual average precipitation in the area is
320~400 mm, and the inter-annual variation of precipitation is great. The precipitation in
wet years is about 3 times that of dry years. The annual distribution is uneven, and the
precipitation is small and concentrated, mainly in June to September, accounting for about
3/4 of the whole year, mostly in the form of heavy rain with strong bursts. The annual
average temperature is 7.3 ◦C, the annual extreme maximum temperature is 38.8 ◦C, and
the annual extreme minimum temperature is −28.1 ◦C. The surface of the study area is
mostly hard-beamed land with low organic matter content. The soil texture is sandy soil or
sandy loam, the soil mechanical composition is coarse, and the soil texture is loose. The
vegetation in the area is arid/semi-arid grassland vegetation, sandy plants dominate, and
the vegetation coverage is low.

As shown in Figure 1, the study area includes 87 subsurface coal mines, including the
Liuta Coal Mine, Shangwan Coal Mine, and so on. Combined with the current situation
of the study area, a direct impact area of well mining and a natural recovery area are set
up in the study area. The geometric centers of the two areas have a difference of 29′1′′

in longitude, 10′05′′ in latitude, and a distance of 4.7 km between the geometric centers.
They are both hill and gully landforms and have the same geological origin, with similar
elevations and similar slopes.

2.2. Data Sources
2.2.1. Remote Sensing Data

This study used NDVI (MOD13Q1, 250 m, 16d) and NPP data [24] (MOD17A3,
1 Km, 1a) downloaded from U.S. National Aeronautics and Space Administration (NASA)
websites. The MODIS Reprojection Tool was used to convert (Geo TIFF) and reproject
(WGS84/Albers Equal Area Conic) the two datasets. Monthly NDVI datasets for the study
period were integrated with annual NPP data using batch methods [25] to obtain MODIS
NPP and NDVI time series covering the study area for the duration of the study period
(2000–2019).

2.2.2. Measured NPP Data

Due to the challenges and limitations posed by measuring NPP in the field, biomass
conversion NPP data are usually used instead of field NPP data for data model validation.
This research measured biomass in 19 plots representing the topography of the study area
from July to August 2021. Considering the diversity of vegetation types in the study area,
25 × 25 m was selected as the large plot. In these areas, three 1 × 1 m grassland plots were
selected for biomass sampling, and the average value was later taken as grassland biomass.



Sustainability 2022, 14, 10883 4 of 18
Sustainability 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Figure 1. Overview of the study area. 

2.2. Data Sources 

2.2.1. Remote Sensing Data 

This study used NDVI (MOD13Q1, 250 m, 16d) and NPP data [24] (MOD17A3, 1 Km, 

1a) downloaded from U.S. National Aeronautics and Space Administration (NASA) 

websites. The MODIS Reprojection Tool was used to convert (Geo TIFF) and reproject 

(WGS84/Albers Equal Area Conic) the two datasets. Monthly NDVI datasets for the study 

period were integrated with annual NPP data using batch methods [25] to obtain MODIS 

NPP and NDVI time series covering the study area for the duration of the study period 

(2000–2019). 

Figure 1. Overview of the study area.

Biomass was collected, weighed immediately, labeled, and transported back to the
laboratory for analysis. In the lab, biomass dry weight data were obtained after samples
were dried at 75 ◦C for 12 h. NPP was estimated from each sample square as the proportion
of above-ground biomass relative to below-ground biomass, assuming an NPP conversion
coefficient of 0.475 [14]. Trees within large plots included sand willow and poplar trees. We
counted the number of trees in each plot and estimated the size of each tree individually
from its diameter at 1.3 m above the ground. The biomass and corresponding NPP of
the forested land were estimated according to the algorithm proposed by Fan Wenyi and
others [15,26]. Finally, the coverage of grassland and trees was integrated into the total
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NPP area of each plot. The NPP per unit area was determined by combining the area of the
large square.

2.2.3. Meteorological Data

Meteorological data were obtained from the China Meteorological Science Data Shar-
ing Service Network (available online: http://cdc.cma.gov.cn (accessed on 17 July 2022)).
The daily data of precipitation and temperature from 2000 to 2019 were collected from
six standard meteorological stations in the study area and its surrounding areas. After
calculating monthly precipitation and average temperature data by means of summing
and averaging methods, we used ANUSPLIN to break the data into a grid to match the
projection for the study area and the resolution of NPP data.

2.2.4. Other Data

Administrative division data came from the Inner Mongolia Autonomous Region
Territorial Space Planning Institute. Vegetation cover data were obtained from the European
Space Agency (available online: https://maps.elie.ucl.ac.be/CCI/viewer/ (accessed on
17 July 2022)) [27]. Distribution maps of subsurface mines came from the Inner Mongolia
Geological Survey Planning Institute.

2.3. Methods
2.3.1. Optical Energy Utilization Model (CASA Model)

The Carnegie–Ames–Stanford Approach (CASA) is a light energy utilization model
proposed by Potter in 1993. This model is a mechanistic model that estimates vegetation
NPP based on the vegetation’s physiological processes. Meteorological data inputs include
solar radiation, temperature, and precipitation. Remote sensing data inputs include the
vegetation index and empirical data such as maximum light energy utilization. The model
uses these to estimate the maximum primary productivity of vegetation. The present study
utilized a modified CASA model [6]. The specific NPP formula was:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where APAR(x, t) represents the effective photosynthetic radiation absorbed in pixel x
during month t. The term ε(x, t) represents the actual optical energy utilization rate of pixel
x during month t.

The formula used to calculate photosynthetically active radiation was:

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

where SOL(x, t) represents the total solar radiation (MJ/m2) of pixel x during month t. The
term FPAR(x, t) represents the vegetation’s absorption ratio of photosynthetically active
radiation and the constant 0.5 indicates the proportion of effective solar radiation to total
solar radiation.

The actual light energy utilization rate was calculated as:

ε(x, t) = f1 (x, t)× f2 (x, t)× W(x, t)× εmax (3)

where f1 (x, t) and f2 (x, t) represent the effect of high and low temperatures on the light
energy conversion rate. The term W(x, t) indicates the influence of water conditions on the
light energy conversion rate and εmax represents the maximum light energy utilization of
vegetation in the ideal state. For εmax, the research results of Professor Zhu Wenquan are
cited in this paper [28].

2.3.2. Theil–Sen Median Trend Analysis with the Mann–Kendall Non-Parametric Test

This study used statistical methods with good associative properties to determine
trends in long-term data series. The Theil–Sen Median (sen) is a robust, nonparametric
trend calculation method. Often used in trend analysis of long-term data series [29], the

http://cdc.cma.gov.cn
https://maps.elie.ucl.ac.be/CCI/viewer/
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method is computationally efficient and insensitive to measurement errors and outlier data.
The method does not require the data to obey a certain distribution, nor does it amplify
errors. The formula for the trend estimation is:

slope = median
(NPPj − NPPi

j− i

)
, 2000 ≤ i < j ≤ 2019 (4)

where the size of the slope term indicates the trend in vegetation with NPP > 0 for an
upward trend and <0 for a downward trend.

The Mann–Kendall test is a non-parametric statistical test (M-K) originally proposed
by Mann in 1945 and then further improved by Kendall and Sneyers. The M-K test does
not require measurements to obey a normal distribution or linear trend. Missing values
and outliers do not strongly affect results. The test is widely used in the trend analysis
of long-term data series to evaluate the significance of vegetation NPP trends. The test
statistic S is calculated as:

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(

NPPj − NPPi
)

(5)

where the term sgn represents a symbolic function calculated as:

sgn
(

NPPj − NPPi
)
=


1 NPPj − NPPi > 0
0 NPPj − NPPi = 0
−1 NPPj − NPPi < 0

(6)

The test statistic Z was used for the trend test as follows:

Z =


s√

Var(s)
S > 0

0 S = 0
s+1√
Var(s)

S < 0
(7)

The function Var was calculated as:

Var(s) =
n(n− 1)(2n + 5)

18
(8)

where n is the number of data in the sequence.
For a given confidence interval (significance level) α, absolute values of Z equal to or

exceeding 1.65, 1.96, and 2.58 give respective significance levels of 90%, 95%, and 99%. If
|Z| ≥ Z1 − α/2, the assumption of an upward or downward trend cannot be rejected (the
null hypothesis is not obtained). Positive values indicate an upward trend, and negative
values indicate a downward trend. According to the t-test cutoff value, when |Z|> 1.65,
the increasing or decreasing trend is weakly significant at the 0.1 level. When |Z|> 1.96,
the increasing or decreasing trend is significant at the 0.05 level. When |Z|> 2.58, the
increasing or decreasing trend is extremely significant at the 0.01 level.

2.3.3. Partial Correlation Analysis

Both multivariate and partial correlation coefficients were calculated. The multivariate
correlation coefficient was calculated as follows:

rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1

[
(xi − x)2 ∑n

i=1[(yi − y)2
] (9)

where rxy represents the correlation coefficients for the x and y time series. The xi term
represents NPP and yi represents the average temperature or precipitation in year i over
a total of n years. The term x represents annual average NPP, and y represents average
annual temperature or precipitation.
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Partial correlation coefficients between NPP and temperature and NPP and precipita-
tion were calculated by using pixel-based spatial analysis and the following formula:

Rjkl =
Rjk − Rjl Rkl√(

1− R2
jl

)
+
(
1− R2

kl
) (10)

where Rjkl represents the partial correlation coefficient between variable j and variable
k after variable l is fixed. The terms Rjk, Rjl , and Rkl are correlation coefficients for the
variables j and k, j and l, and k and l, respectively.

2.3.4. Residual Analysis of Multiple Regression Results

The analysis also used a multiple regression residual analysis method proposed by
Evans and Geerken [30,31]. Multiple linear regression models were used to fit the vegetation
NPP according to the variation in meteorological factors. Differences between fitted and
observed vegetation NPP were treated as an artificial factor to constrain the impact of
climate change and human activity on changes in vegetation cover [32]. The calculation
ran as follows:

ε = NPPreal − NPPpre (11)

where ε is the residual error, ε > 0 indicates positive effects of human activity, ε < 0
indicates negative effects of human activity, and ε = 0 indicates negligible effects of human
activity. The term NPPreal represents the observed vegetation NPP, while NPPpre represents
the predicted NPP.

2.3.5. Partial Least-Squares Regression Method (PLS)

Modeling by partial least-squares regression method [33] combines the advantages of
principal component analysis and multivariate regression. This method used a variable
projection importance discrimination index (VIP) value calculated [34] as:

VIPj =
√

N ∑n
i=1 ∑k R2(yk, ti)w2

ij/ ∑n
i=1 ∑k R2(yk, ti) (12)

where N represents the number of independent variables, and k is the single dependent
variable. The term R2(yk, th) represents the determination coefficient for both yk and th,
n is the number of components, ti is the ith component of the independent variable, yk is
the kth component of the response variable, and w2

ij represents the contribution of each
independent variable pair, th. The independent variable of VIP > 1 is generally interpreted
as representing a significant explanation for the dependent variable. For 0.8 < VIP < 0.8,
VIP is taken to carry no explanatory significance. Otherwise, the larger the VIP value, the
greater its explanatory significance.

3. Results
3.1. Model Validation

Spatial comparison of observed data with the data generated by the CASA model
provided a means of evaluating accuracy. Figure 2 shows the results of the correlation
analysis of observed and simulated NPP, for which R2 = 0.55 (p < 0.01). The observed NPP
data apparently agree with the modeled data.

Given the temporal mismatch between the model study period and the timing of
observed data acquisition, we also used MODIS NPP finished product data to further
validate the model data. For this procedure, 55 sample points within the study area were
randomly selected for fitting analysis. As shown in Figure 3, the R2 estimated between the
MODIS NPP product value and the modeled value was 0.66 (p < 0.01). This indicates a
high degree of consistency and that CASA can generate reasonably accurate estimates of
NPP. It can better reflect the spatial distribution and interannual variation of NPP in the
Shendong mining area, and the simulation results have better accuracy than product data.
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3.2. Spatiotemporal Distribution of NPP in the Shendong Mining Area

According to the monthly NPP data simulated by the CASA model, the total value of
NPP over the time period was obtained, and then the average value of NPP in the study
area was taken as the annual value of NPP over the time period. As shown in Figure 4,
vegetation NPP generally fluctuated between 2000 and 2019, with slower increases in
2000–2011 and faster increases in 2011–2019. The annual average NPP over the entire study
period was 44.51 g C/m2 a. The propensity rate was 1.06/a with a multiannual mean trough
year in 2011 and a peak in 2018 (p < 0.01). These values differed by 37.04 g C/m2 a. Annual
average NPP distributions appear to have generally increased in the study area (Figure 5).
Regional NPP estimates were divided into five categories using a natural fracture method.
The average annual NPP for the entire region was 40 to 60 g C/m2 a. This value represented
57.96% of the entire study area (the largest proportion). An additional 34.12% of the study
area shared 20 to 40 categories, and 0.28% (minimum category) shared >80 categories.

Based on the NPP simulation results from 2000 to 2019, this paper used the R language
to conduct Sen+MK trend analysis and combined it with slope value division to determine
the NPP trend of the study area from 2000 to 2019. As shown in Figure 6, the multi-decadal
trends in NPP show considerable spatial heterogeneity. The areas of Dongsheng, Kangbashi,
and the Inkinhoro Banner, representing 21.54% of the study area, experienced increased
vegetation NPP. Pixels representing 78.46% of the study area experienced decreasing NPP.
The MK significance test (Figure 7) indicates that 1.69% of the study area experienced an
extremely significant rise in NPP. Pixels representing 1.33% of the study area experienced
a significant rise in NPP. Pixels representing 18.42% of the study area experienced only a
weakly significant rise in NPP. Pixels representing 0.19% of the study area experienced no
significant increase in NPP. Pixels representing 0.01% of the study area experienced a very
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significant decline in NPP, and 0.12% of the study area experienced a significant decline in
NPP. The spatial distribution of the significance of trends was consistent with that of the
vegetation NPP trend itself.
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The directly affected area and the natural growth area in the past 20 years are listed
one-to-one to determine the response law of the artificial vegetation and the natural growth
area. Figure 8 shows the comparison and fitting curve of the annual NPP values between
the direct affected area and the natural growth area. It can be seen that the overall net
primary productivity of vegetation in both the directly affected area and the natural growth
area shows a fluctuating upward trend, and the change is basically the same as that in the
study area. Among them, the multi-year average value in the study period of the direct
affected area is 48.26 g C/m−2 a−1, and its tendency rate is about 1.44/a. The multi-year
average value in the study period of the natural growth area is 48.69 g C/m−2 a−1, its
tendency rate is about 1.12/a, and both areas pass the p < 0.01 significance test. At the same
time, it is not difficult to see that, compared with the two areas, the vegetation NPP in the
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area directly affected by coal mining was mostly smaller than that in the natural recovery
area before 2009.
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This may be related to the leap forward in development in this area from 1999 to 2009,
which led to the decline of vegetation NPP in the area directly affected by coal mining.

After that, the vegetation NPP in the areas directly affected by coal mining has grad-
ually become larger than the vegetation NPP in the natural recovery area. This may also
coincide with the impact of the construction of ecological civilization proposed by China at
the 17th and 18th CPC National Congress of the Communist Party of China.
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3.3. Meteorological Factors

To determine the influence of vegetation NPP in the study area, SIMCA 14.1 was used,
with annual NPP as the dependent variable and annual precipitation and annual average
temperature as the independent variables. We estimated partial correlation coefficients
between annual NPP and annual precipitation and average annual temperature from 2000
to 2019. As can be seen from Figure 9a,b, significant spatial differences appeared between
NPP and each factor. The partial correlation coefficient for NPP and precipitation ranged
from −0.60 to 0.92. The partial correlation coefficient for air temperature ranged from
−0.72 to 0.77. Correlation of both factors showed both positive and negative covariance
with vegetation NPP. In contrast, precipitation provided primarily positive correlation
coefficients (a). Areas positively correlated with precipitation occur primarily in the west or
in scattered areas in the middle and east of the study area. These account for 92.79% of the
total area. Air temperature covaried negatively with NPP (b). Regions with negative corre-
lation coefficients occurred primarily in western regions or were distributed throughout
the central and eastern regions. These represented 78.08% of the total area.

Vegetation NPP correlated weakly with precipitation in the study area and showed sig-
nificant spatial heterogeneity. The correlation coefficients between NPP and air temperature
contrasted those estimated for precipitation and exhibited opposing spatial distributions.
This indicates that the correlation between precipitation and temperature may jointly
affect NPP.
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3.4. Effects of Human Activity

Vegetation NPP can depend on both natural and human factors. Although climate
change may influence NPP in the study area, correlation analysis can only describe the
degree of covariance between NPP and various climate factors, but cannot quantify the
strength of the influence. Along with climate factors, human activity may also strongly
influence NPP. Residual error analysis was used to identify and quantify the influence
of human activity on NPP in the study area. A multiple linear regression model based
on temperature and precipitation data generated fitted NPP values for the study period.
Residual estimates were obtained by calculating the difference between the predicted and
observed values in the study area. Values were then analyzed as potential estimates of the
influence of human activity on NPP in the study area.

Based on the results of correlation analysis, this paper selects precipitation and tem-
perature factors in the current year, establishes a linear regression equation based on the
pixel scale to predict NPP, and obtains NPP time series with only the climate effect, so as to
obtain the residual value, which is the impact of human activities on NPP. Figure 10 shows
the overall trend of the estimated influence of human activity on NPP from 2000 to 2019.
The trend shows a slope of 0.53 per year with considerable variation around the trend. The
impact of human activity on NPP since 2011 appears relatively high in the study area. This
may relate to local environmental protection efforts. The human influence on NPP from
2015 to 2018 appears relatively weak. This may relate to meteorological factors in the study
area and coupling effects.

Figure 11 shows the spatial distribution of the influence of human activity. Negative
values indicate the influence of human activity on NPP. Only a very limited area experienced
a negligible influence of human activity on NPP. The area where human activity appeared
to have enhanced NPP accounted for 90.86% of the total study area. Intuitively, coal mining
areas show greater human activity influence than other areas.
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3.5. Double Impact Effects

Partial least squares analysis was used to address multivariate commonality problems
arising from intercorrelated variables [35]. As shown in Figure 12a, the ability of variables
to explain changes in NPP (VIP) is ranked as follows: human activity (1.64) >temperature
(0.48) >precipitation (0.27). This indicates that human activity explains more variation than
climate variation does, especially in recent years. Temperature appears to exert a stronger
influence than precipitation on vegetation NPP. Figure 12b gives regression coefficients for
the estimated regression equation of y = 0.024x1 − 19.44x2 + 8.06x3 + 181.97. The terms x1,
x2, and x3 indicate precipitation, air temperature, and human activity. As seen in Figure 12c,
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air temperature exerts a negative effect on NPP while other factors, including human
activity, exert a strong positive effect, indicated by an increase in NPP. These relations
suggest that recent interventions promoting NPP have succeeded.
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4. Discussion
4.1. NPP Simulation Results

Although the CASA model appears to have provided adequate NPP estimates for
the study area, uncertainties in observed NPP and the resolution of the data may pose
difficulties. Further validation of the CASA NPP can help increase confidence in the esti-
mated results. Estimates of NPP for this region were therefore compared with previous
CASA-generated NPP results as reported by Zhu Wenquan [28]. The results described here
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also generally resemble those published by Mu Shaojie [36], who performed an inversion
of CASA results from the Inner Mongolia Autonomous Region [37]. The results interpreted
here are generally lower than those reported by Xie S.S. [38], who used a BLOME-BGC
model. The differences among the inversion results may arise from several sources. Mis-
matched time intervals or spatial scale may generate different results. Differences in the
models themselves, their parameters, or inversion settings may also cause variation. Differ-
ent interpolation methods applied to the data and differing scopes of the study area can
introduce uncertainties into meteorological data, which propagate into spatial results. This
study compared NPP results among field observational sources, model sources, and from
previous sources. The results are generally consistent. Previous research has shown that
the CASA model performs NPP inversion, but the current spatial resolution and temporal
duration of data remain limited. The study area is also only covered by a limited number
of meteorological stations. Together, these factors limit the scope of the study to analyze
only a few factors exerting potential influence on NPP.

4.2. NPP Distribution and Influence Factor Response

Studies have documented the considerable restoration of vegetation since 1980 through-
out China, and especially in northern China. Although spatially heterogeneous, restoration
appears to have occurred relatively rapidly [39]. The present study detected obvious spatial
heterogeneity at regional and local scales. Spatial heterogeneity arises largely due to human
activities. The research area covers urban and developed areas such as the Dongsheng
District and Kangbashi. In recent years, urban development and expansion have included
the installation of more green space and urban landscaping. Relative to surrounding areas,
results may underestimate NPP values due to lower original vegetation coverage values.
Impacts associated with urban expansion and mining, including destruction of vegetation,
can gradually diminish vegetation NPP for surrounding areas. Many researchers studying
NPP changes have found that they jointly depend on human activity and climate. Climate
data presently record the rapid rise in temperatures [40]. This can increase the release of
soil organic matter and exert catalytic effects on the growth of vegetation [41]. Human
activities such as returning farmland to forest or other ecological restoration efforts can
increase vegetation coverage and productivity [42]. All of these factors can increase NPP. By
contrast, climate change and human activity can also limit vegetation growth or coverage.
Rapid warming and drying in the northwest, for example, likely intensifies drought, which
limits the growth of vegetation in the region. The intensification of human activities in
woodland, grassland, and other types of vegetated areas can also reduce productivity
through reduced biodiversity or other impacts on the ecosystem.

As for the areas directly affected by coal mining and the natural growth areas involved
in this study, the literature shows that by the end of 2019, the Shendong mining area
had invested a total of 269 million yuan in ecological environment construction [43]. The
vegetation NPP in the affected area increases year by year and gradually surpasses the
natural restoration area. However, as shown in this study, from the perspective of vegetation
NPP over the years, and under the premise of continued coal mining in the future, the
vegetation ecological restoration in the area directly affected by coal mining will still be
affected. Further strengthening is required.

In the area considered by this study, regional annual precipitation, temperature, and
human activity have all increased simultaneously over the past 20 years. The data plotted in
Figures 4, 10 and 13 show that in 2014 and 2018, NPP remained high during the respective
peaks of human activity and precipitation. These years experienced moderate average
temperature values. This suggests that climate change and human activity can strongly
influence regional NPP and its spatial distribution. Air temperature appears to covary
negatively with NPP, while other factors covary positively with it. Human activity exerts
the strongest positive influence, indicating that increases in NPP reflect effective recent
human environmental interventions, including restoration.
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Accelerated urbanization of the Dongsheng District, the Kangbashi District, and
the Ejin Horo Banner undeniably reflects intensified human activity, but the effects of
this activity on NPP have gradually weakened. The Shendong mining area occurs in an
ecologically fragile area. Large-scale mining and human activity have included perennial
vegetation restoration and irrigation with recovered water. The local environment has been
negatively impacted, but mitigation efforts have reduced some of the damage. Economic
development and environmental plans suggest coordinated development of “underground
factory and ground gardens” as research objectives [44]. Future research should further
quantify and evaluate how to optimize vegetation NPP according to factors that can
improve the environmental quality of the area.
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5. Conclusions

Through the analysis of the annual vegetation NPP and its influencing factors in the
Shendong mining area from 2000 to 2019, the following conclusions can be drawn.

(1) From 2000 to 2019, the overall condition of the net primary productivity of vegetation
in the study area showed a fluctuating upward trend. The multi-year average was
44.51 g C/m−2 a−1, and the trend rate was 1.06/a. The multi-year average trough
year appeared in 2011, while the peak year appeared in 2018. Spatially, there is an
increasing distribution from north to south. The variation trend has a large spatial
heterogeneity, with the area with an increasing trend of vegetation NPP accounting
for 21.54%, mainly distributed in the Dongsheng District, the Kangbashi District and
the bordering areas of the Yijinhuoluo Banner; other areas showed a decreasing trend,
the area of which accounted for 78.46%.

(2) The change trend for vegetation NPP in the direct affected area and natural growth
area over the years is basically consistent with the change in the overall vegetation
NPP. Before 2009, the vegetation NPP in the area directly affected by coal mining was
mostly smaller than that in the natural restoration area. After 2009, the vegetation
NPP in the area directly affected by coal mining was mostly larger than that in the
natural restoration area. This is related to the local mining situation and ecological
restoration measures.

(3) There are obvious spatial differences in the response relationship between NPP and
each factor in the study area. The correlation between the two factors and vegetation
NPP is both positive and negative as a whole. Among them, the precipitation is
mainly positive, and the temperature is negative. The correlation between vegetation
NPP and temperature in the study area was weaker than that of precipitation.

(4) The overall influence of human activities on NPP in the study area showed an increas-
ing trend, with a tendency rate of 0.53/a. There are differences in the performance
of human activity intensity in different years during the study period. Since 2011,
the impact of human activities on NPP in the study area has been relatively strong.
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The overall impact of human activities on the net primary productivity of vegetation
in the study area showed a decreasing distribution trend toward the central and
northeastern regions.

(5) NPP changes in the study area are affected by both climate change and human
activities. Human activities have a more significant contribution to the change in
vegetation NPP than climate. The explanatory power of the influencing factors for
the change in vegetation cover is ranked as follows: human activity > air temperature
> precipitation.

In general, although the vegetation in the study area has been improved in the past
20 years, considering that the influence of regional climate conditions on vegetation growth
is weak, it is necessary to strengthen the protection and restoration of the vegetation in the
study area in order to ensure the stability of the ecological environment in the area in the
future. It is suggested that the study area should improve its ecological construction in the
future. Plants should be selected that can simultaneously tolerate stress from specific metals,
drought, and low nutrient levels. At the same time, the mining environment management
and supervision should be strengthened to ensure the stable improvement of vegetation
ecological management in the Shendong mining area.
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