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Abstract: Considering the comprehensive effect of building carbon emissions, cost savings is of
great significance in nearly-zero-energy buildings (NZEBs). Previous research mostly focused on
studying the impact of technical measures in pilot projects. The characteristics of different cities
or climate zones have only been considered in a few studies, and the selection of cities is often
limited. At times, only one city is considered in each climate zone. Therefore, this study selected
15 cities to better cover climate zone characteristics according to the variation in weather and solar
radiation conditions. A pilot NZEB project was chosen as the research subject, in which the energy
consumption was monitored and compared across different categories using simulated values by
EnergyPlus software. Various NZEB technologies were considered, such as the high-performance
building envelope, the fresh air heat recovery unit (FAHRU), demand-controlled ventilation (DCV), a
high-efficiency HVAC and lighting system, daylighting, and photovoltaic (PV). The simulated carbon
emission intensities in severe cold, cold, and hot summer and cold winter (HSCW) climate zones
were 21.97 kgCO2/m2, 19.60 kgCO2/m2, and 15.40 kgCO2/m2, respectively. The combined use of
various NZEB technologies resulted in incremental costs of 998.86 CNY/m2, 870.61 CNY/m2, and
656.58 CNY/m2. The results indicated that the HSCW region had the best carbon emission reduction
potential and cost-effectiveness when adopting NZEB strategies. Although the incremental cost of
passive strategies produced by the envelope system is higher than active strategies produced by the
HVAC system and lighting system, the effect of reducing the building’s heating load is a primary
and urgent concern. The findings may provide a reference for similar buildings in different climate
zones worldwide.

Keywords: sensitivity analysis; incremental cost; energy simulation; climate regions

1. Introduction

In order to limit the rise in atmospheric temperature to 2 ◦C, or even 1.5 ◦C, the Paris
Agreement calls on all parties to develop long-term low-emission development strate-
gies based on their national conditions and capabilities [1]. The Intergovernmental Panel
on Climate Change (IPCC) in 2018 announced that the impact of extreme harm from
greenhouse gas emissions can only be avoided if the world achieves net zero greenhouse
gas emissions by the middle of the 21st century [2]. Developed and developing coun-
tries have submitted declarations to achieve this carbon neutrality target over the next
30–60 years [3–7]. In many countries, building energy consumption accounts for 40%
of the total energy consumption [8]. In order to reduce operational carbon emissions in
the building sector, a series of policies on nearly-zero-energy building (NZEB) have been
implemented, and the development of NZEB could be a mid-to-long-term strategy [9,10].
The roadmap of NZEB involves reducing buildings’ energy consumption and maximiz-
ing renewable energy usage to achieve the core purpose of reducing primary energy
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consumption [11–13]. The demonstrated NZEBs, technical guides, and policies [14] have
promoted the development of NZEBs in developed countries. According to the Asia-Pacific
Economic Cooperation (APEC) statistics data, China accelerated the building energy-saving
work by promoting ultra-low-energy buildings and NZEBs, with the consequences of nearly
10 million square meters by 2020 [14]. However, the uncertainty of comprehensive and
systematic performance cost strategies in the scope of different climate zones hinders the
promotion of NZEBs.

It is well known that adopting combined and optimized technical strategies for reduc-
ing building energy consumption and using renewable energy are the main pathways for
achieving NZEBs [15–19]. The energy-saving effect of single or multiple common NZEB
technical strategies has been widely demonstrated and analyzed by energy consumption
software in previous studies [15,16,20]. Strategies can be classified into four categories dur-
ing the design stage [17,21]: (1) passive design and building envelope; (2) high-performance
heating, ventilation, and air conditioning (HVAC) systems; (3) high-efficiency lighting sys-
tems; and (4) renewable energy utilization.

Optimizing the performance of the building envelope in terms of improving thermal
performance to reduce the heating load in winter and decreasing the shading coefficient
(SC) to reduce the cooling load in summer is critical in the design stage of passive design
and building envelopes. Heating load could be significantly decreased by increasing
the insulation thickness in severe cold and cold zones in China [22]. However, in the
HSCW zone of China, a related study [23] showed that the decrease in the operational
energy demand in NZEB is lower when using a thick insulation layer, and the unfavorable
highly insulated envelope may even cause a risk of overheating in summer. Chen [24]
has demonstrated that the high SC value shading system has an obvious energy saving
effect based on a parameterized building energy consumption assessment model in the
HSCW zone.

High-efficiency HVAC equipment, such as air-source heat pumps and ground-source
heat pumps, are widely applied in NZEBs according to the cases analyzed and results
from the U.S. and China [25]. Air-source heat pumps are considered a primary energy
alternative and are frequently used to achieve electrification. The operational performance
of a super-low-temperature combined solar air collector, air-source heat pump, and energy-
storage hybrid system has been proven in an ultra-low-energy building in a severely cold
region of China. Furthermore, to forecast HVAC systems’ energy demand, a novel hybrid
modelling structure was contrived [26], and reinforcement learning was considered for
HVAC systems in an intelligent building [27]. A fresh-air heat recovery unit (FAHRU) was
adopted in NZEBs in a fresh-air supply system using Chinese and EU standards [17,28],
and previous research shows that a combined heat recovery and photovoltaic (PV) unit
could result in a yearly energy consumption reduction of up to 67.5% with a payback
period of 3.5 years in hot and cold regions [28]. Previous study [29] illustrated the effect of
shading and daylighting performance on energy savings and economic feasibility, mostly
benefitting cooling load reduction. As for PV application installed on building roofs and
facades of ZEBs, Liu et al. [30] studied the load-matching issue by selecting one typical
city in each of China’s climate zones. An analysis from PV calculation software shows that
the orientation, installation angle, and solar radiation are the main influencing factors in
renewable energy generation [31].

The studies mentioned above have focused on studying the impact of technical mea-
sures in pilot projects. Only in a few cases were different cities or climate zones considered,
and the selection of cities was often limited, at times only assessing one city per climate
zone. Xing Su [23] analyzed the energy consumption and carbon emissions of an office
building by comparing the baseline building and passive building, but only in one city
in the HSCW zone of China. Chen [24] have studied the energy saving effect of shading
system only in HSCW zone of China. S.D. de Garayo [27] had optimized a combined HVAC
system in a passive house in hot and cold regions. Liu et.al [30] illustrated the effect of PV
by only choosing five cities to represent the whole climate zones of China. Furthermore,
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research on specific technical measures of NZEB are limited to the feasibility study on
technical effects [32] and ignoring comprehensive analysis on technical sensitivity and
economic analysis in different climate regions.

Therefore, nearly zero-energy building technologies should be illustrated in whole
climate zones. With the well-perceived variation in weather and solar radiation conditions,
inclusion of represented typical cities in the study would lead to better coverage of climate
zone features. Hence, this paper takes a typical pilot NZEB project as the research subject,
verifies the simulated energy consumption with the test data, then extends the analysis of
carbon emission reduction rate and incremental cost to 15 cities across severe cold, cold
and HSCW climate zone of China. Technical sensitivity analysis has been performed to
discover carbon emission reduction potential by altering parameters of envelope heat
transfer co-efficiency and shading co-efficiency (SC) value, coefficient of performance (COP)
of HVAC system, adopting strategies of demand control ventilation (DCV) and FAHRU.
The discovery of this paper might provide a valuable reference for similar climate zones
around the world.

2. Methodology
2.1. Calculation Model and Assumption
2.1.1. Simulation Model

To quantitatively investigate the energy saving impact on NZEB technologies, the
simulation method is adopted to evaluate the energy consumption of different climatic
regions of China. EnergyPlus software (EPS) is a widely acceptable energy simulation
tool around the world. It was built on two existing programs in terms of DOE-2 and
BLAST [33,34]. EPS could output the hourly energy consumption results by inputting
user-specified construction, internal loads, schedules, and weather condition parameters.
Additionally, EPS also calculated HVAC system timely by setting separate modules of
external climate, the building geometry and construction, the air-conditioning system
operating under the control system and the air distribution system. Further, PVSYST
software developed by Swiss scientist Andre Mermaid & Co [35] is widely used [36,37]
to design grid-connected, off-grid, and DC PV systems, as well as to estimate power
generation and system optimization. Users can acquire simulation results by entering the
location, weather conditions and material type of the PV system.

This paper presents analysis of combined energy consumption, power generation, and
climate sensitivity for three critical climate zones, where NZEB strategies are applicable and
adopted in engineering construction. Fifteen typical cities from a severe cold area, cold area,
and hot summer, and cold winter area have been selected for the study. Figure 1 shows the
climate zones and solar radiation distribution. Besides, weather data for simulation were
provided by hourly Chinese Standard Weather Data [38,39].

2.1.2. Energy Consumption Saving Model

The annual energy saving per unit area (ESPA) is defined as the evaluation index of
building energy consumption, and the calculation formula is as follows:

α =
(EC1 − EC2)

A
(1)

where, α is annual energy saving per unit area, kWh/m2; EC1 is original energy consump-
tion without energy saving technologies, kWh; EC2 is energy consumption by using NZEB
technologies, kWh; and A is building floor area, m2.
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Figure 1. Climate zones and solar energy resources of typical cities in China. 
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2.1.3. Carbon Emission Reduction Model

Based on the energy consumption model, carbon emission reduction model consid-
ers the unified regional electric carbon emission factor. Chinese Standard for Building
Carbon Emission Calculation (GB/T 51366-2019 [40]) is referred for calculation of the
operational carbon emission of buildings. The scope of carbon emission is categorized
as: (i) building envelope system; (ii) HVAC system including heating and cooling source,
FAHRU, and DCV; (iii) lighting fixture, lighting control and daylighting; and (iv) renewable
energy system.

Formula (2) defines the calculation method of carbon emission, which is defined by
GB/T 51366-2019 [40]. Carbon emission is calculated by energy consumption multiplying
carbon emission factors.

C = EC × EFgrid (2)

where, EC is energy consumption, KWh; EFgrid is carbon emission factor of the grid in the
local area, kgCO2eq/kWh [41].

Formula (3) and (4) define the annual carbon emission reduction per area and carbon
emission reduction rate.

β =
(CE1 − CE2)

A
(3)

R =
(CE1 − CE2)

CE1
(4)

where, β is the annual carbon emission reduction per unit area, kgCO2eq/m2; CE1 is original
carbon emission without energy saving technologies, tCO2; CE2 is carbon emission by
using NZEB technologies, kgCO2eq; and A is building floor area, m2, R is carbon emission
reduction rate (%).

2.1.4. Incremental Cost Model

Formula (5) defines the annual incremental cost per unit area by using NZEB technologies.

γ =
(C1 − C2)

A
(5)

where, γ is annual incremental cost per unit area, CNY/m2; C1 is original cost without
energy saving technologies, CNY/m2; C2 is cost by using NZEB technologies, CNY/m2;
and A is building construction area, m2.

2.2. Research Subject and Data Validation
2.2.1. Research Subject

This paper uses parameters of a typical nearly-zero-energy office building located in
Beijing in the cold climate zone. To analyze the carbon emission of climate zones, thermal
parameters for the reference building are listed in Table 1 based on the Chinese building
energy saving standards [39,42]. The research subject is a commercial office building with
13,050 square meters, as illustrated in the simulation model in Figure 2a. To reduce the
operational energy consumption and carbon emission, NZEB technologies were adopted.
Tables 2 and 3 illustrate the setting condition of indoor parameter, energy-saving target and
NZEB technology, respectively, for case building by using Chinese NZEB standard [17].

Table 1. Detailed input parameters of simulation model for baseline building scenario.

Envelope Details Internal Load

Typical Areas
Heat Transfer Coefficient (W/m2·K) Shading

Coefficient
(SC)

Window to
Wall Ratio

(WWR)

Occupancy
Density

(m2/Person)

Lighting
Power

Density (LPD)
(W/m2)

Equipment
Power

Density
(W/m2)Wall Roof Window

Severe cold 0.38 0.28 2.20 0.45 0.40 10 9 15
Cold 0.50 0.45 2.40 0.45 0.40 10 9 15

HSCW 0.60 0.4 2.50 0.45 0.40 10 9 15
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Table 2. Indoor parameters and energy saving targets for research subject.

Parameters Winter Summer

Temperature (◦C) 20 26
Relative humidity (%) 30 60

Minimum fresh air volume
[m3/(h·per person)] Office: 30, Hall: 10

Building energy saving rate (%) 50%
Building tightness Air change times (N50): 1.0



Sustainability 2022, 14, 9834 7 of 23

Table 3. Detailed parameters for NZEB scenario of the research subject.

Strategies Building Parameters and
Mechanical Systems NZEB Technologies

Passive building strategies

Wall
Reinforced concrete wall with 50 mm rock wool

and 30 mm vacuum insulation panel
Heat transfer coefficient = 0.19 W/(m2·K)

Roof
Flat roof with 40 mm XPS and 30 mm vacuum

insulation panel
Heat transfer coefficient = 0.18 W/(m2·K)

Window

Triple glazing window with external shading
Heat transfer coefficient = 1.0 W/(m2·K)

Shading coefficient (winter) = 0.47
Shading coefficient (summer) = 0.20

Active building strategies

Space heating Air source heat pump system (COP = 3.18)
Space cooling Air source heat pump system (COP = 2.60)

Ventilation Heat recovery fresh air system
(enthalpy recovery efficiency = 75%)

Domestic hot water system Electrical water heater (thermal efficiency = 98%)

Lighting system
High efficiency LED fixtures
(LPD of office = 4.5 W/m2;

LPD of corridor =2.0 W/m2)

Renewable energy Photovoltaics PV system (installed capacity = 26 kWp)

2.2.2. Model Validation

Energy management system has been established to monitor and record operational
data of cooling source, heating source, air source heat pumps, water pumps, as illustrated
in Figure 2b. For air condition system, separated sensors have been installed on air source
heat pumps, circulating water pumps and fresh air system. Meters have been used for
monitoring daily energy consumption and generation. To monitor the indoor environment,
sensors are adopted to record temperature, relatively humidity, PM2.5 and CO2 in typical
room. Table 4 showcased the specific parameters of sensors. In this study, real-time
operation data were used to verify the accuracy of the energy simulation model results.

Table 4. Characteristics of sensors.

Name Model Accuracy Measurement Range Work Temperature

Electromagnetic flowmeter AKE-CO3P ±0.5% ≤5 m/s 25~60 ◦C
Temperature sensor PT1000 ±0.1 ◦C 0~99.9 ◦C 0~50 ◦C
Data recorder Acrel DDSD1352 0.5 s Level —— 25~55 ◦C

This paper presents a comparison of simulation results and monitoring results to
validate the rationality of simulation method.

In order to validate the simulation accuracy of the models built by EPS, the monthly
energy consumption of air source heat pumps and the annual energy consumption of
water pumps and lighting are simulated and compared with the monitored data, re-
spectively. Comparisons between the simulated and measured values are presented in
Figures 3 and 4, respectively, which demonstrates excellent consistency. It is shown from
the figures that the maximal difference between the monitored and simulated data of air
source heat pumps is 8.3%, which is regarded as acceptable. For the water pumps and
lighting system, the differences are 7.9% and 7.3%, respectively. Deviation method and
results have been referred in similarly research [43,44]. The difference between air source
heat pumps and water pumps is mainly caused by the weather data used in EPS. Hence,
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the comparison results indicate that the energy simulation model is accurate and reasonable
for the following analysis.
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3. Results and Discussions
3.1. Energy Saving Analysis of Different Technologies

This section discusses energy-saving technologies of NZEBs including high-
performance envelopes, FAHRU, efficient HVAC and lighting systems, DCV, daylight-
ing and renewable energy usage, etc. Climate discrepancy, as a key impact factor, is also
considered in the analysis and discussion.

3.1.1. High-Performance Envelopes

Optimizing the performance of the building envelope, which is affected by the K
and SC values, has a decisive impact on heating load and cooling load of the NZEB.
Therefore, selecting high-performance envelope is an initial and critical step for NZEB. As
shown in Figure 5, compared to the baseline, the average energy-saving per area (ESPA)
of the buildings located in severe cold, cold, and HSCW climate zones is 6.63 kWh/m2,
5.76 kWh/m2, and 2.80 kWh/m2, respectively, by adopting NZEB envelope parameters.
The results show that the energy-saving potential of high-performance envelopes is superior
to HSCW in the other two low-temperature regions due to the comprehensive effect of
K value and SC value. Therefore, it is necessary to improve K value in severe cold and cold
regions and enhance the SC value in HSCW area.

3.1.2. Heat Recovery Fresh Air System

In pursuit of a high-quality indoor air environment, sufficient filtered fresh air should
be supplied in NZEBs. However, about 20–40% of the total energy consumption of air-
conditioning system is consumed in the fresh air handling process [45,46]. It is critical to
balance energy saving and indoor air quality. FAHRUs are common equipment in terms of
latent heat recovery and total heat recovery, used in residential and commercial buildings.
Annual energy savings caused by FAHRU mainly depend on the weather condition and
fresh air volume. Annual ESPA changes with different weather conditions due to the fresh
air volume are set as constant in this study. The red lines in Figure 6 plot the annual ESPA
value of 4.00 kWh/m2, 2.83 kWh/m2, and 3.09 kWh/m2 in severe cold, cold and HSCW
climate zones, respectively. The results show that energy savings are lowest in cold climate
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regions. The reason is that the energy consumption of fresh air has a combined effect on
heating and cooling load. Colder winter a hotter summer can both result in larger energy
consumption for fresh air. Further, the heat recovery efficiency rate also plays an essential
role, and 70% latent heat recovery rate is recommended and adopted.
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In addition to the FAHRU, DCV is also considered as the widely used energy saving
technology for dealing with fresh air. In European countries such as Norway, DCV is
the dominating ventilation strategy [47,48]. This is motivated by the national and EU
requirements to reduce greenhouse gasses and profitability in terms of energy savings.
Building types with varying occupancies and mechanical system operational periods, such
as schools and office buildings, DCV systems can significantly reduce energy consumption.
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Figure 7 shows result of average ESPA of DCV indicating that less gap occurred among
severe cold, cold, and HSCW climate zones. Nevertheless, more energy reduction could be
achieve with DCV, when airflow could vary by the quantities of occupants, together with a
combined effect of high COP heating and cooling source and high heat recovery rate unit.
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3.1.3. Higher COP of Air Source Heat Pumps

It is well known that higher COP can bring significant energy savings to ordinary
buildings. However, it is still unclear of the specific energy saving that can be obtained in
an NZEB. Hence, the ESPA in an NZEB is discussed. As presented in Figure 8, averaged
energy saving produced by higher COP of air source heat pump contributed more energy
consumption in severe cold climate zone and HSCW climate zone. As with the FAHRU,
the HVAC operational period and weather conditions are the main impacting factors.
Although the average energy saving improvement is 6.43 kWh/m2 in the cold region, it is
still contributing significant amount of energy saving.

3.1.4. High-Efficient Lighting System

Lighting system provides sufficient visual illuminance for occupants and accounts for
a large proportion of energy consumption, approximately one-third of energy consumption
in commercial buildings in the U.S. and 20–40% in large office buildings in China [49].
Improving lighting system efficiency and employing effective control strategies are the
main optimization methods at present, which are discussed in this section.

In the study case, the lighting power density used in the nearly zero-energy office
shows the annual ESPA of 15.81 kWh/m2 with a reduction rate of 56.6% compared with the
common office. Due to that, the varied energy consumption can also lead to the change of
related HVAC energy consumption. Moreover, to further reduce the energy consumption,
daylighting is commonly introduced as a lighting control strategy and the annual ESPA
caused by daylighting can achieve 16.4 kWh/m2 with an average window-wall ratio of
40%. The result of integrated impact on building energy saving on lighting and daylighting
in different climates has also been illustrated by Ran.W [50].
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3.1.5. PV System

PV is an essential technology to achieve NZEB target [51–53], however, solar energy
resources [54], building accepted installed area [55], material types, installed panel angle
can affect its electric power generation [56].

In this study, PV SYST has been used to calculate the power generation of the PV
system for 15 cities by coordinating the optimized inclination angle to generate maxi-
mum electricity. The results of energy saving for PV indicate that the maximum value is
6.35 kWh/m2 in Hami and the minimum value is 2.35 kWh/m2 in Chongqing. The main
reason is that Hami is located in the first-priority region owning the most abundant solar
energy with the annual total radiation per unit area higher than 1750 kWh/m2 in China. On
the contrary, Chongqing is located on the edge of Sichuan Basin which owns the scarcest
solar radiation in China [57]. Hence, Figure 9 presents that the cold climate zone has the
highest average ESPA of 5.34 kWh/m2.
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3.1.6. Comprehensive Comparison and Discussion

By synthetically considering the energy saving technologies mentioned above, the
comprehensive ESPA of the NZEB located in different climate zones can be obtained. As
shown in Figure 10, the average annual ESPA in severe cold, cold, and HSCW climate zones
are 32.70 kWh/m2, 29.01 kWh/m2, and 27.14 kWh/m2, respectively. It was summarized
that the NZEB showcased obvious advantages in different climate zones with considerable
energy saving benefits.
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For buildings located in the severe cold climate zone, the energy saving impact ranking
is daylighting, high efficiency lighting system, higher COP, high-performance envelopes,
PV, FAHRU and DCV. For buildings located in the cold climate zone, the order of the
energy saving caused by different technologies from largest to smallest is daylighting,
high efficiency lighting, higher COP, high-performance envelopes, PV, FAHRU, and DCV.
Hou et al.’s study on building load composition analysis of five different cities in China
also confirmed that for Harbin (severe cold climate zone) and Beijing (cold climate zone),
the envelope and COP of the HVAC system are the main parameters affecting building
energy consumption [58].

For buildings located in the HSCW climate zone, the order of the energy saving caused
by different technologies from largest to smallest is daylighting, high efficiency lighting,
higher COP, PV, FAHRU, high-performance envelopes, and DCV. For HSCW climate zone,
Xu et al. also proved that the building energy saving effect of high-performance envelope
was not obvious, while lighting system and high-efficient HVAC system and lighting
system contributed more energy saving in HSCW climate zone [59]. It can be concluded
that high-efficient lighting system can provide significant contribution to energy saving, as
presented in Figure 11.

The above findings of energy saving from analysis of different climate zones may
serve as a reference for similar buildings worldwide.
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3.2. Analysis of Carbon Emission Reduction

In this section, carbon emission reduction amounts and rates of various energy-
saving technologies for three climate zones are calculated and compared, as depicted in
Figures 12 and 13. The average amount of carbon emission reduction for severe cold, cold,
and HSCW climate zone are 21.97 kgCO2eq/m2, 19.60 kgCO2eq/m2, 15.40 kgCO2eq/m2,
respectively. HSCW shows the best carbon emission reduction performance due to the
integrated reason of low annual energy saving and relatively low average electrical carbon
emission factor. Table 5 shows the distribution of electrical carbon emission factors, which
is affected by the power generation form [47]. It is indicated that power grids of central
China and southern China region have relatively lower carbon emission factors of 0.51 and
0.57 by using more hydro power station and fewer coal-fired power plants.
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Table 5. Carbon emission factors of China regional power grid.

China Regional PowerGrid Typical Cities EFgrid (kgCO2eq/kWh)

Southern Regional Grid Guiyang 0.51
Northeast Regional Grid Harbin; Shenyang; Changchun 0.66
East China Regional Grid Hefei; Shanghai 0.59
Central China Regional Grid Zhengzhou; Chongqing; Wuhan 0.57
North China Regional Grid Beijing; Shijiazhuang; Taiyuan Tongliao 0.71
Northwest Regional Grid Xi’an; Hami 0.67

3.3. Feasibility of Carbon Emission

To discuss the feasibility of carbon emission, the incremental cost is analyzed.
Figure 14 indicates that Harbin has the highest incremental cost of 1017.13 CNY/m2,
whereas Guiyang has the lowest value of 612.26 CNY/m2. The incremental cost of severe
cold area shows the highest average incremental cost, but HSCW area shows the lowest
value. The deviation on average incremental cost of the highest and lowest value are
342.28 CNY/m2, which means more incremental cost are needed in severe cold area to
achieve NZEBs. The range of incremental cost is consistent with the results of a previous
study in China [25,60].

Figure 15 indicates the incremental costs producing by different energy-saving strate-
gies compared with baseline building and NZEB.

The role of the building envelope is significant in all three climate zones, especially
in severe cold area whereas produce medium carbon emission reduction potential. It is
a crucial technology and common requirement in building energy saving code to reduce
heating load and corresponding primary energy consumption. The performance of enve-
lope could be enhanced by adopting thick insulated materials, triple pane windows with
superior airtightness level. In the HSCW region, SC value impacts the carbon emission
reduction rate, whereas increasing the K value of envelope is the subordinary factor due to
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the weather condition. Adopting of operable external shading system could result in better
performance but higher incremental cost.
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HVAC system indicates better carbon emission reduction potential effect with rela-
tively low incremental cost especially in HSCW region due to lower heating demand. While
high-efficient heating source is needed in severe cold and cold regions. In single view, the
incremental cost of HVAC could reduce in NZEB compared to baseline building due to the
contribution of low heating and cooling load by using high-performance envelope.

The lighting system shows the best cost performance and high carbon emission re-
duction rate. The incremental cost of lighting system is not varied by the climate. The
incremental costs of PV among three zones are at a relatively consistent level, but severe
cold owns a better carbon emission reduction potential rate.

3.4. Climate Carbon Emission Sensitivity Analysis

To investigate the effect of building envelope on carbon emissions in three climates
zones, 15 cities are selected from the cold zone, severe cold zone, and HSCW zone. As
depicted in Figure 16, the lowest and highest amount of carbon emissions are obtained by
Guiyang and Shijiazhuang, corresponding to a value of 303.8 t and 456.7 t, respectively. The
average carbon emission in severe cold zone was the highest, and that in HSCW climate
zone was the lowest. However, based on the analysis of energy consumption in the three
climate zones, building energy consumption in HSCW climate zone is the highest, and
the reason for its low carbon emission is that the value of the carbon emission factor of
the power grid in this climate zone is generally lower than that of the other two climate
zones. The average carbon emission in the HSCW zone is the lowest as heat transfer
coefficients of building envelopes are the lowest, while that in the cold zone is the highest,
as its meteorological conditions and insulation performance of building envelopes are at
the middle level. Based on the analysis of the NZEB technology, it can be found that after
improving the thermal performance of the building envelope, the carbon emission can be
reduced by 1.6–9.3%, with an average reduction of 5.3%. Particularly, the average carbon
emissions reduction rate in the cold zone, severe cold zone, and HSCW zone are 6.1%, 6.9%,
and 2.9%, respectively, indicating that improving building envelops in severe cold and cold
areas are more helpful to decrease carbon emissions.
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When intervening FAHRU, carbon emission amounts can reduce by 6.0–20.4 t. The
highest carbon reduction rate is obtained by Harbin (located in severe cold zone) with a
value of 4.8%, and the lowest carbon reduction rate is obtained by Guiyang (located in
HSCW zone) with a value of 2.0% (shown in Figure 17). Among these three zones, the
averaged carbon emissions reduction rate in the cold zone is the lowest, as its meteorological
conditions are at the middle level, and operating time for heating and cooling are relatively
shorter. On the other hand, if DCV is added for indoor fresh air volume control, less fresh
air will be required, and carbon emissions can be decreased by 0.8–2.0%. As a result, it is
beneficial to further considering the combination of FAHRU with DCV to further improve
the energy saving and carbon emission reduction.
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COP influences the output of air source heat pumps, thus affecting the energy con-
sumption and carbon emissions caused by heating and cooling load. When the COP
changes between 3.18–2.28, carbon emission amounts increase by 18.7–37.3 t CO2 respec-
tively, as presented in Figure 18. The carbon emission rates increase in the cold zone, severe
cold zone, and HSCW zone are 6.2%, 8.1%, and 8.0%, respectively, denoting that HVAC
systems with superior performance are urgently required in NZEBs.
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4. Conclusions

This paper studied a comprehensive and multiple climatical carbon emission and cost
analysis based on a NZEB case. Various energy-saving technologies were adopted and
analyzed for 15 typical cities in severe cold, cold, and HSCW climate zones of China.

By using NZEB technologies, the annual aggregated yearly carbon emission and
categorized carbon emission for NZEB technologies are analyzed and discussed in three
climate regions. Buildings in the HSCW region may have the lowest carbon emission
reduction potential through the comprehensive effect on energy saving potential and lower
electricity carbon emission factors. By introducing an analysis of incremental cost, lighting
system and daylighting show the best carbon emission reduction potential and produce
the lowest incremental cost.

In the view of climatic zones, buildings in severe cold and cold climate have a high
incremental cost of 998.86 CNY/m2 and 870.61 CNY/m2. Buildings in HSCW show the best
carbon emission reduction potential and cost effectiveness by adopting NZEB strategies.
It is found that the comprehensive strategies of improving heat transfer performance of
envelope and promoting efficient HVAC system show a greater carbon emission reduction
potential for NZEB in severe cold and cold regions than in HSCW regions. Although
incremental cost of passive strategies produced by envelop system is higher than active
strategies produced by HVAC system and lighting system, the effect of reducing build-
ing heating load is primary and necessary. Further, more strategies of reducing carbon
emission such as carbon offset and green power would be other essential pathways for the
development of clean energy gird and building electrification.

The research outcome of this study may provide valuable references for aspects of
calculation method, sensitive analysis, and incremental cost for similar types of buildings
in different regions worldwide.
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Nomenclature

A Building construction area
α Annual energy saving per area
β Annual carbon emission reduction per area
γ Annual incremental cost per ton per area
C1 Original cost without energy-saving technologies
C2 Cost by using NZEB technologies
CE1 Original carbon emission without energy-saving technologies
CE2 Carbon emission by using NZEB technologies
E1 The original energy consumption without energy-saving technologies
E2 The energy consumption, introducing corresponding energy-saving technology
EFgrid, Carbon emission factor of the grid in the local area
R Carbon emission reduction rate

Abbreviations

APEC Asia-Pacific Economic Cooperation
CDD Cooling degree days
COP Coefficient of performance
DCV Demand-control ventilation
EPS EnergyPlus software
ESPA Energy saving per area
EU European Union
FAHRU Fresh air heat recovery unit
HDD Heating degree days
HVAC Heating, ventilation, and air conditioning system
IPCC Intergovernmental Panel on Climate Change
NZEB Nearly zero-energy building
PV Photovoltaic
SC Shading coefficient
SHGC Solar heat gain coefficient
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