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Abstract: The spatial heterogeneity on a regional scale of forest biomass is caused by multiple
biotic and abiotic factors. However, the contributions of biotic and abiotic factors to the spatial
heterogeneity of forest biomass remain unclear. Based on the data of the National Forest Continuous
Inventory (NFCI), digital elevation model (DEM), and meteorological data of Guizhou Province in
2015, we studied the spatial heterogeneity of the aboveground forest biomass in Guizhou province
and evaluated the contribution rates of its influencing factors using Moran’s I, semivariogram,
distance-based Moran’s eigenvector maps (dbMEMs), and variance partitioning. The results showed
that the forest biomass in Guizhou province had strong spatial heterogeneity. Biotic and abiotic
factors explained 34.4% and 19.2% of the spatial variation in forest biomass, respectively. Among
the biotic factors, the average height of the stand had the greatest influence on forest biomass, while
annual precipitation had the greatest influence on forest biomass among abiotic factors. Spatial
factors only explained 0.7% of the spatial variation of forest biomass, indicating that the contribution
of spatial factors can be explained by some measured abiotic factors. This study provided an effective
approach to understand the underlying mechanisms of spatial allocation of forest biomass.

Keywords: forest aboveground biomass; driver analysis; variance partitioning; semivariogram;
spatial autocorrelation

1. Introduction

Forest biomass is recognized to be a global climate observing system, and forests play
an extremely important role in the carbon cycle in terrestrial ecosystems [1,2]. Accurate as-
sessment of the temporal and spatial variations of forest biomass can provide an important
scientific basis for managing forest resources to achieve sustainable development and have
great significance for studying carbon cycles and sinks [3,4]. The data from the National
Forest Continuous Inventory (NFCI) are an important basis on which to reflect national
forest resources and forest management or to design an evidence-based forest policy at
various scales; these data can also provide basic effective approaches for extracting forest
resource information at national and regional scales [5,6]. Currently, many researchers
have used the NCFI to evaluate the spatial and temporal distribution characteristics of
forest biomass or carbon storage at different scales to clarify the dynamic changes and
distribution of forest resources [7–9]. Forests have high spatial heterogeneity, which is
defined as the complex and non-uniform spatial distribution caused by the combined effect
of biotic and abiotic stress factors [10,11]. It is very important to clarify the effects of various
factors on the spatial variation of forest biomass to understand the potential mechanisms
for forest biomass changes and allocation at a large scale.

Forest biomass changes and distribution are controlled by multiple factors. Some
studies have shown that biological factors such as diameter at breast height (DBH), stand
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height, stand age, and stand density are the main factors affecting forest biomass [12–15].
Furthermore, large diameter trees are often used to support the effect of mass ratios of
large trees within a community that regulate forest biomass changes [16]. Lutz et al. [17]
further showed that the DBH was the major contributor to forest biomass of different boreal,
temperate, and tropical forests derived from a global database. Another important theory
is the niche complementarity hypothesis, which holds that species diversity increases forest
biomass due to the complementary utilization of available resources by co-existing species
in different ecological niches [18,19]. The factors interact more indirectly and affect forest
biomass [20]. Xu et al. [12] reported that the stand density and stand age indirectly affected
vegetation biomass by significantly influencing other factors (e.g., species diversity). The
canopy density largely determined the structure and growth of the forest and was also an
important driving factor in the accumulation of forest biomass [13,15]. In addition, forest
biomass and its distribution are also related to abiotic factors such as topography, climatic
factors, etc. It has been shown that the forest biomass of temperate and tropical forests is
mainly limited by precipitation [14]. In small-scale regions, topography often affects the
local microclimate. For example, elevation and slope can affect the distribution of forest
biomass by influencing rainfall [12,21], solar radiation, wind speed, and soil type [13], while
precipitation and temperature influence water and nutrient availability, thus influencing
plant transpiration rates [18,22,23]. When these conditions are in the favorable range
for plant growth, these factors increase forest biomass [16]. Furthermore, forest biomass
also varies with logging [3], land use [24], wind [25], forest diseases [26], forest fires [27],
etc. Generally, the spatial distribution of forests is accompanied by spatial autocorrelation,
which refers to the statistical correlation between the spatial attribute values of geographical
objects distributed in different spatial locations. The closer the distance is, the stronger the
correlation between the two variables is. Spatial correlation and heterogeneity occur when
the study area is large and correlated [28]. Spatial autocorrelation plays an important role
in determining forest spatial heterogeneity [5,29]. In summary, the factors affecting the
spatial heterogeneity of forest biomass can be divided into three categories: biotic factors,
abiotic factors, and spatial autocorrelation. Most studies have determined the correlation
between forest biomass and forest stand and abiotic factors based on regression analysis,
while the contribution of biotic and abiotic factors to the spatial heterogeneity of forest
biomass is rarely quantified.

Guizhou province, located upstream of the Yangtze and Pearl River waters, is situated
in a subtropical plateau in a mountainous area. It is considered an important ecological
security barrier area and a typical karst distribution region in China, with different types
of karst landforms, which are one of China’s famous natural World Heritage Sites [30].
Guizhou has many different kinds of plant species and the richest natural forest resources,
including subtropical evergreen broad-leaved forests, tropical monsoon forests, mountain
forests, cold temperate coniferous forests, subtropical coniferous forests, and secondary de-
ciduous broad-leaved deciduous forests [6]. Therefore, quantifying the spatial distribution
pattern of forest biomass and its key drivers in Guizhou province is of great significance
for biodiversity conservation, ecological environment protection, and sustainable forest
management in China and around the world. This study aimed to (1) analyze the spatial
distribution pattern of forest biomass in Guizhou province; (2) evaluate the contribution of
biotic and abiotic factors, as well as spatial autocorrelation, to the spatial heterogeneity of
forest biomass.

2. Materials and Methods
2.1. Description of the Study Site

Guizhou province is located in southwest China (24◦30′ N–29◦13′ N and 103◦31′ E–
109◦30′ E) (Figure 1). It covers an area of 176,128 km2, of which 92.5% is mountainous
and hilly, and the area of rocky desertification accounts for 17.1% of the total land area. It
has an altitude/elevation of 137–2900 m (an average elevation of 1100 m) [30]. Guizhou
province has a humid subtropical plateau mountain monsoon climate, which straddles
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the Yangtze River and the Pearl River, with an average temperature of 10 ◦C to 18 ◦C,
annual precipitation of 1000–1500 mm, a relative humidity of more than 70%, a sunshine
duration of 1300 h a year, and a frost-free period of approximately 270 days. It has a rock
exposure of 109,000 km2, accounting for 61.9% of the province’s land area. Influenced
by climate, soil, and mountainous terrain, vegetation types are diverse in the province.
The central, northern and southern parts of the province are dominated by subtropical
evergreen broad-leaved forests. The central and eastern parts have tropical moist forests,
whereas semi-humid forests are found in the western part of the province. Moreover, cold
and warm subalpine coniferous forests cover high-altitudinal areas, while karst evergreen
and secondary deciduous broad-leaved mixed forests are found in regions of limestone
and dolomite [6,31]. There are 269 families, 1655 genera, and 6255 species of vascular
plants (excluding bryophytes) in Guizhou Province. The flora is dominated by tropical and
subtropical geographical components (http://lyj.guizhou.gov.cn/, accessed on 20 April
2022). Conifer genera such as Pinus massoniana, Cunninghamia lanceolata, Cupressus,
Pinus armandii, and Cryptomeria were the main tree species, and broad-leaved genera
included Liquidambar formosana, Quercus glauca, Betula luminifera, Quercus acutissima,
Quercus fabri, etc.
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Figure 1. The geographical location of Guizhou province.

2.2. Data Sources

In this study, the seventh NFCI data of the Guizhou province in 2015 were mainly
used, which conform to the materials of “The NFCI provision in 2015” and “The NFCI of
Guizhou technical regulations”. The NFCI data have 5500 fixed plots, arranged according
to the topographic map of the whole province, at 4 km high × 8 km wide. Each plot
has an area of 0.067 hm2 (25.82 m × 25.82 m) and is classified as either forest land use or
non-forest land use. The biomass equation used in this study was obtained by fitting the
model according to the destructive data set (including the total weight of leaves, branches,
and roots) in Guizhou province that had been measured in the previous period (Table 1).
The biomass equation for tree species in broad-leaved forests was obtained from the study
carried out by Zuo et al. [32]. The biomass of bamboo forests was calculated according
to the equation developed by Pan et al. [33] for estimating bamboo biomass (Table 1).
The sum biomass of each tree in each plot was considered to be the biomass of the plot,
and then the biomass density was calculated for each plot. The biomass of shrubs and
sparse forests with carbon stocks was 19.76 t·hm−2, while for the economic forests, it was
23.7 t·hm−2 [31]. The tree species, without a clear corresponding model, were referred to as

http://lyj.guizhou.gov.cn/
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the approximate dominant tree species groups. The biomass of non-forest land trees was
calculated as shown in Table 1. The biomass of non-forest lands without standing trees
and other forest lands without estimated forest volume had a value of 0. Finally, the total
biomass at different regional scales was obtained using the geographical location attribute
information of the plots.

Table 1. Fitting equations for aboveground forest biomass of different tree species.

Equation Tree Species Fitting Equation Index

(1) Cunninghamia lanceolata y = 0.0687·DBH2.4175 R2 = 0.9009
(2) Pinus massoniana y = 0.0874·DBH2.4547 R2 = 0.9103
(3) Pinus yunnanensis y = 0.0794·DBH2.4594 R2 = 0.9361
(4) Pinus armandii y = 0.1276·DBH2.2911 R2 = 0.9403
(5) Broad-leaved tree y = 0.1646·DBH2.3916 R2 = 0.9400
(6) Phyllostachys edulis y = 0.1574·DBH2.3049 + 2.3079 [33]

y denotes the forest aboveground biomass of different tree species. The biomass of Cunninghamia lanceolata, Abies,
Tsuga, Keteleeria, Pseudotsuga, Cryptomeria, Metasequoia, Taxus and Cephalotaxus was calculated by Equation (1).
The biomass of coniferous trees such as Pinus massoniana, Pinus thunbergii, Pinus kesiya, Pinus elliottii, Pinus
fenzeliana, Pinus taiwanensis, Cupressus, Platycladus, Juniperus and conifer forests was calculated by Equation (2).
The biomass of Pinus armandii, and Podocarpus macrophyllus was calculated by Equation (4). The biomass of
other soft broad-leaved and Hardwood tree such as Lauraceae, Quercus and Betula was calculated according to
Equation (5).

Forest land plot data were used to explore the biotic and abiotic factors that affect
biomass, and all plot data were used to analyze the spatial heterogeneity of forest biomass
and explore spatial factors based on the dbMEM method. Forest biomass in this study
refers to forest aboveground biomass.

2.3. Analysis of Spatial Heterogeneity of Forest Biomass

The spatial heterogeneity of forest biomass was analyzed using a semi-variance func-
tion [34]. In geographical research, the semi-variance function is used as a tool to link the
ground model to spatial variation. It can describe the spatial change characteristics of forest
biomass by measuring the spatial variation in a regional variable and then establishing the
relationship between the ground scene model and the regional variable. Common fitting
models include spherical, exponential, linear, and Gaussian. γ(h) is defined as the isotropic
semi-variance function as follows:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)− 2(xi)]
2 (7)

where γ(h) is the semi-variance value of the lag distance (h); N(h) is the number of pairs of
data separated by lag distance (h); and Z(xi) and Z(xi + h) represent forest biomass values
at the coordinates xi and (xi + h), respectively.

Anisotropic semivariogram was used to analyze the direct variation in spatial hetero-
geneity of forest biomass [35]. Generally, anisotropy ratios (K(h)) between semivariograms
in different directions were used to describe the characteristics of anisotropic structures
as follows:

K(h) = γ(h, θ1)/γ(h, θ2) (8)

where γ(h, θ1) and γ(h,θ2) are γ(h) values in θ1 and θ2 directions, respectively. When K(h)
equals or is close to 1, the spatial heterogeneity is isotropic; otherwise, it is anisotropic [35].

Moran’s I is a commonly used indicator of spatial autocorrelation. In this paper, Global
Moran’s I was used as the first tool measuring spatial autocorrelation, with values ranging
from −1 to 1. The value “1” indicates a perfect positive spatial autocorrelation, while
“−1” suggests the perfect negative spatial autocorrelation, and “0” implies perfect spatial
randomness [36]. The local Moran’s I index was used to indicate whether there was spatial
autocorrelation and examine the level of spatial autocorrelation between the characteristic
variable (here forest biomass) of each sampling point and its surrounding variables [37],
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and it allowed us to identify spatial clusters and spatial outliers of the characteristic
variable. A high positive local Moran’s I value indicates that the target value is similar to
its neighborhood, and the locations are spatial clusters, including high–high clusters (high
values in a high-value neighborhood) and low–low clusters (low values in a low-value
neighborhood). Meanwhile, a high negative local Moran’s I value implies potential spatial
outliers, mainly including high–low (a high value in a low-value neighborhood) and low–
high (a low value in a high-value neighborhood) outliers. The formulas and more detailed
information on spatial autocorrelation analysis can be found in the literature [36,37].

2.4. Determination of Biotic and Abiotic Factors

To determine the main factors driving the spatial heterogeneity of forest biomass,
biotic and abiotic factors were derived from each plot. There were a total of eight biotic
factors, including average stand height (m), stand age (average age of dominant tree species
in main layer), stand basal area (m2/ha), stand density (trees/ha), shrub coverage (%),
forest categories (protection forest, timber forest, non-timber forest product, firewood forest,
special-use forest), stand origin (planted forest, natural forest), and the forest structure of
tree species (bamboo forest, coniferous forest, broad-leaved forest, coniferous and broad-
leaved mixed forest, shrub meadow, other cultivated plant species). There were a total of
16 abiotic factors, including elevation (m), slope aspect categories (north slope, northeast
slope, east slope, southeast slope, south slope, southwest slope, west slope, northwest
slope, no slope aspect), slope position categories (ridge, upper slope, middle slope, lower
slope, valley, flat), slope (◦), soil thickness (<40 cm: thin; 40–80 cm: medium; >80 cm:
thick), accessibility (<1 km: acceptable; 1–5 km: accessible; >5 km: to reach), bedrock
exposure rate (%), annual mean temperature (◦C), annual maximum temperature (◦C),
annual minimum temperature (◦C), annual precipitation (mm), topographic wetness index,
canopy density, the thickness of the litter (cm), land types (arbor forest land, bamboo forest
land, shrub forest land, cash forest land, other forest land, and unforested land) and humus
layer thickness (cm). Among them, the topographic wetness index (TWI) was derived
from ASTER GDEM data with 30 m spatial resolution, combined with the coordinates of
sampling sites [38]. The annual mean temperature, annual maximum temperature, annual
minimum temperature, and annual mean precipitation were obtained based on daily
temperature and precipitation data from 19 meteorological stations in Guizhou province in
2015 based on the Kriging interpolation technique with 2 km spatial resolution grid images,
combined with various geographical coordinates. Taking into account the influence of
humans, accessibility is defined by calculating the minimum distance between the road
and the sample using the superposition method to analyze data from the Guizhou province
traffic network and the sample coordinates to generate the nearest neighbor table. The
mean height of the stand, the density of the stand and the basal area of the stand were
calculated on the basis of the plot data. Other factors were determined directly based on
the NCFI data.

Furthermore, the distance-based Moran’s eigenvector map (dbMEM) was used to
analyze spatial changes in forest biomass in Guizhou Province. The dbMEM method,
derived from the optimization method developed by Dray et al. [39] using the principal
coordinate analysis of neighbor matrices (PCNM), is a sophisticated tool used to model
spatial structures [40]. It facilitates the measurement of spatial autocorrelation of feature
vectors related to most ecological studies, as it has a stronger ability to analyze spatial
scales [40]. The Euclidean distance matrix between plots was calculated according to plot
coordinates to generate a truncation matrix. The principal coordinate analysis (PCoA) of the
truncated distance matrix was carried out and significant spatial variables were selected by
forward selection. Based on the spatial autocorrelation of forest biomass and the intrinsic
interrelationship between biotic and abiotic factors, the method of partitioning the variance
in multiple regression analysis was used to separate the fractions into a pure fraction and a
shared fraction of biotic, abiotic, and spatial factors [41]. Multicollinearity of factors was
examined using variance inflation factors (VIF) before using variance partitioning. The
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factors for each predictor variable were checked, and if the VIF < 10, multicollinearity was
likely not present [42].

2.5. Data Analysis

The Kriging interpolation method was used to interpolate biomass, TWI, and climate
factors of the sample plots. The accessibility analysis was carried out using the “Create
Near Table” method in ArcGIS (Version 10.6, Esri, Redlands, CA, USA). The software GS+
version 9.0 was used to fit the semivariogram models to analyze the spatial heterogeneity of
forest biomass. The Moran’s I was calculated using the GeoDa software (Version 1.18, Luc
Anselin, Tempe, AZ, USA). The Box–Cox function in the “MASS” package of R (Version
4.1.1, R Development Core Team, Vienna, Austria) [43] was used to transform the data
to achieve normality, and the “dbMEM” function in the “Vegan” package was used to
calculate the truncation matrix. The forward selection with the “forward.sel” function in
the “packfor” package was used to obtain the optimal environmental and spatial structure
predictors affecting forest biomass (p < 0.05 after 999 simulations) [44]. The “varpart”
function in the “vegan” package was used to conduct variance partitioning analysis and
calculate the contribution rate of each factor [45].

3. Results
3.1. Spatial Distribution of Forest Biomass

The distribution of forest biomass in Guizhou province showed strong spatial variation,
with a CV (coefficient of variation) of 163%. The larger fraction of forest biomass was mainly
distributed in the southeast area, the eastern area, and the northwest of Guizhou Province,
while the smaller fraction of forest biomass was mainly distributed in western Guizhou
Province (Figure 2). Among the semi-variance models (Table 2), the exponential model,
which showed a strong spatial autocorrelation of forest biomass within a distance of 15 km,
performed the best (R2 = 0.36). The spatial structural factors accounted for 90% of the
spatial heterogeneity of forest biomass, while random factors accounted for 10%. The
analysis of the anisotropy ratios of semivariograms showed the 30 km scale changes in
forest biomass in all directions. The anisotropy of forest biomass in the northwest–southeast
direction (θ = 135◦) was the most obvious, followed by that in the east–west direction (0◦).
The anisotropy of forest biomass in the northeast–southwest (45◦) and north–south (90◦)
directions, however, was relatively low (Figure 3). The distribution of forest biomass in the
study area showed positive spatial autocorrelation (Moran’s I = 0.573, p < 0.05). The results
of the analysis of Local Moran’s I showed that the southeastern part of Guizhou province
is identified as an area with high-value spatial clusters, followed by the northwest region,
which mainly consists of high–high spatial clusters and low–high spatial outliers (Figure 4).

3.2. Factors Affecting Variation in Forest Biomass

Fourteen factors significantly affected variation in forest biomass (Table 3) after per-
forming forward selection, and collinearity between those factors was low when the VIF
was lower than 10. Among the biotic factors, average stand height had the greatest influ-
ence on forest biomass, followed by tree species structure, stand basal area, stand origin,
shrub cover, stand density, and stand age. Among the abiotic factors, however, annual
precipitation had the greatest effect on forest biomass, followed by slope, land type, bedrock
exposure rate, canopy cover, the thickness of litter, and elevation.

Table 2. The semivariation model for forest biomass estimation in Guizhou Province.

Model Nugget
(C0)

Still
(C0 + C)

Nugget Coefficient
(C0/(C0 + C))

Range
/km

Residual Sum of
Squares (RSS) R2

Spherical 0.38 9.49 0.04 17.7 0.371 0.35
Exponential 0.93 9.49 0.10 15.0 0.365 0.36

Linear 9.13 9.76 0.94 297.3 0.05 0.91
Gaussian 1.47 9.48 0.16 14.7 0.371 0.35
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The results of the variance partition showed that 37% of the total variation in forest
biomass was explained by biotic, abiotic, and spatial factors (six dbMEMs) (Figure 5),
which explained 34.5%, 19.2%, and 0.7% of the variation, respectively. Pure biotic factors
significantly explained 17.4% of the variation (p < 0.001), whereas pure abiotic factors
significantly explained 2.3% of the variation (p < 0.001), and pure spatial factors significantly
explained 0.3% of the variation (p < 0.001). Biotic and abiotic factors together explained
16.7% of the variation, and biological, abiotic, and spatial factors together explained 0.1% of
the variation. The scatterplots demonstrating the relationships between the forest biomass
and influencing factors are shown in Figure 6. Biomass increased with increasing stand
basal area, annual precipitation, stand density, average stand height, slope, stand age, and
canopy density. The biomass decreased with increasing elevation, litter thickness, bedrock
exposure rate, and shrub coverage. The biomass per unit area of forest categories was
in the order of bamboo forest > arbor forest > cash forest > shrub forest > other forest.
The biomass per unit area of natural forest had a higher value than that of planted forest.
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For the tree species structure, the biomass per unit area was in the order of broad-leaved
mixed forest > coniferous, mixed forest > coniferous forest > coniferous and broad-leaved
mixed forest > broad-leaved forest (Figure 7). In addition, in the eastern (Qiandongnan
and Qiannan) and northwestern (Zunyi) regions, the soil thickness is higher than that in
other regions, and the exposure rate of bedrock is also significantly lower than that in other
regions (Table 4). Six spatial vectors in 2733 dbMEMs were significant, and the 25th, 32th,
and 90-dbMEM were large-scale vectors, while the 143rd, 147th, and 425-dbMEM were
medium-scale vectors (Figure 8).
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Table 3. Factors and parameters obtained after performing forward selection.

Factors Adjusted R2 F p-Value VIF

Average stand height 0.184 1245.08 0.001 6.73
Tree species structure 0.078 580.69 0.001 2.63

Stand basal area 0.033 261.95 0.001 5.15
Stand origin 0.028 226.75 0.001 2.6

Shrub coverage 0.009 78.94 0.001 2.07
stand density 0.008 69.67 0.001 4.78

Annual precipitation 0.007 59.81 0.001 1.08
Slope 0.005 41.17 0.001 1.46

Land type 0.003 30.83 0.001 3.32
Exposure rate of bedrock 0.003 27.2 0.001 1.23

Canopy density 0.003 23.93 0.001 7.72
Thickness of litter 0.002 19.11 0.001 2.09

Stand age 0.001 13.18 0.001 3.1
Elevation 0.001 12.2 0.001 1.1

Table 4. Soil thickness and bedrock exposure rate in various cities of Guizhou Province.

Category Anshun Bijie Guiyang Liupanshui Qiandongnan Qiannan Qianxinan Tongren Zunyi Number
of Spots

Soil thickness
Thin 227 640 187 245 419 519 360 344 631 3572

Medium 31 120 33 26 157 172 104 137 212 992
Thick 22 80 41 33 369 124 65 87 115 936

Exposure
Rate of

bedrock (%)

≤10 270 810 257 301 207 791 495 545 930 4606
(10,50] 9 30 3 3 585 22 33 23 21 729

>50 1 0 1 0 153 2 1 0 7 165
Number of

spots — 280 840 261 304 945 815 529 568 958 5500
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Figure 7. Relationships between forest biomass and land type, stand origin, and tree species structure.
Land type: AFL; arbor forest land, BFL; bamboo forest land, SFL; shrub forest land, CFL; cash forest
land, OL; other forest land, UL; unforested land. Tree species structure: CF; coniferous forest, BF;
broad-leaved forest, CMF; coniferous mixed forest, CBMF; coniferous and broad-leaved mixed forest,
BMF; broad-leaved mixed forest.
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4. Discussion
4.1. Biotic Factors

There was a strong spatial heterogeneity in the forest biomass in Guizhou Province.
The results of the variance partitioning analysis showed that 34.4% of the spatial variation
in forest biomass in Guizhou province was explained by biotic factors (Figure 5). The
larger the basal area, average stand height, stand age, and stand density, the higher the
aboveground biomass and shrub coverage and the lower the forest biomass (Figure 6).
Many studies have confirmed that the stand basal area and stand height are the main
predictors of forest biomass [15,46,47], as they influence biomass by affecting the unit trunk
volume. Some studies have even shown that the forest stand biomass can be estimated to
a certain extent by estimating the biomass of large trees [12]. With the forest growth, the
rate of biomass accumulation in trunks was higher than that in branches and leaves [48].
Compared with young forests, mature forests have more complex development stages [3],
faster root-specific metabolisms, higher nutrient absorption [25], and a greater capacity
for accumulation capacity [13,14,49,50]. With increasing stand density, trees occupy more
space and utilize more energy, light, water, and soil nutrients [16], which is conducive
to increasing individual complementarity [51] and improving forest biomass [52]. The
shrub is in the lower layer of vegetation in the forest, which overlaps the ecological niche
of the canopy tree species, and they both compete for light, soil nutrients, and water
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resources [53,54]; therefore, the shrub coverage for stands with high forest biomass is
usually lower. Furthermore, the biomass per unit of area of the mixed forest was higher
than that of the pure forest, and that of the coniferous forest was higher than that of the
broad-leaved forest (Figure 7). On the one hand, when compared with that of the pure
forest, the structure of the mixed forest stand was complex and could better resist natural
disturbances, such as pests and diseases [55]. On the other hand, the species richness
of the mixed forest was higher than that of the pure forest, which supported the effect
of niche complementarity to some extent [19]. Compared to broad-leaved trees, conifers
have smaller percentages of mass of branches and leaves, and more biomass is allocated
in conifers to the trunk, making the biomass of conifers high [56]. Our results provide
an important reference for future local afforestation plans and management measures.
Targeted planting (such as the planting of conifers) can better store forest carbon and
mitigate the adverse effects of greenhouse gases [2,57].

4.2. Abiotic Factors

In our study, the average rate of the contribution of abiotic factors to the spatial
heterogeneity of forest biomass was 19.2% (Figure 5). Forest biomass was negatively
correlated with elevation but positively correlated with annual precipitation, slope, canopy
density, and bedrock exposure rate (Figure 6). The terrain of Guizhou province is high
in the west and low in the east, and the distribution patterns of forest biomass showed
a trend of increasing from west to east (Figure 2). Compared with high-altitude areas,
low-altitude areas often have high temperatures [58], which allows for an increased supply
of nitrogen and phosphorus to plant leaves [59], thus improving the photosynthesis of
plants and promoting the growth of forest trees. Trees at high altitudes tend to grow to
shorter heights [59]. Therefore, forest biomass generally decreases along the elevation
gradient [6,60,61]; however, this can be affected by other factors such as logging [48].
Moreover, elevation can also affect forest biomass by influencing rainfall and controlling
soil moisture conditions [13,62]. Numerous studies have demonstrated that forest biomass
decreases with the increase of slope [27,63], which is in contradiction to our results. In
general, trees struggle to grow in a forest with a high slope [27], and vegetation often grows
more luxuriantly and has higher biomass in a region with a low slope [63]. However, most
areas in Guizhou province with low slopes are designated as agricultural lands with few
trees, while afforestation is carried out in lands that have high slopes or are unsuitable
for farming [6]. In addition, due to the occurrence of typical karst landforms in Guizhou
Province, most tree species tend to grow on slopes and hilltops [64], which allows for higher
forest biomass production in areas with higher slopes. Precipitation can regulate water
distribution and affect water availability [21]. Studies have shown that biomass production
in subtropical and tropical forests is mainly restricted by water [15]. Generally, canopy
density is determined by the species composition and stand attributes of trees (DBH, tree
height) [13]. The better the growth, the higher the canopy density. At the same time, canopy
closure maximizes light interception at the stand level [65] and also rainfall interception and
redistribution [66], promotes the efficient heat and water exchange between the surface and
atmosphere, and regulates forest microclimatic conditions (e.g., surface temperature). Thus,
the net available energy of vegetation increases, and forest productivity is also affected [67].
Karst landforms in Guizhou province are distributed in large areas, with serious soil erosion
and rocky desertification [31]. Areas with high bedrock exposure rates have shallow soil
layers, which generally do not contribute to forest growth. Figures 2 and 3 show that larger
fractions of forest biomass are distributed in southeast, northwest, and eastern Guizhou
province. Forest biomass exhibited a gradually decreasing trend from east to west, which is
also related to the greater thickness of the soil layer and the lower rate of surface bedrock
exposure in eastern and northwestern regions (Table 4), which surround the Yangtze River
and the Pearl River, with excellent geographical conditions and considerable vegetation
growth, while in other regions, the vegetation growth is poor due to poor water quality [68].
Among the vegetation types, the bamboo forest had the highest biomass per unit area,
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because bamboo grows in branching clusters and also has a higher plant density level
per unit area [31,33]. Furthermore, bamboo forests are distributed mainly in the Chishui
River basin in the northwest of Guizhou and the Qingshui River basin in the eastern part
of Guizhou. However, arbor forests are distributed throughout the province, with lower
biomass per unit area than bamboo forests. Since 2000, forestry activities implemented in
Guizhou province, such as mountain closure, cultivating the forests, and reducing man-
made damage to natural forests, may be the main reason that the biomass per unit area of
natural forests is generally higher than that of planted forests. Due to the small latitude
difference in Guizhou Province, the climate factors did not reflect the contribution to forest
biomass in this study, but the complex and diverse terrain conditions formed a diversified
microclimate environment, indirectly affecting forest biomass. Studies have shown that the
global annual average surface temperature and precipitation are currently increasing at a
rate of 0.19 ◦C and 2.04 mm per decade between 1901 and 2015 [57]. Combined with the
results (Figure 6d), we suggested in the restoration of afforestation and vegetation that the
effects of precipitation, topographic factors, and bare rock leakage should be considered to
cope with climate change in the coming period.

4.3. Spatial Factors and Their Interactions

The results showed that there was a strong spatial autocorrelation of forest biomass
distribution in Guizhou province (Figure 3). Variance partitioning results revealed that spa-
tial factors influenced forest biomass at the broad and meso scales (Figure 8) but explained
only 0.7% of the variation in total forest biomass (Figure 5). On the one hand, the spatial
autocorrelation of forest biomass is driven by the abiotic factors which were measured in
our study and spatially autocorrelated. Many studies have reported that precipitation, ele-
vation, slope, and land-use type showed a certain extent of spatial autocorrelation [40,69].
In our study, significant factors affecting forest biomass distribution could explain the
spatial autocorrelation to some extent. However, we cannot rule out the possibility that the
forest biomass obtained is strongly influenced by other predictors not included in this study,
such as environmental data (e.g., soil nutrients). In the large study area, some data are
difficult to obtain, and it is also costly to perform a field investigation. Furthermore, though
random (stochastic) processes only account for 10% of the variation in forest characteristics
(Table 2), they may still exert an important influence. On a large scale, stochastic processes
are often related to deterministic processes, while on a small scale, deterministic processes
tend to dominate [70]. Additionally, biotic and abiotic factors together explained 16.7% of
the total variation, while biotic, abiotic, and spatial factors together only explained 0.1% of
the variation. Zhang et al. [20] showed a strong interaction between stand age and other
climatic factors, such as precipitation, that caused changes in forest biomass. Luo et al. [71]
reported that the forest biomass was related to the interaction between climatic factors
(annual precipitation and annual mean temperature) and stand density. Therefore, the
growth and distribution of vegetation are the results of a combination of multiple factors.

5. Conclusions

We analyzed the spatial heterogeneity of forest biomass and its main influencing
factors in Guizhou province using the NFCI data from 5500 fixed sample plots in 2015.
The forest biomass in Guizhou had a strong spatial heterogeneity. The areas with large
stocks of forest biomass are mainly distributed in the southeast and northwest of Guizhou,
while forests with low biomass are mainly distributed in the west of Guizhou. Stand
characteristics such as average stand height, tree species structure, stand basal area, origin,
shrub coverage, stand density, and stand age, abiotic factors, including annual precipitation,
slope, land type, basalt rock exposure, canopy density, litter thickness, and altitude, and
spatial factor (spatial autocorrelation) explained 37% of the total variance in forest biomass
in Guizhou province. Among them, biotic factors explained the most variation, followed
by abiotic factors and spatial factor, which explained a slight variation (0.7%). This study
quantified the factors that control the spatial heterogeneity of forest biomass, which can help



Sustainability 2022, 14, 10771 13 of 15

to deepen the understanding of carbon sequestration and provide a basis for formulating
more effective forest management strategies in subtropical karst forests.
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