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Abstract: The scheduling of open-pit mine production is a large-scale, mixed-integer linear pro-
gramming problem that is computationally expensive. The purpose of this study is to create a
computationally efficient algorithm for solving open-pit production scheduling problems with uncer-
tain geological parameters. To demonstrate the effectiveness of the proposed research, a case study of
an Indian iron ore mine is presented. Multiple realizations of the resource models were developed
and integrated within the stochastic production scheduling framework to capture uncertainty and
incorporate it into the mine plan. In this case study, two hybrid methods were developed to evaluate
their performance. Model 1 is a combined branch and cut with the longest path, whereas Model 2
is a sequential parametric maximum flow and branch and cut. The results show that both methods
produce similar materials, ore, metal, and risk profiles; however, Model 2 generates slightly more
(4 percent) discounted cash flow from this study mine than Model 1. The results also show that
Model 2’s computational time is 46.64 percent less than that of Model 1.

Keywords: stochastic production scheduling; mixed integer programming; geological uncertainty;
net present value; branch and cut

1. Introduction

The quality and quantity of raw materials play an important role in the manufacturing
of steel production. Iron ore is the main raw material required in steel manufacturing. The
management of steel industries thus needs to receive a consistent grade of iron with less
variation. The raw material supplied to the plant must be uniform or within permissible
limits of variation with the desired quantity. To supply the desired quality and quantity
of raw materials to the steel plant consistently, the iron mine needs to prepare a robust
mine plan. The majority of the existing computer-aided design solutions are built on the
principle that the planning and scheduling of exploitation requires the combination of a
significant quantity of various geological, operational, or economic data. The boundaries
of each individual exploitation field, the sequence in which they should be carried out, as
well as the locations of the access and preparation excavations, are decided throughout the
production planning and scheduling phase [1].

Production scheduling is an important and challenging issue in mine planning. The
production scheduling method begins with the assumption of the initial production capacity
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of the mining system as well as estimates of associated costs and commodity prices. In this
problem, the deposit is represented as a three-dimensional array of blocks. For each block,
weight and metal content were estimated using information obtained from the borehole. In
order to recover the metal in the form of either steel or raw iron, the block is first extracted
from the ground and then treated in the plant. The revenue is generated after selling the
metal to the market. The costs associated to produce metal include processing the raw
materials in the process plant, mining the raw materials from the near- or sub-surface, and
some auxiliary cost for selling the metals. The profit can only be made when the revenue
generated from a mining block is higher than the total cost. It is noted that some mining
blocks give positive and some blocks give negative profit (loss). In general, the cost of
mining and the cost of processing are the same for all blocks (with some exceptions of
processing cost varies with materials type). The major contributor to profit is the revenue,
and revenue is highly dependent on the quality of the raw materials. The quality of a
mining block is represented by grade, and the high-grade blocks generate higher revenue
and thus produce more profit, and the low-grade blocks generate less revenue and thus
incur a loss to the company. Therefore, the goal of a mining company is to produce as
many high-grade blocks as possible, leaving low-grade blocks (which make a loss) in the
ground. Moreover, due to the time value of money, the goal of a mining company is to
generate more revenue in the early stages of the process. The mine production scheduling
involves determining which blocks are to be mined during each lifecycle of the mine in
order to maximize the net present value of the mining operation. Moreover, the production
schedule must ensure the continuous operation of the plant which meets the production
goals. The optimization for mine production scheduling can be accomplished by traditional
(or conventional) and stochastic methods. Traditional methods of mining planning and
mine optimization are considered single-estimated orebody models, and their calculations
are ignore the uncertainty associated with the spatial distribution of the grade [2,3]. The
basic assumptions of these models reflect the constant and real economic value of inputs
derived from geological (estimated grade or metal content) and economic (metal price
and cost) parameters. Ignoring any kind of uncertainty is a common weakness in mine
production scheduling algorithms, which leads to the creation of unrealistic plans in terms
of operational requirements [4]. Dimitrakopoulos divides the uncertainty of the mining
project into three main sources: geological, technological, and economic uncertainty [5].

Neglecting geological uncertainty may lead to suboptimal production scheduling with
significant deviations from production targets. The incorporation of geological uncertainty
into open-pit mine planning is emphasized in [2,6,7]. Ore grade uncertainty is considered
to be a key source of risk affecting mining activity. Case studies have shown that integrating
geological uncertainty in open-pit mine planning significantly reduces the risk of deviating
from production targets and can increase project value by 26–28% [8,9]. Researchers have
shown the importance of minimizing the deviations from the production targets while
maximizing the discounted cash flow under geological uncertainty [10–12]. The upside
potential can be maximized and the downside can be minimized by a production schedule
generated after incorporating the geological uncertainty [7]. A multistage approach is
proposed by Boland et al. [13] to incorporate geological uncertainty in the production plan.
A Monte Carlo simulation-based model is proposed by Groeneveld and Topal for mine
design under uncertainty [14]. Kumral [15] proposed chance constraint-based production
scheduling algorithm to incorporate mining uncertainty in the production plan. Asad and
Dimitrakopoulos [16] designed a mine plan under uncertain supply and demand using the
Lagrangian relaxation of maximum flow algorithm. Researchers also proposed different
a metaheuristic algorithm for stochastic optimization, including Tabu search, simulated
annealing, particle swarm optimizer, etc., [17–19].

The typical metal mine open-pit production scheduling formulation was taken into
consideration as the solution approach for stochastic production scheduling under geological
uncertainty. Assigning mining blocks to different production periods in order to maximize
profit over the mine life and minimizing deviation from targets is the objective purpose of
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open-pit stochastic production scheduling. Multiple simulated orebody models are needed
for the stochastic mine production schedule, which increases the number of decision factors,
constraints, and demands a large amount of calculation time. It is typically impossible to
optimally address the stochastic production scheduling of industrial-scale mining problems.
The goal of this research is to create an algorithm that aids in real-world issue solving in a
reasonable period of computational time with the closest possible solution. This paper presents
a case study that focuses on the long-term production planning of an open-pit iron ore mine
in India. The stochastic production scheduling was performed. For stochastic modelling,
only the geological uncertainty or risk was considered; however, any other uncertainty can be
incorporated with the additional computational burden. Two different solution strategies
were considered for this case study: (a) sequential parametric maximum flow with repair
branch and cut is proposed; (b) sequential branch and cut with the longest path algorithm,
as proposed by Lamghari and Dimitrakopoulos [20].

2. Description of Iron Ore Mine

The study was carried out at an iron ore mine in Central India. Due to the confi-
dentiality agreement with the mining company, the name of the mine and name of the
company were not disclosed here. These iron deposits are associated with rocks known to
contain high-grade ores (hematite) and banded iron ores. These rocks form a narrow, highly
dissecting, and discontinuous mountain range. The area belongs to the Indian Terrain
Survey 64 H/2. The mining area of this study mine currently extends to 220.42 hectares.
The mine is located in a hilly terrene. The ground level is located at 425 mRL, and the peak
of the old bench is at 543 mRL. The drainage of the area is controlled by natural drainage
channels and cutting across the hills. The total geology impact is in the east–west direction,
with N to N–E having a varying dip angle of 40 to 60 degrees. The resistance of the iron
ore in the outcrops in the general peneplane forms distinct hills and ridges, producing a
saddle-shaped topography. The iron deposits are related to the banded iron form (BIF).
The lithology in this area is predominantly sedimentary metamorphic. Hard blocks and
abrasive banded hematite quartz (BHQ) and soft rock/shale form the lower wall and the
hanging wall, respectively. Iron ore is very rich in the upper strata, and it is hard and
huge in nature, gradually softening in depth. Geologically, the deposit has four types
of iron ores: (a) massive hematite ore (Fe content = 65–67%); (b) compact laminated ore;
(c) soft laminated ore; (d) lateritic ore. The mine covered by this lease is a fully established
open cast echanized mine with a 3.5 MTPA ore extraction capacity. There is a 2:1 stripping
ratio. Moreover, 4.6 cu. M. electric rope shovels, 5.5 cu. M. hydraulic shovels, and 50 T
capacity rear dump BEML/HM dumpers are used in the excavation process in a traditional
shovel–dumper combination. Currently, ore is delivered straight to a crusher that is nearby.
At the rated capacity of 3.5 MTPA of ore, it is projected that 662 people are needed, although
753 people are already on site. At present, the mines is operated in three shifts for 310 days
in a year. Drilling and blasting, loading and unloading, and mining excavation are the
main activities that cause fugitive dust to be released into the air. As a result, there is no
expectation of significant dust emissions or air pollution. There is an efficient mechanism
for dust suppression. The operation of shovels, dumpers, dozers, and other transport
vehicles will produce emissions, which will be routinely monitored and maintained to keep
the emission below TLV. Topsoil will be placed separately and used for the regrowth of
plants, while waste produced during the mining process will be used for backfilling and
stacked in a systematic manner.

Groundwater occurs at about 430 mRL. The average amount of dewatering (based
on the pump average) was about 1050 cum/day. Due to MMR-108 limitation, no mining
is carried out below 443 mRL. All benches in the ore and waste are kept 10 m high and
20 m width for operating benches. In the footwall area, benches 483 and above and
473 (not including the west side) have been pushed to their ultimate pit positions. In the
high wall region, 503 and 513 benches are in their final pit positions. Sleeping benches,
453 to 573 mRL, are excavated after the upper limit has been reached. The existing pit
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bottom is 418 mRL and the storage tank is 418 mRL. The pictorial view of the case study
open-pit mine is shown in Figure 1.
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Figure 1. A pictorial view of the open-pit study mine.

The ore-processing plant at case study mine involves three levels, and stage crushing
and screening are used to produce BF-grade blocks and sinter-grade fines. The sediments
show characteristics of low to medium grade ores, which include hematite and goethite
as minerals and quartz, and pseudo-ores and iron clays as gangue minerals. The ore
mineral distribution is about 28% overall, and the total area of gangue mineral distribution
is about 72%. The main ore is hematite, with an area of 20%, of which about 6% of the
grain is in a free state and the remaining 14% of the grain is not released. About 7% of the
non-released particles can be released at 20-micron size. The remaining particle size is less
than 15 microns. Goethite accounts for about 10% of the total area. All goethite particles are
less than 30 microns in size, with about 2% of the particles in a free state and the remaining
8% of the particles not liberated. All undissociated particle sizes are less than 20 microns.

The area is characterized by a tropical climate and heavy rain from June to September.
Except for a few rainy months, the remaining months are sunny with almost no rain. Mete-
orological data includes air temperature: maximum 47 ◦C, minimum 6.3 ◦C, with average
35 ◦C; the winter and summer average temperature are 14 ◦C and 27 ◦C, respectively.
Regarding rainfall, maximum, minimum, and average values are 2088 mm, 1344 mm, and
660 mm, respectively.

The only attribute that was used in this study is Fe%. The mine authority only records
this attribute from the borehole because the iron produced from this mine is of a very
high grade, and there are very little impurities present in the ore. The geotechnical study
of the deposit proposed a safe bench height of 10 m and a safe bench slope angle of 45◦.
All boreholes are drilled in a vertical direction. Figure 2 presents a borehole map with
down-the-hole rock types. The assay data was composited at 10 m intervals for resource
modelling of the deposit. Figure 3 presents the composited point data with their associated
assay value within the deposit.
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3. Mathematical Model of Stochastic Mine Production Scheduling

The case study mine’s stochastic framework design for mine production schedul-
ing is as follows: A decision variable xi connected with a mining block of an open-pit
mine, where xi ∈ X and X is the set of blocks. The scheduling of open-pit mine can be
expressed as stochastic mixed integer programming with time indexed binary variables
xit, i ∈ N, t = {1, . . . , T} which are defined by xit = 1 if mining block is extracted at
time t and xit = 0 otherwise. The stochastic model’s goal is to maximize profit for all
simulations S by allocating N blocks in T production periods and reducing deviation from
production targets.

Z = Max

{
S

∑
s=1

T

∑
t=1

N

∑
i=1

citsxit −
S

∑
s=1

T

∑
t=1

(
vo−

t do−
ts + vo+

t do+
ts + vm−

t dm−
ts + vm+

t dm+
ts
)}

(1)

Subject to
Reserve constraints: The total number of blocks that can be mined is equal to Equation (2).

T

∑
t=1

xit ≤ 1 i = 1, . . . , N (2)

Slope constraints: First, we have to extract the overlying blocks before its predecessors.

xit −
t

∑
τ=1

xpτ ≤ 0 p ∈ Pi, t = 1, . . . , T (3)

Mining constraints: The maximum and minimum capacity to extract the materials
from mine. In this process, the violation of this constraints is also not acceptable.

MC ≤
N
∑

i=1
mci ∗ xit t = 1, . . . , T

MC ≥
N
∑

i=1
mci ∗ xit t = 1, . . . , T

(4)

Processing constraints: The processing constraints with allowable violations are the
plant’s production capacity and the minimum production requirement; these upper and
lower bounds are necessary to ensure a smooth feed of ore to the mill; however, when the
upper or lower limit bounds are exceeded, penalties are added to the objective function.

PC ≤
N
∑

i=1
pcis ∗mci ∗ xit + do−

ts t = 1, . . . , T, s = 1, . . . , S

PC ≥
N
∑

i=1
pcis ∗mci ∗ xit − do+

ts t = 1, . . . , T, s = 1, . . . , S
(5)

Metal production constraints: Metal production constraints, as with processing con-
straints, are allowed to deviate from their intended boundaries to some extent, and their
related penalty terms are included in the objective function. The limits on metal production
are presented as follows:

MP ≤
N
∑

i=1
mpis ∗ pcis ∗ xit + dm−

ts t = 1, . . . , T, s = 1, . . . , S

MP ≥
N
∑

i=1
mpis ∗ pcis ∗ xit − dm+

ts t = 1, . . . , T, s = 1, . . . , S
(6)

Decision variables are

xit = 0 or 1 i = 1, . . . , N, t = 1, . . . , Tdo−
ts do+

ts dm−
ts dm+

ts ≥ 0 t = 1, . . . , T, s = 1, . . . , S
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xit are the first stage decision variables. The deviation variables that contain simulation
function do−

ts , do+
ts , dm−

ts , dm+
ts are the second stage decision variables and depend on the

realization of the uncertainty and values of the first stage decision variables.
where

S = The number of scenarios used to model geological uncertainties.
do−

ts = Shortage of amount of ore at discounted cost in time period t in simulation s.
do+

ts = Surplus of amount of ore at discounted cost in time periood t in simulation s.
dm−

ts = Shortage of metal for selling at discounted time period t in simulation s.
dm+

ts = Surplus of metal for selling at discounted time period t in simulation s.
xit = {

1 if block i is mined during period t
0 otherwise

cits = block economic value of block i if mined at period t
= cis

(1+d)t

cis = Economic value of block i from simulation s
d = discounted rate
N = The number of blocks considered for scheduling
i = Block index, i = 1, . . . , N
T = The number of periods over which blocks are being scheduled.
t = period index, t = 1, . . . , T

Pi = The set of predecessors of block i; i.e., blocks that should be removed before
i can be mined
MC = The maximum weight of material at period t.
MC = The minimum weight of material at period t.
PC = minimum weight of ore required to feed the processing plant in period t
(minimum processing capacity of plant)
PC = maximum weight of ore that can be processed in plant at period t
(maximum processing capacity of plant)
MP = minimum amount of metal that should be produced in period t
MP = maximum amount of metal that should be sold in period t ( metal demand)
mci = The weight of block i
mpi = The amount of metal in block i
vo−

t = co−

(1+d2)
t = Unit shortage of ore that can associated with failure meet PC during

period t (co− is the undiscounted unit shortage cost, and d2 represent the risk
discount rate)
vo+

t = co+

(1+d2)
t = Unit surplus cost incurred if the total weight of the ore blocks mined

during period t exceeds PC.
vm−

t = vm−

(1+d2)
t = Unit shortage cost associated with failure to meet MP during period t.

vm+
t = vm+

(1+d2)
t = Unit surplus cost incurred if the metal production during period

t exceeds MP.

4. Descriptive Statistics and Spatial Modelling

The exploratory data analysis was performed with the composited data set before
resource modelling. For resource evaluation purposes, a total of 854 composited data were
provided. The descriptive statistics of the composited data show that the iron grade is
heavily skewed to the right, with significantly high variance. The frequency distribution of
the data set was also prepared using the histogram plot (Figure 4a). The histogram clearly
shows the skewness property of the data set. It is seen from the descriptive statistics that
the average grade of Fe is 54.9 (%) and the variance is 427.8 (%)2. The K–S goodness of fit
test was carried out for the normality checking of the data at 5% level of significance. The
result of the K–S test shows that the data are not normally distributed.



Sustainability 2022, 14, 9819 8 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

statistics that the average grade of Fe is 54.9 (%) and the variance is 427.8 (%)2. The K–S 
goodness of fit test was carried out for the normality checking of the data at 5% level of 
significance. The result of the K–S test shows that the data are not normally distributed. 

 
Figure 4. Histogram of composited Fe sample (a,b) histogram of normal transformed data. 

The sequential Gaussian simulation (SGS) was used for the resource modelling of the 
deposit [21]. The SGS needs the data to be normally distributed. The statistical analysis of 
the data set already revealed that they were not normally distributed. Therefore, it was 
obvious to transform the data with some mapping function. The transformed data were 
then used for modelling the variogram to measure the spatial variability of the deposit. 
Figure 4b shows the histogram of normal score-transformed data. From the visual obser-
vation of the histogram, the data are evidently normally distributed. The K–S test con-
firmed the normality of the transformed data set. From the descriptive statistics of the 
normal score data, the mean is 0 and the variance is very close to 1, both of which are 
necessary for the SGS method. 

The deposit’s directional experimental variograms were estimated in two separate 
directions, namely 0 and 90°, with a spread of 45°. The variograms along strike were cal-
culated with 25 m lag spacing. Variograms were also calculated in the downhole direction 
(−90° dip). The presence of anisotropy was demonstrated by the directed variograms. 
Spherical variogram models were used to suit all of the variograms. A single structure 
with a nugget model was used to fit all of the variograms. Figure 5 shows directional 
variograms for both the experimental and fitted theoretical models. 

Figure 4. Histogram of composited Fe sample (a,b) histogram of normal transformed data.

The sequential Gaussian simulation (SGS) was used for the resource modelling of the
deposit [21]. The SGS needs the data to be normally distributed. The statistical analysis
of the data set already revealed that they were not normally distributed. Therefore, it
was obvious to transform the data with some mapping function. The transformed data
were then used for modelling the variogram to measure the spatial variability of the
deposit. Figure 4b shows the histogram of normal score-transformed data. From the visual
observation of the histogram, the data are evidently normally distributed. The K–S test
confirmed the normality of the transformed data set. From the descriptive statistics of
the normal score data, the mean is 0 and the variance is very close to 1, both of which are
necessary for the SGS method.

The deposit’s directional experimental variograms were estimated in two separate
directions, namely 0 and 90◦, with a spread of 45◦. The variograms along strike were
calculated with 25 m lag spacing. Variograms were also calculated in the downhole direction
(−90◦ dip). The presence of anisotropy was demonstrated by the directed variograms.
Spherical variogram models were used to suit all of the variograms. A single structure with
a nugget model was used to fit all of the variograms. Figure 5 shows directional variograms
for both the experimental and fitted theoretical models.

The variogram model parameters and the normal score-transformed composited
data were then used to generate 20 simulated realizations of the deposit. The simulation
realizations were then back transformed to obtain the simulated map in the actual domain.
Figure 6a–c shows three SGS realizations of Fe grades. The results show that most of
the area within the deposit consist of high-grade Fe with scattered low grades in a few
places. These 20 simulated realizations were used in the stochastic production scheduling
algorithm. Figure 6d shows the ensemble map of the 20-simulation realization, and this
model was used as the deterministic resource model for the production schedule.
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Figure 6. Three random realizations from a set of 20 simulated realizations of Fe grade maps (a–c);
an ensemble map obtained by averaging 20 realizations, sometimes called an E-type map (d).
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5. Results and Discussion

The stochastic open-pit optimization and production schedule of the study mine uses
multiple simulated orebody models generated in the previous section. The production
scheduling formulation of Section 3 was used in this study. However, this problem is the
most intractable, and finding a feasible solution is NP-hard [22,23]. Because the production
scheduling problem is NP-hard, we divided it down into a series of small sub-problems
that were solved in sequence. Finally, the results of all sub-problems were integrated to
obtain the main problem’s final solution. In this case study, we have applied two different
techniques for solving the production scheduling problem. The first technique involves
solving each sub-problem sequentially by branch and cut algorithm and improving the
combined solution by using the longest path algorithm, as discussed by Lamghari and
Dimitrakopoulos [20] (hereafter referred to as Model 1). The second technique is the
sequentially solving parametric maximum flow and branch and cut algorithm (hereafter
referred to as Model 2). Finally, the results from both of these methods were compared. For
the decision-making of the blocks to be mined, an economic block model was first created
from the resource model. This was performed by considering the current production from
mine, processing costs, and commodity price. For the calculation of the economic value of
block i from simulation s (i.e., cis), net revenue, mining, and processing costs are used as
the input. The value of block i is calculated by using the following equations [24]:

cis =

{
net revenueis −mining cost − processing cost, if net revenue > processing cost

−mining cost, otherwise

where

net revenueis = tonnage ∗ gradeis∗ recovery ∗ (price− selling cost)

The gradeis for all blocks i from simulation s are obtained from the resource model,
which was generated the using sequential Gaussian simulation discussed in previous
section. The geotechnical and economical parameters and the different constraint limits
that are used in this case study are presented in Table 1.

Table 1. For the proposed models, various parameter values and constraint limits were applied.

Description Values

Number of blocks in total 49,603
Block Dimension (m ×m ×m) 20 × 20 × 10
Rock’s specific gravity (ton/m3) 2.86
Recovery rate (%) 0.74
Cutoff grade of iron (%) 55.2632
Discount rate (%) 0.10
Metal selling price (US $/ton) 40
Ore selling cost (US $/ton) 3.6
Ore processing cost (US $/ton) 12
Rock mining cost (US $/ton) 3
Block mass (ton) 11,440
Maximum capacity of Mining constraints (Million ton) 25
Maximum capacity of Mining constraints (Million ton) 10
Maximum capacity of Processing constraints (Million ton) 10
Minimum capacity of Processing constraints (Million ton) 6
Maximum capacity of Metal production constraints (Million ton) 4
Minimum capacity of Metal production constraints (Million ton) 2

The models were solved using the CPLEX solver [25], and the implementation was
performed in a MATLAB environment. HP’s model formulation system includes an IntelI
CoreTM i7-4790 processor, Windows 7, 12 GB DDR3 RAM, and a 500 GB hard drive. The
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model’s performance has been proved through the tolerance gap of the optimal solution
and the solution time obtained by the solver.

Figure 7 presents material production (i.e., mining capacity) from the deposit during
production periods using Model 1. Figure 7 shows that the production from all simulations
is similar to the upper limit of the production target from the study mine for all the
production periods. The results show that the optimizer tries to maximize the production
to generate more cash flow. The results also show that there was no deviation from
the production target. The period of production with the desired production target was
23 years.
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Figure 7. Risk profile of raw material production using Model 1.

The risk profiles of ore production capacities from different production periods were
calculated using Model 1 and presented in Figure 8. For calculating the risk profile, the
stochastic production scheduling formulation using multiple block economic was first gen-
erated using Model 1. Then, from each of the simulated realizations, the total production
was calculated based on the value of decision variables obtained from the production sched-
ule for each period. The minimum, maximum, and average production were calculated
from those simulated realizations for all the production periods. It was observed from
Figure 8 that the ore production constraint was not respected in the developed schedule
over the production periods. During the initial periods of time, the ore production is
higher than the target bounds, and, at the later periods, the ore production is lower than
the target bounds. This is because the ore production constraint was relaxed with the
penalty in the objective function, and, therefore, this constraint was not a hard constraint
for stochastic production scheduling formulation. The penalty of the over-production at the
initial periods were compensated by producing more metals from the initial period which,
in turn, produces more cash inflow during the initial periods. Since the penalty due to the
underproduction cannot be compensated, the optimizer tries to delay the underproduction
violation, and the underproduction violation was only observed in last three periods of the
mine life.
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Figure 8. Risk profile of ore production using Model 1.

The risk profile for metal production from different production periods were calculated
using Model 1 and is presented in Figure 9. Similar to ore production, it was also observed
that the metal production constraint was not respected in the generated schedule. As
observed in ore production, during initial production periods, the metal production is
higher than the target bound, which generates significantly high cash inflow during early
mine life. The optimizer pushes the under production for the extremely late stage of the
mine life. Since the goal of the production schedule is to maximize the sum of discounted
cash flow, the optimizer tries to generate as much cash flow as possible during first few
years, deferring the risk of not meeting the target for the later periods. The risk profile of
metal production also shows that the bounds of the risk is also very tight, and it is tighter
in the initial periods than later periods.

After assigning blocks to different production periods, the discounted cash flow, NPV,
and their risk profiles of the deposit were calculated using Model 1 in Figure 10. The
expected NPV of the case study mine is 898 million US dollars (M$), with a minimum and
maximum NPV of 764 and 1025 million US dollars, respectively. The mining sequence
along east–west section of the case study mine is presented in Figure 11. Within the ultimate
pit, the total average amount of ore is 265 Mt, and the average amount of metal is 129 Mt.
The total amount of materials within the ultimate pit is 568 Mt.

The production schedule of the case study mine was then calculated using Model 2.
Figure 12 presents material production (i.e., mining capacity) from the study mine. Similar
to Model 1, Figure 12 shows that the production from all simulation is exactly same as the
upper limit of the production target and that the production schedule generates steady
production from the study mine. The results show that the generated schedule utilizes
mining equipment at full extension to generate maximum possible materials from the study
mine. Since the goal of the optimizer is to maximize the profits, the generated schedule
tries to maximize the production to generate maximum cash flow. Since the production
scheduling formulation does not allow for any deviation in the materials production, no
deviation was observed over the mine life. Similar to Model 1, the total period of production
is 23 years.
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Figure 9. Risk profile of metal production Model 1.
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Figure 12. Risk profile of raw material production using Model 2.

Figure 13 presents the risk profile for ore production using Model 2 over the mine life.
Similar to Model 1, it was observed that the ore production constraint was not respected
over the mine life. The ore production is higher than the target bound in the initial periods
and then shows a decreasing trend. During the later stage of mine life, it was observed that



Sustainability 2022, 14, 9819 15 of 19

the ore production is lower than the target bound. The trend of the ore production is more
or less very similar to Model 1 due to a reason similar to the one explained before. The risk
profile of Model 2 also shows similar characteristics to Model 1.
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Figure 13. Risk profile of ore production using Model 2.

Figure 14 presents the risk profile for metal production from Model 2. Similar to ore
production, the results show that the metal production constraint was violated over the
mine life. Similar to Model 1, the metal production is higher than the target bound during
initial production periods and lower than the target bound during extreme later stage of the
mine life. The optimizer generates more cash flow during the early mine life by violating
the upper limit of the metal production and pushes the under-production violation for
the extremely later stage of the mine life. The risk profile of metal production also shows
similar behavior to Model 1.
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The discounted cash flow and net present value of the production schedule generated
from Model 2 is presented in Figure 15. The expected NPV of the case study mine is
940 million US dollars (M$), with a minimum and maximum NPV of 799 and 1076 million
US dollars, respectively. The mining sequence along the east–west section of the case study
mine is presented in Figure 16. Within the ultimate pit, the total average amount of ore is
265 Mt, and the average amount of metal is 129 Mt. The total amount of materials within
the ultimate pit is 568 Mt.
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Figure 16. East–west section of the production schedule using Model 2.

Comparison of Model 1 and Model 2

When Model 1 and Model 2 were compared, it was observed that the total mine life,
material production, ore production, and metal production over the mine life are very
similar to each other. The risk profiles for the ore production and metal production were
similar in both models. However, it was observed that Model 2 generates slightly more
revenue compared to Model 1 (4% more). This is due to a difference in the production
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schedule generated from these two methods. When compared the computation time, it was
observed that Model 2 takes significantly less computational time as compared to Model 1.
To solve the complete production scheduling problem for the study mine, Model 1 takes
2815 s, whereas Model 2 takes 1313 s. Table 2 summaries solution time, total average metal
quantity, total average discounted cash follow, and the mine life of these two models for
the stochastic production scheduling of the case study mine. The detail year-wise material
production, average ore and metal productions, and average NPV generated from the
stochastic production schedule using both the models are presented in Table 3.

Table 2. Comparison summary of both the models.

Model 1 Model 2

Solution time (s) 2814.96 1313.18
Total metal quantity (Mt) 1.29 × 108 1.29 × 108

Discounted cash flow NPV (US M$) 8.98 × 108 9.40 × 108

Life of mine (year) 23 23

Table 3. Period-wise material production, expected (average) ore, metal, and NPV generated from
the stochastic production scheduling using Model 1 and Model 2.

Year
Model 1 Model 2

Material (Mt) Ore (Mt) Metal (Mt) NPV (M$) Material (Mt) Ore (Mt) Metal (Mt) NPV (M$)

1 24,996,400 23,382,216 11,709,413 1.59 × 108 24,996,400 23,382,216 11,706,579 1.59 × 108

2 24,996,400 21,985,392 10,907,384 1.35 × 108 24,996,400 21,985,392 10,910,219 1.35 × 108

3 24,996,400 19,767,176 9,729,532 1.09 × 108 24,996,400 19,526,936 9,585,516 1.08 × 108

4 24,996,400 16,728,712 8,148,157 8.31 × 107 24,996,400 16,968,952 8,292,173 8.46 × 107

5 24,996,400 15,219,776 7,405,514 2.65 × 107 24,996,400 15,219,776 7,405,514 6.87 × 107

6 24,996,400 14,342,328 6,968,436 5.87 × 107 24,996,400 14,342,328 6,968,436 5.87 × 107

7 24,996,400 13,290,992 6,445,284 4.94 × 107 24,996,400 13,292,136 6,445,811 4.94 × 107

8 24,996,400 11,777,480 5,696,374 3.97 × 107 24,996,400 11,775,192 5,694,723 3.97 × 107

9 24,996,400 10,554,544 5,092,161 3.22 × 107 24,996,400 10,548,824 5,089,480 3.22 × 107

10 24,996,400 9,421,984 4,528,680 2.61 × 107 24,996,400 9,440,288 4,537,681 2.61 × 107

11 24,996,400 9,630,192 4,654,957 2.44 × 107 24,996,400 9,618,752 4,649,761 2.43 × 107

12 24,996,400 9,499,776 4,599,436 2.19 × 107 24,996,400 9,499,776 4,599,436 2.19 × 107

13 24,996,400 9,333,896 4,525,560 1.96 × 107 24,996,400 9,333,896 4,525,560 1.96 × 107

14 24,996,400 9,566,128 4,641,459 1.82 × 107 24,996,400 9,566,128 4,641,459 1.82 × 107

15 24,996,400 11,252,384 5,480,425 1.96 × 107 24,996,400 11,252,384 5,480,425 1.96 × 107

16 24,996,400 12,728,144 6,257,446 2.03 × 107 24,996,400 12,729,288 6,258,193 2.03 × 107

17 24,996,400 10,516,792 5,158,022 1.52 × 107 24,996,400 10,515,648 5,157,275 1.52 × 107

18 24,996,400 9,480,328 4,642,326 1.25 × 107 24,996,400 9,480,328 4,642,326 1.25 × 107

19 24,996,400 8,807,656 4,305,478 1.05 × 107 24,996,400 8,799,648 4,301,247 1.05 × 107

20 24,996,400 7,752,888 3,786,262 8.40 × 106 24,996,400 7,760,896 3,790,493 8.41 × 106

21 24,996,400 5,940,792 2,906,814 5.86 × 106 24,996,400 5,940,792 2,906,814 5.86 × 106

22 24,996,400 3,123,120 1,526,226 2.80 × 106 24,996,400 3,123,120 1,526,226 2.80 × 106

23 17,537,520 426,712 207,353.2 3.43 × 105 17,537,520 426,712 207,353.2 3.43 × 105

Sum 5.68 × 108 2.65 × 108 1.29 × 108 8.98 × 108 5.68 × 108 2.65 × 108 1.29 × 108 9.40 × 108
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6. Conclusions and Future Scope

This paper presents a case study from an Indian open-pit iron ore mine for stochastic
production scheduling under geological uncertainty. Stochastic open-pit optimization
and production scheduling is a large-scale optimization problem that greatly affects the
strategic decision-making of mining industries under significant risk that comes from the
uncertainty of the resource model of the deposit. To capture the uncertainty and incorporate
it into the mine plan, the multiple realizations of the resource models were developed and
integrated within the stochastic production scheduling framework. Two different methods
were used in this case study of an iron ore mine to evaluate their performance. Model 1
is the combined branch and cut with longest path, and Model 2 is sequential parametric
maximum flow and branch and cut. The results demonstrate that both the methods produce
similar materials, ore, metal, and risk profiles; however, Model 2 generates slightly higher
(4%) discounted cash flow as compared to Model 1 from this study mine. The results
also show that the computational time of Model 2 is 46.64% less than that of Model 1. By
processing the most marketable mineral output, open-pit mining’s main economic objective
is to extract the least amount of material while earning the highest return on investment.
The value received increases as the ore’s grade increases. A detailed operation plan that
specifies how the ore body must be mined must be created in order to minimize the capital
investment.

The mining industry is looking for more sophisticated tools for solving large-scale
production scheduling under different uncertain environments. Traditionally, mine plan-
ners use optimization techniques that provide the highest undiscounted profits. Different
mining software companies are realizing the shortcomings of traditional mine planning
techniques and understanding the need to account for uncertainty in the mine plan. This
case study’s results show that integrating uncertain parameters helps mine planners to see
the risk in the violation of not meeting their targets, as well as the effectiveness of their cash
flow analysis. The use of these optimization tools provides great opportunities for mine
planners to increase returns on their investment with a high degree of confidence. The
formulation and examples provided here are based on geological uncertainty; however, the
same methodology can be used to account for other demand uncertainties, such as market
uncertainty, commodity price, and exchange rate fluctuations, as well as mining costs,
processing costs, metal recovery, and any other inputs used to determine the economic
value of a mining block.
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