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Abstract: We address the issue of multi-aircraft cooperative strategic trajectory planning in free-route
airspace (FRA) in this study, taking into consideration the impact of time-varying and altitude-varying
wind forecast uncertainty. A bi-level planning model was established in response to the properties
of the wind. The upper level focused on minimizing the flight time, while the lower level aimed to
reduce potential conflicts. Meanwhile, a heuristic approach based on conflict severity (CS) within the
framework of a cooperative co-evolution evolutionary algorithm (CCEA) was proposed to accelerate
the convergence speed in view of the complexity of this optimization issue. In order to conduct
the experiments, historical data of 1479 flights over western Chinese airspace were retrieved. The
number of conflicts, total flight time, total flight time variance, and deviation were used as indicators
to evaluate the safety, efficiency, and predictability of the trajectory. When compared to a trajectory in
the structured airspace, the optimal solution was conflict-free and reduced the total flight time by
about 17.7%, the variance by 11.7%, and the deviation by 37.5%. Additionally, the contrast with the
two-stage model demonstrated that the proposed method was entirely meaningful. The outcome of
this survey can provide an effective trajectory-planning method, which is crucial for the sustainable
development of future air traffic management (ATM).

Keywords: air traffic management; trajectory-based operation (TBO); free-route airspace; trajectory
planning; wind uncertainty; bi-level planning model

1. Introduction

Increasing air traffic is expected in the coming decades, impacting flight efficiency and
safety. The IATA estimates that the worldwide passenger number will reach 7.3 billion,
according to its 20-year forecast to 2034. The IATA forecasts that, by 2034, 1.8 billion
additional passengers will travel to, from, and within the Asia-Pacific region, with an
overall market size of 2.9 billion. The size will carry 42% of all world traffic, with an
average annual growth rate of 4.9% [1]. An unavoidable barrier to achieving the sustainable
development of the air transportation system is the imbalance between the expanding air
traffic demand and the constrained capacity of the airspace.

Against this backdrop, the need to modernize the air transportation system is evident.
Prominent initiatives have been launched both in Europe (i.e., SESAR) and in the US
(i.e., NextGen) to develop a future air transportation system that is more flexible, resilient,
and scalable than that of today [2]. The implementation of both the ICAO free-route
airspace [3] and trajectory-based operation [4] concepts serves as the cornerstone of these
endeavors. In FRA, users freely plan a route between a defined origin and destination,
with the possibility of routing via intermediate points, which is more flexible. With the
shift toward TBO, aircraft need to meet strict time and space constraints in the form of four-
dimensional trajectory (4DT) [5]. In this framework, more accurate trajectory information
can be provided for ATM.

Trajectory planning is a crucial subject in ATM from the operational point of view.
According to the studied time horizon, trajectory planning can be classified into strategic
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(usually considering at network scale), pre-tactical, and tactical (usually considering only
a sector). Under the paradigm of TBO, it is realizable to conduct trajectory planning in
the strategic stage. Due to the coupling relationship between aircraft, tactical trajectory
planning may create a “domino” effect, keeping the trajectory planning in a reactive state
and endangering airspace safety. For example, when we modify departure time to resolve
potential conflicts, a delayed aircraft may still need to wait for many other aircraft to
meet the capacity constraints [6]. Strategic trajectory planning, however, may not only
provide the optimal solution from a global perspective and lessen the workload of air traffic
controllers, but it may also resolve the problem of large-scale trajectory planning.

Because of the extensively studied time horizon and broad flight span, there is no
doubt that uncertainty factors cannot be discarded in strategic trajectory planning. There
are several different sources of uncertainty that impact ATM, from participant choices to
ambiguity and unavailability of the trajectory data [7]. Wind direction and speed, fog,
snowfall, and thunderstorms are some of the weather-related factors that have significant
effects on ATM systems. Incomplete knowledge of current and future weather conditions is
responsible for aircraft delays and cancellations, which negatively affects ATM systems and
converts into additional costs for airlines and air navigation service providers [8]. The trend
today for describing and quantifying inherent forecast uncertainty is ensemble prediction
systems (EPSs), which are based on ensemble modeling [9].

Numerous studies have used EPSs to account for weather forecast uncertainty in
order to enhance the robustness of trajectory planning. Gonzalez-Arribas et al. suggested
combining a robust optimal control framework with probabilistic forecasts generated by
an EPS [10,11]. A straightforward strategy is to take into account each EPS member inde-
pendently, apart from this. Legrand [12] applied the Bellman algorithm to each member to
obtain the optimal trajectory ensemble, based on which a hierarchical clustering algorithm
was proposed to obtain a robust optimal trajectory from the ensemble. Although complex
in terms of computation, this approach was accurate. Therefore, it was not appropriate
for cooperative trajectory planning issues. On the other hand, extending some of the
probabilistic trajectory prediction approaches is a frequent strategy. The optimal solution
is, therefore, discovered using a discrete optimization method [13,14]. A Dijkstra-based
trajectory predictor based on a deterministic trajectory prediction system was transformed
into a probabilistic trajectory prediction system by Cheung et al. [15]. For the purpose
of optimizing trajectory over the north Atlantic, Franco et al. [9] integrated the Dijkstra
algorithm with a probabilistic trajectory predictor based on a suggested probabilistic trans-
formation approach. Additionally, using a mixed-integer linear-programming method,
they created a multi-objective mathematical model in a structured airspace while taking
wind uncertainty information into account in [16]. The author noted that this method was
equally adapted to FRA. This approach was more effective in solving a large-scale trajectory
planning problem compared to the former.

In trajectory planning, ensuring the safety of the aircraft is as essential as improving
efficiency. Several efforts have been made in the past to address the problem of conflict
detection and resolution (CD&R) under the presence of weather forecast uncertainty. An
approach is to propagate the uncertainty from the source into the trajectory prediction.
Rodionova et al. [17] studied five types of CD&R models considering uncertainty based
on EPSs. Hernández-Romero [8,18] supposed that the wind components followed a four-
parameter β distribution. The probabilistic conflict detection problem was tackled using a
probabilistic transformation method and the probability distribution of the aircraft position
was derived based on the joint distribution of the wind components. The limitation was that
the wind was constant within a certain area in their research. The trajectory uncertainty can
be accurately captured by the probabilistic transformation approach, but the computational
complexity is insufficient for large-scale problems and strategic CD&R. Another common
method assumes that the aircraft location or flight time follows a predefined probability
distribution and treats it as a random variable. According to Jacquemart [19], the motion of
an aircraft consisted of a deterministic motion and a three-dimensional Brownian motion
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perturbation, with the variance increasing with time. To enhance the accuracy of conflict
probability estimates while predicting the probability of collision, the authors implemented
an interacting particle system. Guan [20] used a Gaussian distribution to represent the
location of an aircraft. In this article, the authors made the supposition that aircraft were
independent of one another and that the probability density function (PDF) solely related
to the moment when the aircraft arrived at the segment’s origin. A multiple CD&R model
was suggested by Jilkov et al. [21] that took intention and weather uncertainty into account,
modeling the separation vector between two aircraft as a Gaussian mixed distribution. By
linearly distributing the arrival time deviation of an aircraft to its waypoints, Courchelle [22]
investigated the impact of weather uncertainty on CD&R. The expected arrival time and the
deviation were used to calculate the arrival time interval at each waypoint. However, the
potential conflicts were solved only by adjusting the aircraft speed. Dai [23] also utilized an
uncertainty radius to represent the unknowable uncertainty of the aircraft. However, it was
challenging to estimate the magnitude and was not accurate enough to manage uncertainty.

The presented studies have usually assumed the wind uncertainty as constant. How-
ever, strategic trajectory planning has an extensive time span. Inevitably, wind changes
over time as a flight progresses. The time-varying nature of wind can cause the planned
optimal trajectory to be non-optimal and adversely affect CD&R efficiency. Furthermore,
existing studies have often performed the route planning and CD&R separately. Neverthe-
less, in CD&R, the corresponding conflict resolution strategy may lead to a change in the
optimal route. For example, the optimal route fluctuates owing to time-varying wind when
a departure time adjustment strategy is adopted.

To address the problems above, this paper proposes a bi-level programming model
based on EPSs taking time-varying and altitude-varying wind forecast uncertainty into
account. In order to integrate aircraft efficiency and safety, the upper level optimizes the
route, and the lower level performs CD&R. To solve the problem quickly, a heuristic strategy
based on conflict severity is designed under the framework of a cooperative co-evolution
evolutionary algorithm [24]. Simulation validation is performed using flights over the
western Chinese airspace from 8:00 a.m. to 12:00 p.m. on 8 June 2019, and the experiment
results show the proposed model and algorithm have good benefits.

The structure of this essay is as follows: The ensemble trajectory prediction model is
introduced in Section 2. In Section 3, we describe the bi-level mathematical model and how
it was applied to the issue of trajectory planning. The methods employed in the upper and
lower model are described in Section 4; Section 5 presents the results analysis. Finally, in
Section 6, we conclude with a brief discussion of the work.

2. Ensemble Trajectory Prediction

A probabilistic weather prediction model is the most suitable one for strategic tra-
jectory planning in order to account for inherent weather unpredictability. The use of
probability forecasting enables users to make decisions based on quantified weather uncer-
tainty, which contributes to the socio-economic benefits [16]. Applying EPSs to represent
forecast uncertainty is now popular. Accordingly, one of the important strategies for
examining trajectory uncertainty is ensemble trajectory prediction [15].

2.1. Time-Varying and Altitude-Varying Wind and Forecast Uncertainty

An EPS generates a forecast ensemble by running a numerical weather prediction
system K times, each time with a different starting state and physical parameter. For
example, PEARP (France) contains 35 members; MOGREPS (UK) has 12 members; the
ECMWF (Europe) consists of 51 members; and the multi-model ensemble SUPER, formed
by the combination of the previous three, is constructed of 98 members. Each member
represents a possible future weather condition [15], as shown in Figure 1.
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Figure 1. Ensemble prediction system.

The integrated forecasting system of the ECMWF is an ensemble of 51 members
(1 control member and 50 perturbed members). The ECMWF has a forecast up to 15 days,
with two times per day at 0000UTC and 1200UTC. The horizontal interval is 32 km, and
the vertical direction is divided into 91 layers [25].

A wind grid was constructed to store the wind information provided by the EPS. The
size was N ×M, with a step ∆lat in latitude and ∆lon in longitude. The grid ranged from
λmin to λmax in latitude and from φmin to φmax in longitude, as shown in Figure 2. Each
grid node stored information, including latitude λ, longitude φ, altitude h, the east wind
component WE, and the north wind component WN .

Figure 2. Wind grid.

When the studied time span was [0, T], the forecasting wind data was given at the
time interval tvp, starting from the moment of 0. The wind was variable in time and vertical
dimension, and the moment when the wind changes was called the time-varying point.
Undoubtedly, WE(t) and WN(t) were related to time. In Figure 3, on 8 June 2019, the trends
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of WE(t) and WN(t) from 8:00–12:00 at (31◦N, 93◦ E) with an altitude of 10,100 m and the
trends of WE(t) and WN(t) from 8900–11,600 m at 8:00 are given.

Figure 3. The trends of WE(t) and WN(t) from 8:00–12:00 at (31◦N, 93◦ E) (altitude 10,100 m) and
the trends from 8900 m–11,600 m at 8:00 (red dot represents the wind speed).

At each grid point, the wind bearing θw(t) is shown in Figure 4a, θw(t) and the wind

norm ‖
→
W(t)‖ was calculated with the following formula:

θw(t) = arctan{WE(t)
WN(t)}

‖
→
W(t)‖ =

√
W2

E(t) + W2
N(t)

(1)

In strategic trajectory planning, due to the long advance time and the large span of the
aircraft operation time, it is necessary to consider the critical effect of time-varying and the
altitude-varying wind.
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Figure 4. Wind bearing (a) and segment bearing (b), red (waypoint), green (wind).

2.2. Time-Varying Ensemble Trajectory Prediction Model

According to Dancila [26], choosing a geographic area is a crucial decision in trajectory
planning since it influences both the effectiveness of the algorithm and the optimal solution.
For the multi-aircraft collaborative trajectory-planning problem, the entry and exit points
into and out of FRA cover a wide area. Hence, a rectangular geographical area [27]
was constructed.

In this work, the latitude and longitude ranges of the geographical search area were
consistent with the wind grid and had the same grid granularity. The grid nodes formed
the waypoint setW . Each node had a list of allowed neighbors, which are represented by
the black links in Figure 5. These links formed the segment set E . The available altitude set
was defined asH. Therefore, ∀h ∈ H, and the FRA could be modeled as a graph G(W , E).

Figure 5. Waypoint connection rule: current waypoint (red), allowed (blue), and disallowed (green).

Let us consider a set of flights F scheduled to pass over a given FRA in [0, T]. Then,
∀ f ∈ F, h ∈ H, and the 4DT could be described as {(e1

f , h f ,T e1

f ),{(e2
f , h f ,T e2

f ), . . . , (en
f , h f ,T en

f )}:
where ei

f is the segment i aircraft f passed; h f is the corresponding flight altitude; and T ei

f
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is the flight time set on segment ei
f . When r f is the horizontal route of the aircraft f , then it

can be expressed as a sequence of n segments, i.e.:

r f =
(

e1
f , . . . , en

f

)
,

ei
f ∈ E , ei−1

f ∈
=
E ei

f
, ei+1

f ∈ E
=

ei
f ,

ei
f = (wi

f , wi+1
f ), wi

f ∈ W

where
=
E ei

f
is the set of segments entering the tail node of segment ei

f , and E
=

ei
f is the set of

outgoing segments from the head node. Eei
f
=

=
E ei

f
∪ E

=
ei

f is the set of segments connected to

the blue nodes in Figure 5.
Tei

f was obtained by ensemble trajectory prediction. We considered a three-degree-
of-freedom point-mass model of a commercial aircraft flying over the FRA, with the
assumption that the aircraft was in the cruise part with a constant speed and altitude.

∀e ∈ E connected one origin node wo and the destination node wd. The great circle
distance of segment e was given by the following formula:

de = R · arccos
(→

Pd ·
→
Po

)
(2)

where →
Po = (Xo, Yo, Zo)

T

→
Pd = (Xd, Yd, Zd)

T
(3)

→
Po and

→
Pd are the Cartesian coordinates of the nodes wo and wd, respectively. Assum-

ing R is the radius of the Earth indicates the vector inner product. For a given waypoint w,
the Cartesian coordinates were given by the following formula:

→
P =


X = R · cos(λ)× cos(φ)
Y = R · cos(λ)× sin(φ)
Z = R · sin(φ)

(4)

The segment bearing θe is shown in Figure 4b and was calculated by the following
formula: 

θe(wo, wd) = arctan
( y

x
)

y = sin(φd − φo) · cos(λd)
x = cos(λo) · sin(λd)−

sin(λo) · cos(λd) · cos(φd − φo)

(5)

Based on the previous equation, we now computed the tail wind for the origin wo and
destination wd of segments e (VWe

o(t) and VWe
d(t)):

VWe
o(t) =

∥∥∥∥ →Wo(t)
∥∥∥∥ · cos(θe − θwo (t))

VWe
d(t) =

∥∥∥∥ →Wd(t)
∥∥∥∥ · cos

(
θe − θwd(t)

) (6)

The two tail winds were then averaged and associated with each segment:

VWe(t) =
VWe

o(t) + VWe
d(t)

2
(7)
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Then, for each segment, the time needed by the aircraft to connect node wo and wd was:

Te(t) =
de

Va + VWe(t)
(8)

where Va is the true airspeed of the aircraft.
The deterministic trajectory prediction method was repeatedly applied to each member

of the EPS. Consequently, we could obtain some parameter sets of the trajectory, such as
flight time, fuel consumption, and so on.

According to the above-mentioned segment flight time calculation method, under
the condition of member k, we could calculate the flight time (Te

k (t)) f . Finally, the flight

time set T e
f (t) =

(
(Te

1(t)) f , (Te
2(t)) f , Te

3(t)) f , · · · , Te
K(t)) f

)
could be obtained, and K was

the number of EPS members. Based on the assumption that each member in the EPS had
the same probability of occurring, the flight cost of the segment could be defined as the
mean [28], the deviation, or a linear combination of any other characteristics [29].

3. Trajectory-Planning Model

Based on the analysis of time-varying and altitude-varying wind and forecast uncer-
tainty, a bi-level trajectory planning model was established. This model integrated the
efficiency and safety of aircraft, with the aircraft departure time and flight altitude as the
trigger conditions. The upper level focused on the aircraft optimal route planning, and
the objective of the lower-level programming was to minimize the conflict number and
trajectory amendment cost for conflict resolution. A flow chart of the model is shown in
Figure 6.

Figure 6. Bi-level programming model flow chart.
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3.1. Assumptions

In this work, the following assumptions were considered:

• The time ∆T from the departure moment to the entry moment of the flight entering
the FRA was constant and known;

• The segment flight time was related to the moment when the aircraft arrived at the
beginning of the segment only, ignoring the effect of wind change over a segment;

• The segment flight time variance and maximum error in arrival time at the end of the
segment grew linearly with flight time;

• The PDFs of the flight times on different segments were independent, and the PDFs
between different aircraft were independent, too.

3.2. The Upper Level for Route Planning

The effect of time-varying and altitude-varying wind was considered in the route
planning. The objective of the upper-level programming was to minimize the expected
flight time of the route with a variance constraint. Therefore, the optimal route must satisfy
two requirements: the shortest flight time and the allowed predictability.

∀ f ∈ F , h ∈ H, e ∈ r f under the influences of wind, the unbiased estimates of the
flight time expectation µe

f ,h(t), and variance σ2e
f ,h(t) could be obtained from T e

f ,h(t) from
Section 2.2:

µ̂e
f ,h(t) =

1
|K|

|K|

∑
k=1

(Te
k (t)) f ,h, σ̂2e

f ,h(t) =
1

|K|−1

|K|

∑
k=1

((Te
k (t)) f ,h − µ̂e

f ,h(t))
2 (9)

We defined the time arriving at the start of the segment as toe
f ,h and the time departing

the end of the segment as tde
f ,h, resulting in the following:

toe
f ,h = δ f + ∆T + ∑

ẽ∈Ẽ
µ̂ẽ

f ,h(t),

tde
f ,h = toe

f ,h + µ̂e
f ,h(t)

(10)

where δ f is the departure time, ∆T is known, and Ẽ represents the set of segments passed
through by f before segment e.

As shown in Figure 7, there were two continuous segments of ei and ei+1 in the FRA,
and f may be affected by Wind1 and Wind2, where the assumed effective times of Wind1
and Wind2 are [0, tvp] and [tvp, 2tvp], respectively.

Figure 7. No time-varying point on the segment (a) and the presence of time-varying point on the
segment (b).
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Firstly, on segment ei, as shown in Figure 7a, the aircraft was under the influence of
Wind1. If toei

f ,h < tvp and tdei

f ,h < tvp, then we defined no time-varying point. On the contrary,

as shown in Figure 7b, if toei

f ,h < tvp and tdei

f ,h ≥ tvp, then there was a time-varying point.

In the first situation, the wind did not change on segment ei and ei+1, and aircraft f
was influenced by Wind1, yielding the following:

Tei

f ,h(t) = µei

f ,h,1(t), σ2ei

f ,h(t) = σ2ei

f ,h,1(t)

Tei+1

f ,h (t) = µei+1

f ,h,1(t), σ2ei+1

f ,h (t) = σ2ei+1

f ,h,1(t)

In the second situation, aircraft f was influenced by Wind1 on segment ei and influ-
enced by Wind2 on segment ei+1, resulting in the following:

Tei

f ,h(t) = µei

f ,h,1(t), σ2ei

f ,h(t) = σ2ei

f ,h,1(t),

Tei+1

f ,h (t) = µei+1

f ,h,2(t), σ2ei+1

f ,h (t) = σ2ei+1

f ,h,2(t)

Obviously, Wind1 and Wind2 were in connection with the flight altitude h f , and t was
associated with δ f .

According to the previous inference discretizing the overall time range [0, T] into the
time set, we could calculate the functions for Te

f ,h(t) and σ2e
f ,h(t).

The departure time and flight altitude were obtained from the lower level,
i.e., δ

up
f = δlow

f , hup
f = hlow

f . Then, the upper-level programming model could be de-

scribed as ∀ f ∈ F , planning the flight time optimal route with variance constraint σ2
0 when

the departure time δ f and the flight altitude h f were known.
To formulate the problem, the following decision variable was defined:

xe
f ,h(t) =

{
1, if f is on segment e at altitude h by time t
0, else

Then, the vector X f ,h(t),= [xe1

f ,h(t), xe2

f ,h(t), . . . , xe|E |
f ,h (t)], t ∈ T represented the segment

status by time t. Moreover, the dimension of the vector was equal to the segment number.
The upper-level programming model was as follows:

min ∑
e∈E ,t∈T

Te
f ,h(t)xe

f ,h(t)

s.t. t
(

xe
f ,h(t)− xe

f ,h(t− 1)
)
= δ f ∀ f ∈ F , h ∈ H, t ∈ T : e = orig f (11)

xe
f ,h(t) ≤ ∑

e′∈
=
E e f

xe′
f ,h

(
t + Te

f ,h(t)
)

∀ f ∈ F , h ∈ H, t ∈ T : e 6= dest f (12)

xe
f ,h

(
t + Te′

f ,h(t)
)
≤ ∑

e′∈E
=

e f

xe′
f ,h(t) ∀ f ∈ F , h ∈ H, t ∈ T : e 6= orig f (13)

∑
e∈E ,t∈T

σ2e

f ,h(t)xe
f ,h(t) ≤ σ2

0 ∀ f ∈ F , h ∈ H (14)

∑
t∈T

xe
f ,h(t) ≤ 1 ∀ f ∈ F , h ∈ H, e ∈ E (15)

∑
e∈E

xe
f ,h(t) = 1 ∀ f ∈ F , h ∈ H, t ∈ T (16)

where constraint (11) imposes that the aircraft needs to satisfy the allowed departure time.
Constraints (12) and (13) indicate that the entry and exit points cannot be changed. In addi-
tion, constraint (14) states that the variance does not exceed the acceptable range, constraint
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(15) is used to ensure that the optimal route does not contain cycles; and constraint (16)
indicates that, at any moment, the aircraft must select a segment (that is,

∥∥∥X f ,h(t)
∥∥∥ = 1).

In general, ∀t ∈ T , e f ,h(t) = X f ,h·E , r f ,h =
{

e f ,h(t1), e f ,h(t2), · · · , e f ,h(tn)
}

.

3.3. The Lower Level for Probabilistic Strategic CD&R

In the lower-level programming model, the number of conflicts was minimized by
ground delay and altitude changes.

Under the context of 4DT, a set of 4D points S f was obtained by sampling the trajectory
at equal distance intervals, i.e.:

S f =
{(

lon1
f , lat1

f , h1
f , T1

f

)
,
(

lons
f , lats

f , hs
f , Ts

f

)
, · · · ,

(
lon
|S f |
f , lat

|S f |
f , h

|S f |
f , T

|S f |
f

)}
(17)

where
∣∣∣S f

∣∣∣ denotes the number of sample points. lons
f and lats

f represent the longitude and
latitude of the sample point, respectively; hs

f is the flight altitude; and Ts
f is obtained from

the set T e
f ,h(t) mentioned in Section 2.2, indicating the PDF of the aircraft crossing time of

the sample point s.

3.3.1. Conflict Number and Conflict Severity

Due to the wind forecast uncertainty, an approach to statistically quantifying the
severity of aircraft conflict was presented, and we employed the conflict probability (CP) as
an indicator to identify the conflict. Then, the conflict number (CN) could be calculated
as follows:

CN =
|F |
∑

i=1

|F |
∑

i=1
j>i

C(S fi
, S f j

)

if
∣∣∣∣∣∣(lonSi

fi
, latSi

fi
), (lon

Sj
f j

, lat
Sj
f j
)
∣∣∣∣∣∣2 < N h,∣∣∣hSi

fi
− h

Sj
f j

∣∣∣N v, CP fi , f j
≥ CP0,

then :
C
(

S fi
, S f j

)
= 1

(18)

where Nh is the horizontal separation, Nv is the vertical separation, and CP0 is the maximum
acceptable conflict probability.

According to the upper-level programming model, the expectation of the flight time
on segment e was Te

f ,h, and the variance was σ2e
f ,h, defining the maximum error in the

arrival time at the end of the segment as follows:

ωTe
f ,h = max{(ωTe

f ,h)min, (ωTe
f ,h)max}

where : (ωTe
f ,h)min = Te

f ,h −min
k∈K

((Te
k ) f ,h)

(ωTe
f ,h)max = max

k∈K
((Te

k ) f ,h)− Te
f ,h

(19)

If there was no time-varying point on e, then:

∀ts
f ,h ∈

[
toe

f ,h, tde
f ,h

]
,
(

ωte
f ,h

)s
=

ts
f ,h−toe

f ,h

tde
f ,h−toe

f ,h
×ωTe

f ,h + ∑
ẽ∈Ẽ

ωT ẽ
f ,h,

(
σ

2e
f ,h
)s

=
ts

f ,h−toe
f ,h

tde
f ,h−toe

f ,h
× σ2e

f ,h + ∑
ẽ∈Ẽ

σ
2ẽ

f ,h .
(20)
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If there was a time-varying point on e (Figure 7b), then the segment was divided into
two sub-segments at the time-varying point. In addition, the time-varying point must be
contained in the sample point set S f . The crossing-time expectation and variance in the
sample point on the sub-segments could be calculated by Equation (20).

We considered aircraft f1 with sample point s1, as well as aircraft f2 with sample point
s2. Under the assumption that the crossing time, in general, obeyed a Gaussian distribution,
Ts1

f1
and Ts2

f2
could be acquired, where the expectation and variance were calculated by

Equations (19) and (20).
Then, the joint PDF was:

Ts1,s2
f1, f2

(t) = Ts1
f1
(t)× Ts2

f2
(t) (21)

The CP and conflict time (CT) are shown in Figure 8 and were determined with the
following equation:

CP =
∫ DT2

DT1
Ts1,s2

f1, f2
(t)dt, CT =

∫ DT2
DT1

tTs1,s2
f1, f2

(t)dt

DT1 = min
(

ts1
f1,h1

+ ωts1
f1,h1

, ts2
f2,h2
−ωts2

f2,h2

)
, DT2 = max

(
ts1

f1,h1
+ ωts1

f1,h1
, ts2

f2,h2
−ωts2

f2,h2

) (22)

where [DT1, DT2] is the overlap of the time intervals.

Figure 8. Conflict probability and conflict time.

The conflict severity (CS) was the sum of the CTs of two aircrafts’ total sample points, i.e.:

CS = ∑
S fi

,S f j

CT (23)

3.3.2. Conflict Resolution Model

The decision variable in the lower-level programming was:

u : = (δ, h)

where δ : =
(

δ1, δ2, δ3, · · · , δ|F |

)
is the departure time vector, and h : =

(
h1, h2, h3, · · · , h|F |

)
is the flight altitude vector.

In order to deviate from the optimal trajectory as little as possible, we defined the
trajectory amendment cost (TAC), which consisted of the ground delay cost (CGD) and the
flight altitude changes cost (CFA). In this paper, CGD and CFA were normalized. The TAC
was calculated as follows:

TAC = χGD × CGD + χFA × CFA

CGD = ∑
f∈F ,h∈H

(
δ f − δ

orig
f

)
CFA = ∑

f∈F ,h∈H

∣∣∣h f − horig
f

∣∣∣
(24)

where χGD and χFA represent the ground delay and flight altitude changes cost weights,
respectively.
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Then, the objective function in the upper-level programming was:

objective = max{1− TAC(u)/TACmax

1 + CN(u)
}

The following constraints should be satisfied in this model:

• Ground delay constraint: With the aim to prevent the flight from being postponed too
long, the ground delay GD f was be limited to lie in the discrete interval [0, ∆TGD]:

∀ f ∈ F , GD f ∈ {0, ∆tGD, . . . , ∆TGD}

GD f = δ f − δ
orig
f

(25)

where ∆tGD is the ground delay slot; ∆TGD represents the maximum acceptable delay;
and δ f and δ

orig
f are the real and initial departure times, respectively.

• Flight altitude constraint: In order to limit the change in flight altitude, the set of all
the possible flight altitude changes was set to the following:

∀ f ∈ F , FA f ∈ {0, ∆hFA, . . . , ∆HFA}

FA f =
∣∣∣h f − horig

f

∣∣∣ (26)

where ∆hFA is the flight altitude slot; ∆HFA represents the maximum allowed change;
and h f and horig

f are the real and initial flight altitudes, respectively. In general, the
lower-level programming model was:

max 1−TAC(u)/TACmax
1+CN(u)

s.t. GD f ∈ {0, ∆tGD, . . . , ∆TGD}
FA f ∈ {0, ∆hFA, . . . , ∆HFA}

(27)

4. Algorithms

Trajectory planning is a large-scale combinatorial optimization problem, which is often
solved by heuristic algorithms. The successful implementation of this bi-level methodology
largely depended on developing efficient solution algorithms. In this work, a genetic algo-
rithm (GA) and a CCEA were used to optimize the upper- and lower-level programming
models, respectively. Moreover, a heuristic strategy based on CS was designed to accelerate
the convergence of the CCEA. The framework is described in Algorithm 1.

Algorithm 1: The framework of the proposed method.

Input: Historical data, MAXgenerations
Output: Conflict free 4D trajectory
//Upper level
1: Planning the optimal initial route with GA according to the decision variables;
2: Obtain the optimal trajectory set;
//Lower level
3:For i = 1: MAXgenerations do
4: Resolve the potential conflicts with CCEA and obtain new decision variable;
5: Recalculate optimal trajectory set with upper level according to new decision variable.
6:End for

4.1. GA for Upper-Level Optimization
4.1.1. Chromosome Structure

As described in Section 2, the grid nodes were firstly numbered in the orders of east to
west and south to north. Then, the route r f could be represented as a set of node sequences.
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Therefore, when solving the model with the GA, we used an integer-coding method and
sorted the nodes in temporal order. The chromosome structure is shown in Figure 9.

Figure 9. Chromosome structure.

4.1.2. Initialized Population

The population, in terms of possible routes, should respect the following constraints:

• The aircraft could only fly to adjacent waypoints;
• The entry and exit points in the FRA could not be changed.

4.1.3. Route Crossover

In this paper, a one-point crossover method was used. According to the connection
rule shown in Figure 5, it could be classified into two cases. When the crossover solution
satisfied the connection rule, then a valid route was obtained, as depicted in Figure 10a; on
the contrary, an invalid route was created, as shown in Figure 10b. A tournament selection
mechanism was employed to randomly choose two parents from the population.

Figure 10. Valid crossover route (full line, (a)) and invalid crossover route (dotted line, (b)), red dot
represents the waypoint.

4.1.4. Route Mutation

We used a one-point mutation method, and the mechanism is shown in Figure 11,
where the solid line indicates a valid mutation route, and the dashed line indicates an
invalid mutation route.

Figure 11. Valid mutation route (full line) and invalid mutation route (dotted line), red dot represents
the waypoint.

4.2. CCEA for Lower-Level Optimization

A CCEA was originally proposed by Potter [30]. In applying a CCEA, the complexity
of a large-scale optimization problem is reduced by decomposing it into multiple sub-
problems according to a certain grouping strategy, including uniform grouping, random
grouping, and variable grouping based on domain knowledge [31]. Each sub-problem is
evolved by an individual evolutionary algorithm. A complete problem solution is acquired
by assembling the representative members from each sub-population. CCEAs and their
improvements have been successfully applied in ATM.
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As discussed above, the flights were divided according to a dynamic grouping strategy
design based on their interdependence. In the process of sub-problem optimization, we
used a fast GA [32] with a CS strategy. The framework was as follows (Algorithm 2):

Algorithm 2: CCEA

Input: Initial solution, MAXgenerations, maxgenerations
Output: CCEA solution
//Main procedure
1:Initialize the initial solution based on CS to generate the initial population;
2:for i = 1: MAXgenerations do
3: Evaluate all the individuals in the population and select the best one based on the
4: fitness matrix;
//Cooperative co-evolution
5: Decompose the best solution into mi sub-problems based on the dynamic
6: grouping strategy;
7: Set j = 1
8: while j ≤ mi do
9: for k = 1: maxgenerations do
10: Initialize the jth sub-population;
11: Select the offspringk based on the fitness matrix;
12: Use the adaptive crossover and mutation strategy to obtain the offspringk+1;
13: end for
14: j = j + 1
15: end while
16:end for

4.2.1. Dynamic Grouping Strategy

First of all, we defined a matrix CS to indicate the CSs between two flights:

CS =

 CS11 · · · CS1|F |
...

...
...

CS|F |1 · · · CS|F ||F |

 (28)

where CSij represents the CS between fi and f j.
Secondly, a conflict interaction matrix CI was defined to denote whether two flights

conflicted with each other:

CI =

 CI11 · · · CI1|F |
...

...
...

CI|F |1 · · · CI|F ||F |

, CIij =

{
1, i f CSij > 0
0, i f CSij = 0

(29)

If ∀i 6= j, CIij = 0, a uniform grouping strategy was applied to divide the aircraft into
m groups with the same size.

If ∃i 6= j, CIij = 1, the flights were divided into different groups according to their
conflict interactions:

groupk =
(

f k
1 , f k

2 , · · · , f k
|Fk |

)
0 < |Fk| < |F |, ∑|Fk| = |F |

(30)

The flights in each group satisfied the following correlation:

∃ fi, f j ∈ groupk, CIij = 1,
∀ fi ∈ groupk, f j ∈ groupl , CIij = 0.

(31)
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4.2.2. Adaptive Initialization Operator

According to matrix CS , the CS of fi was:

CSi =
|F |

∑
j=1

CSij (32)

To select the flight to participate in the initialization, a roulette selection method was
used, and preference was given to flights with bigger CSs.

We assume that the probability of adjusting departure time was PGD, and the prob-
ability of changing flight altitude was PFA. Firstly, we randomly generated a number
r, 0 < r ≤ 1. Then, there were two possible cases: if 0 < r ≤ PGH , we performed the
operation of ground delay, and if PGH < r ≤ 1, we changed the flight altitude.

In addition, since each sub-population contained a different number of flights (chro-
mosome size), the number of perturbations was determined according to the size during
initialization. The process is shown in Figure 12.

Figure 12. Sub-population initialization.

4.2.3. Adaptive Crossover Operator

The local fitness of each gene in the chromosome, which was determined by the TAC
and conflict number of each flight, was offered as an alternative to taking into account a
global fitness. The local fitness of each flight was defined as follows:

f itnessk
j =

1− TACk
j /TACmax

1 + CNk
j

(33)

where f itnessk
j indicates the fitness of aircraft j in group k, and TACmax represents the

maximum acceptable cost. a and b are selected as parents from the population. If we
compared the fitness of the same aircraft from the two parents, the adaptive crossover
operator could include the following three cases, as shown in Figure 13:

If f itnessk
aj
< f itnessk

bj
, the two children inherited from bj, accordingly.
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If f itnessk
aj
> f itnessk

bj
, the two children inherited from aj, accordingly.

If f itnessk
aj
= f itnessk

bj
, the two children were calculated with Equation (34):

caj = f loor
(
εaj + (1− ε)bj

)
cbj = f loor

(
εbj + (1− ε)aj

) (34)

where f loor denotes the downward rounding strategy, and ε is the linear recombination
coefficient. The crossover probability is Pc.

Figure 13. Adaptive crossover operator, child1 (solid lines), child2 (dashed lines).

4.2.4. Adaptive Mutation Operator

It can be concluded from Figure 14 that, if f itnessk
j < ξ, the mutation operator was

performed with probability Pm.

Figure 14. Adaptive mutation operator.

5. Case Study
5.1. Database and Experimental Setup

The dataset corresponded to air traffic over western Chinese airspace on 8 June
2019 between 8:00 a.m. and 12:00 p.m. Figure 15 displays the position of the western
Chinese airspace. The entry moments into the FRA and altitude distributions of the
resulting 1479 flights are shown in Figure 16. Influenced by time-varying wind, the conflicts
calculated according to the trajectories in the structured airspace and great circle trajectories
are depicted in Figure 17, where the reference wind was the mean value within 4 h (arrow
indicates wind value and wind direction, and color represents the deviation of the wind).
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Figure 15. The location of western Chinese airspace.

Figure 16. The distribution of the entry times and cruise flight altitudes.

Figure 17. The distribution of routes (red) and conflicts (yellow).
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In the process of conflict resolution, the maximum delay of flight ∆TGD was 30 min,
and the time slot was 3 min. The altitude range was separated every 300 m, from 8900 m to
11,600 m. The maximum allowed altitude adjustment ∆LFA was 1200 m.

Wind data were obtained from the ECMWF for 8 June 2019 between 8:00 a.m. and
12:00 p.m., with a look-ahead time of 24 h. The wind grid had a granularity of 0.2◦ and
covered the longitude range of 72◦ E to 108◦ E, as well as the latitude range of 22◦ N to
50◦ N. Figure 18 gives information on the wind at a 10,100 m altitude over 4 h. As we can
see, the wind tended to weaken, and the wind uncertainty steadily increased.

Figure 18. The wind in western Chinese airspace between 8:00 a.m. and 12:00 p.m. on 8 June 2019.

5.2. Parameter Settings and Sensitivity Analysis

The σ2
0 needed to be sensitivity analyzed for our proposed method. In this section, the

sensitivity analysis was based on the total flight time of all the flights. First, a maximum
allowable was determined, and then the optimal parameter was chosen between 0 and the
maximum value. If we obtained the expected value, we supposed that the flight time and
predictability of the trajectory were both taken into consideration.
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As shown in Figure 19, the maximum value was 10, and the flight time was obtained
over 20 independent runs. It could be concluded that, when σ2

0 = 6 min2, the total flight
time was the shortest, which was 2041.62 h. It was used in the following experiments.

Figure 19. Sensitivity analysis of σ2
0 .

The rest parameters were set empirically. Among them, CP0 = 0.01 [8]. Because we
supposed that the superiority and inferiority of genes from different chromosomes were
same, ε = 0.5. Moreover, in Equation (29), if CNk

j ≥ 1, then ξ ≤ 0.5. Therefore, in order to
improve the efficiency of conflict resolution, we set ξ = 0.5. The parameters were set as
shown in Table 1.

Table 1. Parameter settings.

Model Parameters Description Value

Upper level

σ2
0 Variance constraint 6

pc Crossover rate of GA 0.9
pm Mutation rate of GA 0.7

gmax Maximum generations of GA 100
pop_size Population size of GA 100

Lower level

CP0 Allowed conflict probability 0.01
χGD Ground delay cost weight 0.4
χFA Flight altitude shift cost weight 0.6
PGD Ground delay probability 0.5
PFA Flight altitude shift probability 0.5

ε Linear recombination factor 0.5
ξ Expected local fitness 0.5
Pc Crossover rate of CCEA 0.8
Pm Mutation rate of CCEA 0.1

Gmax Maximum generations of CCEA 100
Pop_size Population size of CCEA 100

5.3. Results Analysis

In the lower-level programming model, a CCEA based on CS was applied for the
solution. The trends of the conflict number and the total flight time of the flights with
the evolutionary generation are given in Figure 20. The conflict-free optimal trajectory is
depicted in Figure 21.
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Figure 20. The trends of the conflict number and the total flight time.

Figure 21. Conflict-free optimal trajectory.

It could be separated into two distinct stages based on the inflection point (red line) in
the left picture. The number of conflicts in the first 60 generations progressively reduced to
zero. The total flight time fluctuated continually between 1948.75 h and 2200.75 h. This was
due to the existence of time-varying and altitude-varying wind in the process of conflict
resolution. When the departure time and flight altitude were modified, the wind condition
had great variability. However, in the stage of 60 to 100 generations, there were no longer
any conflicts, and the algorithm solved for the shortest total flight time. Therefore, the total
flight time in this stage was stably reduced until convergence.

In addition, the trend of the conflict number based on the random strategy is also
given in the left picture (blue line). It is clear that the blue line converged slowly and could
not reach a solution without conflict. As a result, the performance could be effectively
enhanced by the heuristic strategy based on CS.

In order to analyze the advantages of the optimization results, the trajectory in struc-
tured airspace, the great circle trajectory, and the bi-level optimal trajectory were compared.
The conflict number, total flight time, variance, and deviation were used as indicators to
evaluate the safety, efficiency, and predictability, as shown in Table 2.
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Table 2. The comparison between the trajectory in structured airspace, the great circle trajectory, and
the bi-level optimal trajectory.

Indicators Trajectory in
Structured Airspace

Great Circle
Trajectory

Bi-Level Optimal
Trajectory

Conflict number 1672 1844 0
Total flight time (h) 2480.52 1869.75 2041.62

Variance (h2) 6.55 6.94 5.78
Deviation (h) 19.72 15.53 12.32

Notice that the bi-level optimal trajectory was greatly improved in terms of flight
safety and predictability, as it was the only one without conflict. On the contrary, both
the trajectory in structured airspace and the great circle trajectory had large numbers of
conflicts. Due to the shortest distance, the great circle trajectory had the best performance
in flight time. Comparing the trajectory in structured airspace with the bi-level optimal
trajectory, the total flight time was reduced by 438.9 h, about 17.7%. For each flight, it was
reduced by about 17.8 min. This was because, in structured airspace, aircraft must follow a
planned route, as shown in Figure 17. Not only does this incur extra flight distance, but it
also diminishes the flexibility of the aircraft. However, the bi-level optimal trajectory was
more flexible and, thus, could effectively take more advantage of the predominant tailwinds.
In addition, it allowed the aircraft to avoid areas with higher uncertainty (with a darker
background color) and improve predictability while minimizing variance and deviation.

5.4. Time-Varying Wind Analysis

The analysis of time-varying wind enabled the characteristics of the wind to be effec-
tively captured during the trajectory planning. Existing studies have usually supposed that
the wind is constant during the whole flight operation process, which lacks a comprehen-
sive perspective.

The optimal trajectory considering time-varying wind was compared with an optimal
trajectory with constant wind. The forecast data from 8:00 a.m. to 9:00 a.m. was taken as
the constant wind. After optimization with the bi-level programming model, the optimal
trajectory with constant wind is shown in Figure 22. When it was analyzed with time-
varying wind, the corresponding indicators were as shown in Table 3.

Table 3. The comparison between optimal trajectories in constant wind and time-varying wind.

Indicators Constant Wind Time-Varying Wind

Conflict number 27 0
Total flight time (h) 2121.67 2041.62

Variance (h2) 6.24 5.78
Deviation (h) 11.96 12.32

It can be concluded that the optimal trajectory with constant wind mostly chose to
avoid encountering strong headwinds in the northwest. Combined with Figure 18, notice
that the wind tended to weaken. When the time-varying wind was not taken into account,
the aircraft could not effectively obtain the wind information and decided to detour. In
contrast, when we considered the time-varying wind, then the aircraft could make full use
of the wind conditions according to the dynamic information.

A flight from Guangzhou, China (ZGGG), to Amsterdam, Netherlands (EHAM), was
used for further analysis. The coordinates of the entry and exit points were (105◦18′ E,
28◦29′ N) and (82◦53′ E, 46◦52′ N) , respectively.
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Figure 22. Optimal routes with constant wind.

The route of ZGGG–EHAM in the structured airspace (red), the optimal route with
constant wind (green), the optimal route with time-varying wind (yellow), and the great
circle route (black) are given in Figure 23. It can be seen that the green line was more
northward. As already noted, the wind tended to weaken, and the wind uncertainty tended
to strengthen continuously. In order to reduce the distance, the route with time-varying
wind could choose a route that was closer to the great circle route. Conversely, the route
could shift northwardly to avoid strong headwinds if the wind was constant all the time.
Considering the real situation, the strong wind vanished when the aircraft arrived. Table 4
shows the comparison of the flight time, variance, and deviation of the optimal routes from
ZGGG to EHAM.

Table 4. The comparison between the routes from ZGGG to EHAM.

Indicators
Route in

Structured
Airspace

Great Circle
Route

Route with
Constant Wind

Route with
Time-Varying

Wind

Flight time (min) 232.81 196.55 214.34 205.42
Variance (min2) 8.42 9.68 6.94 5.71
Deviation (min) 13.71 14.66 10.29 9.68
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Figure 23. Optimal routes from ZGGG to EHAM, structured airspace (red), great circle (black),
constant wind (green), time-varying wind (yellow).

5.5. Comparative Analysis with Two-Stage Model

In existing studies, two-stage models have often been developed for trajectory plan-
ning. To determine the optimal route, only flight efficiency is taken into account in the first
stage. In the second stage, the model concentrates on strategic CD&R. However, the current
optimal route changes if the departure time or flight altitude are changed, which reduces
the operating efficiency due to time-varying and altitude-varying wind. The established
bi-level programming model integrating efficiency and safety could continuously optimize
the optimal route while ensuring safety.

Figure 24 shows the optimal route planned in the first stage with the conflict locations.
Notice that the result of the first generation in the bi-level were the same, where the initial
number of conflicts was 3841, and the conflicts were concentrated in the eastern airway
dense area, containing continuous conflict between two aircraft.

The number of conflicts, total flight time, variance, deviation, and CPU time corre-
sponding to the optimal solution obtained by the two-stage model are given in Table 5.
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Table 5. The comparison between two-stage and bi-level optimal trajectory.

Model Two-Stage Optimal
Trajectory Bi-Level Optimal Trajectory

Conflict number 72 0
Total flight time (h) 2255.74 2041.62

Variance (h2) 5.92 5.78
Deviation (h) 12.41 12.32
CPU time (s) 6994.81 7507.44

Figure 24. Initial optimal route (red line) and initial conflict location (yellow dot).

When compared to the bi-level programming model, the optimal trajectory obtained
by the two-stage model was of worse quality. Conflicts still existed in the two-stage model,
and the average flight time per aircraft was increased by 8.7 min, while the overall flight
time was nearly 214 h longer. From the results of the conflict numbers, it can be concluded
that the bi-level model indirectly added the strategy of modifying the shape, which is
an important factor for acquiring a conflict-free solution. From the flight time analysis,
we may infer that the bi-level model constantly adjusted the optimal route according
to the latest flight plan and had an important advantage in multi-aircraft cooperative
trajectory planning. Notice that there was no significant difference in the predictability
of the trajectory between the two models, which indirectly proved the influence of time-
varying wind on the predictability. The CPU time for the bi-level model was 7507.44 s,
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which was 513 s longer than the two-stage model. Undeniably, the proposed method
increased the complexity of the problem, but it was acceptable.

Figure 25 shows the adjustment of the departure time and flight altitude corresponding
to the optimal solutions of the two models. The two-stage model needed to make more
adjustments to effectively resolve the potential conflicts, which was because the flight routes
were unchangeable. However, the bi-level model indirectly added a conflict resolution
method, allowing it to make fewer adjustments.

Figure 25. The adjustment of departure time and flight altitude corresponding to the optimal solutions
of bi-level and two-stage models.

6. Conclusions and Future Work

We proposed a methodology for strategic trajectory planning in FRA considering
time-varying and altitude-varying wind forecast uncertainty. Firstly, the effect of wind on
trajectory prediction was introduced. Then, a bi-level programming model was established
because of this impact, which resulted in the optimal route altering when the departure
time and flight altitude were changed. The upper level of the model focused on flying
effectiveness while attempting to reduce the total flight time. The lower level of the model
minimized the number of conflicts and assured safety. The significance of taking time-
varying and altitude-varying wind into account for trajectory planning was demonstrated
by comparing the optimization results with the flight times of the trajectory in structured
airspace and the optimal trajectory with constant wind. To verify the advantages of the
proposed model, the results were compared with the optimal trajectory obtained by a
two-stage model. The indicators suggested that the proposed method may improve flight
efficiency while also successfully resolving conflicts between aircraft. Since the conflict
resolution problem was a large-scale combinatorial optimization problem, a heuristic
strategy based on CS was employed to speed up convergence. The algorithm comparison
showed that such a strategy was effective.

In this study, the wind was a discrete random variable, but research is still required
when the wind is a continuous random variable. Future work should focus on additional
analyses of time-varying and altitude-varying wind. Meanwhile, only a single optimal
trajectory was given in the upper-level planning; if a multi-objective optimization is intro-
duced, it can provide diverse options for conflict resolution in the lower-level planning. In
addition, considering a case of limited airspace can make trajectory planning more realistic.
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