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Abstract: Tropical cyclones take precious lives, damage critical infrastructure, and cause economic
losses worth billions of dollars in Australia. To reduce the detrimental effect of cyclones, a com-
prehensive understanding of cyclones using artificial intelligence (AI) is crucial. Although event
records on Australian tropical cyclones have been documented over the last 4 decades, deep learning
studies on these events have not been reported. This paper presents automated AI-based regression,
anomaly detection, and clustering techniques on the largest available cyclone repository covering
28,713 records with almost 80 cyclone-related parameters from 17 January 1907 to 11 May 2022.
Experimentation with both linear and logistic regression on this dataset resulted in 33 critical insights
on factors influencing the central pressure of cyclones. Moreover, automated clustering determined
four different clusters highlighting the conditions for low central pressure. Anomaly detection at
70% sensitivity identified 12 anomalies and explained the root causes of these anomalies. This study
also projected parameterization and fine-tuning of AI-algorithms at different sensitivity levels. Most
importantly, we mathematically evaluated robustness by supporting an enormous scenario space of
4.737 × 108234. A disaster strategist or researcher can use the deployed system in iOS, Android, or
Windows platforms to make evidence-based policy decisions on Australian tropical cyclones.

Keywords: Australian tropical cyclones; linear regression; logistic regression; anomaly detection;
clustering cyclones; AI based cyclone analysis

1. Introduction

The absolute monetary value of catastrophic events in Australia from 2006 to 2016
were found to cost $18.2 billion every year, equating to about 1.2% of Australia’s gross
domestic product (GDP) [1]. A significant portion of these catastrophic events were tropical
cyclones. For example, 100% of the economic loss from catastrophic events within Northern
Territory was attributed to cyclones. On the other hand, about 25% of the economic loss in
Queensland could be attributed to cyclones and hail [1]. In year 2060, the projected eco-
nomic loss within Australia due to catastrophic events is between $73 billion to $94 billion,
with 31% contribution from tropical cyclones [2]. To mitigate the impact of catastrophic
events, it is imperative to aggregate, curate, dissect, analyze, and understand datasets
containing catastrophic events. As stated by the United Nations, the main element of an
effective and efficient early warning framework is “Disaster risk knowledge based on the
systematic collection of data and disaster risk assessments” [3]. The adverse effects of
tropical cyclones and other catastrophic events could be mitigated with AI-driven early
warning systems, as well as simulation and modelling of catastrophic events for improved
disaster preparedness [4,5].

In our latest review, we utilized artificial intelligence (AI) to obtain hidden insights
from NASA’s worldwide landslide incident database [6,7]. Moreover, we recently used
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AI-based regression analysis such as linear and logistic regressions to identify and explain
factors responsible for tornado-related casualties in Bangladesh [8,9]. We have also uti-
lized AI to critically analyze casualties of landslides in Chittagong Metropolitan Area,
Bangladesh [10]. Lastly, we used AI-based services and algorithms to automatically process
social media posts of catastrophic events and obtained AI-driven insights from them [11,12].
Deep learning algorithms such as the convolutional neural network (CNN) were used
to obtain a deep situational understanding of disasters (e.g., cyclones) [11,12]. It should
be mentioned that all our recent studies (i.e., [6–12]) resulted in practical solutions that
assisted disaster planners, strategists, and policy makers to make evidence-based practical
decisions using their own devices (e.g., iOS, Android, or Windows).

Following the recommendations and advice of the United Nations [3], World Bank [5],
and other international and national agencies, Australia has been actively monitoring, col-
lecting, and analyzing tropical cyclones under the guidance of the Australian Government’s
Bureau of Meteorology for the last 4 decades [13–16]. Even though applications of AI [17]
and deep learning-based studies with the artificial neural network (ANN) [18], deep neural
network (DNN) [19], and CNN [11,12] have demonstrated significant advancement in
analyzing cyclones, none of these advanced techniques have been applied to the Australian
Tropical Cyclone databases in [13,14]. In this study, we reported an innovative use of auto-
mated machine learning algorithms involving CNN, linear regression, logistic regression,
and k-means clustering to obtain deep intelligence on Australian tropical cyclones. The
core contributions of this study include:

• This is the first study to report deep learning techniques with CNN on the Australian
cyclone database [13,14].

• This paper reports the most comprehensive study involving cyclone datasets from
17 January 1907 to 11 May 2022, including 1067 Australian cyclones and 28,713 records
with almost 80 cyclone-related parameters. The proposed methodology provides
AI-based insights on over 4.737 × 108234 scenarios.

• Using automated AI-driven regression analysis, we discovered and explained 33 factors
or dimensions that directly influence decreases in central pressure.

• With automated k-means clustering, this is first study that answered strategic questions
such as, “When is the central pressure of cyclones more likely to be low?” by discover-
ing four clusters and ranking them (i.e., with respect to average central pressure).

• CNN-based deep learning automatically led to the discovery of 12 anomalies on
Australian cyclone events with abnormally high wind speeds, at 70% sensitivity of
the anomaly detection algorithm. Moreover, we reported detailed experimentation
results on varying sensitivities of anomaly detection algorithms, which has never been
reported in previous studies [8,9,15–18].

• Unlike previous studies in [8,9,15–18], this study generated a dashboard that would
allow decision-makers to make strategic evidence-based policy decisions on Australian
tropical cyclones. This dashboard was deployed on multiple platforms such as iOS,
Android, and Windows, so that it could be easily adopted by disaster strategists,
planners, and researchers.

In summary, this study focused on understanding the complex relations among various
parameters related to Australian tropical cyclones to answer the following research questions:

• What factors influence a cyclone’s central pressure?
• How do these factors create a cyclone with lower central pressure?
• How can we identify the characteristics of cyclone events with the lowest central pressure?
• When did we witness the strongest cyclones with the highest damage potential?
• What characteristics generate strong cyclones with higher wind speeds?

2. Materials and Methods

The cyclone events analyzed in this study were gathered and aggregated from [13,14].
The aggregated cyclone records were cleaned and transformed before being analyzed and
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displayed. Furthermore, the data was modelled using best practices shown in [20]. Finally,
our data was analyzed using AI algorithms on the Microsoft Power Platform [21]. Within
this section, further details on data sourcing, study area, and AI algorithms are described.
As seen in Figure 1, we first connected to the Australian cyclone dataset [13] using Microsoft
Power Query. Then the data was modelled and visualized in Microsoft Power BI. Finally,
we applied AI-based algorithms such as regression (both linear and logistic regression),
clustering (k-means clustering), and anomaly detection (CNN-based deep learning) to
obtain AI-driven insights from the Australian tropical cyclone dataset.
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2.1. Data Source

For this study, we used tropical cyclone data captured by the Australian Government’s
Bureau of Meteorology from 17 January 1907 to 11 May 2022. This captured 1067 Australian
cyclones and included 28,713 records with almost 80 cyclone-related parameters. This
dataset is available in [13]. The data descriptors and specifications for this massive database
is available in [14].

2.2. Study Area

As seen in Figure 2, the study area includes Australia and its surrounding area, with
the latitude ranging from −48.60 to −2.80 and the longitude ranging from −178.10 to
180.00. As central pressure and cyclone speed are two of the most important parameters
during the categorization of cyclones, one of the critical parameters [16] Figure 2 highlights
(i.e., with color codes) is the central pressure. The lower the central pressure of the cyclone,
the darker the colors (as shown in the upper left side of Figure 2).

Figure 3 shows Cyclone Marcia that affected Queensland between 15 February and 1
March 2015 and caused about $587 million of damage. As seen in Figure 3, the selected
date point represents the location with latitude −22.20 and longitude 150.50 at 9:00 PM on
19 February 2015 with a central pressure of 933 and maximum wind gust of 79.70.

Figure 4 shows one of the most recent cyclones (captured at 6:00 p.m. on 26 February
2022), called Cyclone Anika, while it was located at latitude −14.25 and longitude 126.70
with a central pressure of 988 and maximum wind gust of 28.30.
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Figure 3. Cyclone Marcia in 2015 located at latitude −22.20 and longitude 150.50 (location zoomed).
Color code schemes for highlighting the central pressures have been demonstrated previously in
Figure 2.

Lastly, a more recent timeline was selected for Figure 5 (date filtered between
26 January 2022 and 11 May 2022); as a result, the paths of the few cyclones that oc-
curred during this time span are displayed. In Figure 5, the specific data point shows
Cyclone Charlotte captured at latitude −17.05 and longitude 109.20. The paths of the
cyclones are easier to observe in Figure 5 (due to fewer data points) in comparison with
Figures 2–4.
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2.3. Algorithms for Analysis

Selecting the right algorithm to solve the right research question requires a systematic
comprehension of the related literature. This study focused on understanding the complex
relations among the various parameters related to Australian tropical cyclones to answer
several strategic questions, listed in the introduction. To answer questions such as, “What
factors influence a cyclone’s central pressure?” or “How do these factors create a cyclone
with lower central pressure?”, we used AI-based regression analysis that was depicted
in our recent research [6–12,22–24]. To answer strategic questions such as, “What are the
characteristics of cyclone events with the lowest central pressure?”, we used k-means
clustering with Microsoft Power BI as demonstrated in [12]. Lastly, to effectively answer
questions such as, “When did we witness the strongest cyclones with the highest damage
potential?” or “What characteristics generate strong cyclones with higher wind speed?”,
CNN-based anomaly detection with line chart visualization of Microsoft Power BI was
utilized (as demonstrated in our recent studies in [6,7,11,12,22,23]). For this study, we
specifically focused on analyzing central pressure and maximum wind speed because of
their importance from a meteorological perspective [15,16,25].

2.3.1. Regression

Implementation of a regression analysis automatically ranks the factors that matter,
contrasts the relative importance of these factors, and displays them as key influencers
for both categorical and numeric metrics. For numerical features, linear regression was
performed using SDCA regression implementation from Microsoft’s ML.NET [26]. Linear
regression is one of the simplest machine learning algorithms that comes under supervised
learning techniques and is used to solve regression problems. It is used to predict the
continuous dependent variable with the help of independent variables. The goal of linear
regression is to find the = line of best fit that can accurately predict the output for the
continuous dependent variable. By finding the line of best fit, the algorithm establishes
a linear relationship between the dependent and independent variables in the form of
Equation (1).

y = b0 + b1x1 + ε (1)

On the other hand, for categorical features, logistic regression was performed using
L-BFGS logistic regression from ML.NET [27,28]. Logistic regression is one of the most
popular machine learning algorithms that uses supervised learning techniques. It can
also be used for classification and regression problems. Logistic regression was used to
predict the categorical dependent variable with the help of independent variables using
Equation (2).

log[y/y− 1] = b0 + b1x1 + b2x2 + . . . bnxn (2)

The output of the logistic regression problem can only be between zero and one.
Logistic regression can be used where the probabilities between two classes are required,
such as whether it will rain or not today, 0 or 1, true or false, etc.

Logistic regression without a threshold is a regression. However, by introducing a
threshold to the process, it transforms into an efficient classifier. At the beginning, we
commence with the logistic or sigmoid function,

σ(t) =
1

1 + e−t (3)

which maps real numbers to interval (0, 1). Then, we proceed by defining the hypothesis
function with

hθ(x) = σ
(

θTx
)
=

1
1 + e−θT x

(4)
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The classification decision is made on y = 1, when hθ(x) ≥ 0.5 and y = 0 otherwise.
The decision boundary is θTx = 0. The cost function is represented by

j(θ) =
m

∑
i=1

H
(

y(i), hθ

(
x(i)
))

(5)

where H(p,q) is the cross-entropy of distribution q relative to distribution p and is given by

H(p, q) = −∑
i

pilog qi (6)

In this case y(i) ∈{0,1} so p1 = 1 and p2 = 0. Therefore,

H
(

y(i), hθ

(
x(i)
))

= −y(i) log hθ

(
x(i)
)
−
(

1− y(i)
)

log
(

1− hθ

(
x(i)
))

(7)

Similar to the selection of the quadratic cost function in linear regression, the selection
of this cost function is mainly driven by the fact that it is efficient and easy to implement,
as shown in

grad J(θ) =
∂ J(θ)

∂ θ
=



∂
∂ θ0

J(θ)
∂

∂ θ1
J(θ)

.

.

.
∂

∂ θn
J(θ)


= XT(hθ(X)− y) (8)

Hence, gradient descent for logistic regression could be reflected with

θ(k + 1) = θ(k)− s grad J(θ) (9)

2.3.2. K-Means Clustering

Our implementation of k-means clustering is based on automated AI-based clustering
algorithms of Microsoft Power BI [21]. The k-means algorithm in this study used data
pertaining to Australian tropical cyclone events to analyze almost 80 parameters. Assuming
we have input data points x1, x2, x3, x4, . . . , xn, the k-means clustering algorithm randomly
selects k points as the initial centroid from the dataset. Then, Euclidian distances are
calculated for each point in the dataset with respect to the selected k points, known as
cluster centroids. Given for two points, p = (p1, p2) and q = (q1, q2), and the Euclidian
distance is measured with Equation (10).

d(p, q) =
√
(q1 − p1)

2 + (q2 − p2)
2 (10)

After finding the Euclidean distances of each point with the cluster centroids, each
data point is assigned to the cluster centroid for which the distance is minimal, as seen in
Equation (11).

argmin
ci∈C

dist (ci, x)2 (11)

Here, dist() is the Euclidean distance. Next, the new centroid is calculated by taking
the average of the points in each cluster group, as seen in Equation (12).

ci =
1
|Si| ∑

xi∈Si

xi (12)

Here, Si is the set of all points assigned to the ith cluster. This process of calculating
the Euclidian distances (with Equation (10)), assigning points to the cluster centroid (with
Equation (11)), and finding the new centroid by taking the average (with Equation (12))
is continued for several iterations until the centroids do not change. At the end of these
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iterations, k numbers of cluster centroids are discovered, and data points are assigned to
the right clusters. It should be mentioned that the implementation in Microsoft Power
BI obviated the requirements for manually selecting the k number (or the number of
clusters). Moreover, AI-based automated clustering by Microsoft Power BI eliminates the
requirement of manual preprocessing (e.g., normalization, data transformation, etc.) of
input data.

2.3.3. CNN-Based Anomaly Detection

The anomaly detector enhances line charts by automatically detecting anomalies
within time-series data. It also provides explanations for the anomalies to facilitate root-
cause analysis. In our most recent study, we harnessed the anomaly detection algorithm to
identify abnormal cases of landslides and obtain the root causes of these anomalies [6,7].
Moreover, we recognized and explained the anomalies for disaster events using anomaly de-
tection in social media [11,12]. Furthermore, we have classified anomalies on global events
by monitoring 2397 global news sources and applying anomaly detection algorithms [22,23].
Before delving into the details of anomaly detection, we present the problem definition.
Problem 1: Given a sequence of real values, that is, x = x1, x2, x3, . . . , xn, the task of
time-series anomaly detection is to produce an output sequence y = y1, y2, y, . . . , yn,
where yi ∈ {0, 1} denotes whether xi is an anomaly point.

The implemented solution borrowed the SR from the visual saliency detection domain
and then applied a CNN to the results produced by the SR model [29].

The SR algorithm consists of three major steps:

• Perform Fourier transform to obtain the log amplitude spectrum.
• Calculate the SR.
• Perform inverse Fourier transform, which transforms the sequence back to the spatial

domain.

A( f ) = Amplitude( f (x)) (13)

P( f ) = Phrase( f (x)) (14)

L( f ) = log(A( f )) (15)

AL( f ) = hq( f )·L( f ) (16)

R( f ) = L( f )− AL( f ) (17)

S(x) =
∣∣∣∣∣∣ f−1(exp(R( f ) + iP( f )))

∣∣∣∣∣∣ (18)

where f and f 1 denote the Fourier transform and inverse Fourier transform, respectively; x
is the input sequence with shape nX1; A(f ) is the amplitude spectrum of sequence x; P(f ) is
the corresponding phase spectrum of sequence x; L(f ) is the log representation of A(f ); and
AL(f ) is the average spectrum of L(f ), which can be approximated by convoluting the input
sequence by hq(f ), where hq(f ) is a q × q matrix defined as:

hq( f ) =
1
q2


1 1 . . .
1 1 . . .

· · ·
...

. . .

1
1
1

1 1. . . 1

 (19)

R(f ) is the SR, that is, the log spectrum L(f ) minus the averaged log spectrum AL(f ).
The SR serves as a compressed representation of the sequence, whereas the innovation
part of the original sequence becomes more significant. Last, the sequence was transferred
back to the spatial domain using an inverse Fourier transform. The resultant sequence S(x)
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is referred to as the saliency map [30]. The values of the anomaly points are calculated
as follows:

x = (x + mean)(1 + var)·r + x (20)

where x is the local average of the preceding points, mean and var are the mean and
variance of all points within the current sliding window, and r ∼ N (0, 1) is randomly
sampled. In this process, CNN is applied to the saliency map instead of to the raw input,
increasing the efficiency of the overall process of anomaly detection [29,30].

The anomaly detection algorithm provides detailed explanations for all detected
anomalies following the root cause analysis performed by AI services. We implement
anomaly detection in three steps:

• Detect all the anomalies within the time series (i.e., any values that lie outside the
threshold range).

• Identify the main drivers of these anomalies.
• Explain the results in a natural language (explanation of the root cause) using NLP [31].

3. Results

Our study allows disaster strategists, planners, and researchers to answer the “What”,
“When”, “How”, and “Why” questions on central pressure and maximum cyclone speed of
Australian tropical cyclones by using an interactive dashboard that was developed during
the course of this research. There were three distinct types of functionalities satisfied by
three distinct types of AI-based algorithms (e.g., regression, clustering, and deep learning).
This section briefly discusses the results obtained from utilizing these three different types
of algorithms.

3.1. Results on Regression

Regression analysis answered the following questions, among others:

• What factors influence a cyclone’s central pressure?
• How do these factors create a cyclone with lower central pressure?
• Explain why.

As seen in Figure 6, we used the key influencers visual from Microsoft Power BI to
identify all the factors that influence the central pressure of Australian tropical cyclones, as
central pressure is one of the key elements that determines the damage potential of a cyclone.
By employing automated regression analysis (i.e., both linear and logistic regression) on
almost 80 cyclone-related factors, our solution found 33 factors that directly influence the
central pressure of Australian tropical cyclones (as seen in Figure 6 and Table 1). The
descriptions, data types, and units of these 80 cyclone-related parameters can be found
at [14]. Among these relationships, items number 21 and 33 from Table 1 depicts results
from the linear regression on numerical variables (i.e., maximum wind speed, maximum
wind gust, etc.). For the case item 21 from Table 1, the relationship between maximum
wind speed and central pressure was explained by NLP as, “When Maximum wind speed
goes up 11.71 is more than 167, the average of Central Pressure decreases by 11.48”. On
the other hand, for item 33 from Table 1, the relationship between maximum wind gust
and central pressure was explained by our system as, “When Maximum wind gust goes
down 14.98, the average of Central Pressure decreases by 0.61” (as shown in Figure 7).
Whereas Figure 6 demonstrates a case logistic regression, Figure 7 represents a case for
linear regression. It should be noted that with the help of regression analysis and NLP on
almost 80 factors, we successfully explained the 33 identified relationships (as shown in
Table 1). Previous studies in [8,9,15–18] have not reported such a comprehensive level of
analysis (i.e., analyzing 80 cyclone parameters to understand the intricate relationships
among them).
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15. When MN_RADIUS_SECNE is more than
167, the average of Central Pressure decreases
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21. When Maximum wind speed goes up 11.71
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27. When MAX_WIND_SPD_METHOD is 13,
the average of Central Pressure decreases by
7.4
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33. When MAX_WIND_GUST goes down
14.98, the average of Central Pressure decreases
by 0.61
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Figure 7. Linear regression showing the linear relationship between numerical variable
MAX_WIND_GUST and Central Pressure.

3.2. Results on Clustering

We used k-means clustering to answer strategic questions such as, “How can we
identify the characteristics of cyclone events with the lowest central pressure?” or “What
are the conditions for a cyclone with low central pressure”. Key influencers visual from
Microsoft Power BI was used to perform automated k-means clustering where the number
of clusters were automatically determined by our solution. As seen in Figure 8, four clusters
or segments were discovered for analyzing cyclones with low pressure. The average central
pressure for segments 1, 2, 3, and 4 were 939.5, 964.9, 979.5, and 986.7 hPa, respectively.
Clicking each of these identified segments reveal their characteristics, as shown in Figure 9.
As seen in Figure 9, the key characteristic of Segment 1 with the lowest central pressure was
“Maximum wind speed is more than 44”. Table 2 demonstrates the detailed characteristics
discovered by the clustering analysis for all four segments.
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Table 2. Characteristics discovered by k-means clustering for all four segments.

Segment No. Central Air Pressure (hPa) Data Points Analyzed Characteristics Discovered by Clustering

1 939.5 1334 44 < Maximum wind speed

2 964.9 2495 31 < Maximum wind speed ≤ 44

3 979.5 1789 25.7 < Maximum wind speed ≤ 31

4 986.7 2715 21.6 < Maximum wind speed ≤ 25.7
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3.3. Results on Anomaly Detection

We used CNN-based anomaly detection to detect anomalies in the time series record
of Australian tropical cyclones. By using the analytical features of line chart visualization
in Microsoft Power BI, we answered the following strategic questions, among others:

• When did we witness the strongest cyclones with the highest damage potential?
• What characteristics generate strong cyclones with higher wind speeds?
• Explain why.

As shown in Figure 10, 22 anomalies were automatically detected and highlighted
by our solution, at 70% sensitivity. Clicking any one of these anomalies launches our
implementation of the CNN algorithm to find out the root causes of the selected anomaly.
As shown in Figure 11, the identified root causes are explained in plain language with
the help of NLP. First, Figure 11a explains why the selected anomaly was identified as an
anomaly (i.e., being outside of tolerance levels). Then, Figure 11b,c explains two possible
root causes out of five total root causes for the selected month (i.e., March 2004). CNN-
based deep learning or anomaly detection found that, in March 2004, the aggregated
wind-speed (5273.80 km/h) of all cyclones were more than the expected range from 1179.49
to 1755.39 km/h. The algorithm highlights this month to be an anomaly and proceeds to
explain the root causes with corresponding confidence strengths.
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It should be noted that the anomalies highlighted in Figure 10 were at 70% sensitivity
of the deployed CNN algorithm. Increasing the sensitivity of the CNN algorithm allows
our deployed solution to identify and explain more anomalies. Table 3 shows the detailed
results on the number of anomalies identified on varying sensitivity scales.
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Table 3. Number of anomalies detected at different sensitivities of CNN-based anomaly detection.

Sensitivity of Anomaly Detction Number of Detected Anomalies

65% 17

70% 22

75% 22

80% 22

85% 31

90% 31

95% 90

100% 90

4. Discussion

The results depicted in Figures 6–11 and Tables 1–3 were obtained based on a full range
of dates, latitudes, longitudes, wind gusts, wind speeds, and central pressure. However,
our interactive system allows strategic decision-makers to quickly create a scenario by
adjusting several of these cyclone parameters (i.e., dates, latitude, longitude, wind gust,
wind speed, and central pressure). For example, Figure 12 depicts a user only interested
in latitudes between −41.14 and −5.69, longitudes between −84.16 and 180.00, central
pressures between 900 and 1015, maximum wind speeds between 21.51 and 69.50, and
dates between 20 July 1971 and 11 May 2022. Based on these cyclone-related parameters,
all cyclone events fulfilling the user’s conditions were selected and the clustering algorithm
was run on these selected records. The results of the clustering algorithm are different to
what was observed in Figures 8 and 9. Thus, the presented solution supports an exhaustive
range of scenarios, where the user of the system specifies a range of conditions and AI
algorithms are only applied on the records satisfying the user’s specifications.
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To calculate the number of scenarios, we first need to calculate the possible options for
each of the features. For example, a cyclone parameter called cyclone-type may contain
only three values such as Low, Medium, and Extreme. Therefore, it could have the following
filter options:
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• {Low}
• {Medium}
• {Extreme}
• {Low, Medium}
• {Low, Extreme}
• {Medium, Extreme}
• {Low, Medium, Extreme}

Thus, for the cyclone-type parameter, there are seven possible filter settings as repre-
sented by (2|N| − 1), which is the formula to calculate the power set of type attribute minus
1 (i.e., P(N)− 1). Here, |N| is the cardinality of set cyclone-type. We deduct one because
the power set also includes an empty set and the selection of an empty set is not supported
by the system.

Hence, the total number of scenarios could be calculated as

|S| = (2|a| − 1)X(2|b| − 1)X(2|c| − 1)X(2|d| − 1)X(2|e| − 1)X(2| f | − 1) (21)

Within Equation (21), a is the cardinality of latitude, b is the cardinality of longitude,
c is the cardinality of central pressure, d is the cardinality of maximum wind speed, e
is the cardinality of dates, and f is the cardinality of maximum wind gust. If we apply
Equation (21) on our deployed solution, as shown in Figure 12, we obtain 4.737× 108234

scenarios. The number of scenarios would increase if we incorporated more cyclone
parameters. The purpose of this section is not only to produce an exhaustive list of insights
from the Australian tropical cyclone data, but also to demonstrate the ability of the designed
AI solution to produce insights on any one of the 4.737× 108234 possible scenarios ((2.073
× 10326) × (4.548 × 10630) × (1.298 × 1033) × (3.603 × 1016) × (1.099 × 1012) × (9.773 ×
107215) =4.737 × 108234).

In comparison with the existing literature in [8,9,15–18], this paper reports a unique
system where the strategic decision-maker can use their own devices to select a particular
scenario and immediately execute the best suited algorithms automatically, with outcomes
reported in plain language. Using the latest technological innovations in AI-based Natural
Language Processing (NLP) [32], AI-driven insights (i.e., the outcomes of AI algorithms) are
explained in a language that is easily understandable by decision-makers. In the previous
section, we saw Item 25 of Table 1, explaining results in natural language using NLP:
“When LONGITUDE is between 107.6 and 123.1, the average of Central Pressure decreases
by 7.77”. Thus, decision-makers no longer need to rely on data scientists for explanations
of linear or logistic regressions.

As shown in Figure 12, when the strategic decision-maker selects a scenario, the
proposed solution immediately filters the data and draws relationships with correlation
coefficients on the filtered data. These figures demonstrate AI-based insights on relation-
ships between critical cyclone-related parameters such as maximum speed, center pressure,
wind gust, etc. The system hides the complex AI-based calculations from the user. Thus,
this system is perfectly suitable for a strategic decision-maker who does not have any
background in data analysis, AI, or mathematical modelling.

Unlike the statistical method of regression analysis (as shown in [33] to ascertain
tornado damage ratings), AI-based regression analysis (demonstrated in this paper) is an
end-to-end automated process (i.e., without the intervention of a data scientist), where
plotting the relationship curves and describing the relationship in natural language (using
NLP) is a completely automated process.

Although none of the existing research on tornadoes [8,9,15–18,33] demonstrated
applicability of their solutions through mobile apps on mobile devices or tablets, the
current solution can be deployed in a range of devices, including mobile devices, tablets,
and traditional desktop computers. Figure 12 shows the app deployed on an Android app
on a Samsung Galaxy 10 Lite mobile phone. It can also be deployed using iOS or Windows
devices, with techniques shown in [6–12,22,23,34,35].
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The regression, clustering, and CNN algorithm that were described in this paper for
the analysis of Australian cyclones can also be used in analyzing various other disasters,
as demonstrated in recent studies [6–12,22,23,34,35]. For example, we analyzed landslides
in [6,7,10], tornadoes in [8,9], global events in [22–24], and even COVID-19 in [34,36]. In our
previous studies [11,12], natural disasters such as earthquakes, bushfires, floods, volcanoes,
droughts, tsunamis, etc. were successfully analyzed with higher levels of accuracy. These
AI-based algorithms could be seamlessly integrated into any dataset, whether global [6,7]
or local [8–10]. However, researchers need to understand which algorithms need to be used
to solve which problem and use these algorithms in an appropriate manner suiting various
preconditions, as shown in Table 4.

Table 4. Preconditions and purpose of using regression, clustering, and CNN-based anomaly detec-
tion in other research.

Name of Algorithm Applicability Pre-Condition

Linear regression
Finding out the factors that drive the metric being
analyzed. Analyzes the dataset, ranks the factors that
matter, and displays them as key influencers.

Supports only numeric values

Logistic regression
Finding out the factors that drive the metric being
analyzed. Analyzes the dataset, ranks the factors that
matter, and displays them as key influencers.

Supports only categorical values

Clustering Finding out similarities or dissimilarities among
categorical values by grouping

Supports only 1 dimension/categorical
value and up to 15 measures/numeric
values

CNN-based anomaly
detection

Automatically detects anomalies in time series data.
Provides explanations for anomalies to help with root
cause analysis.

Supports only time series data

5. Conclusions

This paper presented an innovative solution for obtaining AI-driven answers to critical
strategic questions on Australian tropical cyclones. By deploying automated regression
(i.e., both linear and logistic regressions), k-means clustering, and CNN-based anomaly de-
tection, the presented approach generates NLP-based insights in plain English for decision-
makers. A strategic decision-maker can obtain AI-driven insights on their own mobile
devices (i.e., iOS, Android, or Windows) for making evidence-based decisions.

This study not only presented an innovative and sustainable solution for comprehend-
ing Australian tropical cyclones, but also demonstrated the robustness of such a system
by supporting an exhaustive scenario set of 4.737× 108234. Moreover, we reported the
experimentation and fine-tuning of the present system under varying levels of sensitivity
(as shown in Table 3).

This study predominantly analyzed only two cyclone-related parameters such as
central pressure and maximum air speed (out of 80 cyclone-related parameters available
in the source data [13,14]). Although regression and clustering algorithms were used to
analyze central pressure dynamics, CNN-based anomaly detection was used to analyze
central pressure of Australian cyclones. There are many more critical parameters such as
longitude, latitude, imagery, etc. corresponding to geospatial analysis that were outside
the scope of this study (as demonstrated in [19,37]). Moreover, important cyclone-related
analyses such as cyclone prediction, rainfall prediction, landfall prediction, detecting
cyclones of unprecedented scale, and cyclone damage analysis were not investigated in
this study (as demonstrated in [17,18,38–40]).

For future studies, focusing on a larger set of data with a wider range of attributes
containing fewer empty values would be beneficial. Moreover, we endeavor to combine
this tornado event-based dataset with social media-based tornado data (as reported in our
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recent study [11]) for performing deep learning on more cyclone-related parameters with
geospatial analysis.
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