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Abstract: The past few decades have been marked by a gradual but steady increase in the reliance
on renewable energy. In this study, we examined whether the prices of fossil fuels, namely, oil,
coal, and natural gas, have affected renewable energy consumption in China during the period
1980–2018. To this end, we employed the novel dynamic Autoregressive Distributed Lag simulations
approach. In the light of the empirical investigation, some intriguing conclusions have been drawn.
We found strong evidence of the cointegrating relationship between the prices of all fossil fuels and
renewable energy consumption. Furthermore, rising oil, coal, and natural gas prices resulted in
increased renewable energy consumption in the long run, confirming that renewable energy sources
can substitute fossil fuel energy only in the long run. Nevertheless, there is no evidence of significant
effects in the short run. When considering the presence of structural breaks, the findings confirm the
robustness of the dynamic ARDL simulations, as we conclude that fossil fuel prices positively affect
renewable energy consumption only in the long run.

Keywords: oil price; natural gas price; coal price; renewable energy; China; dynamic ARDL simulations

1. Introduction

Policy makers and academics have agreed that the unprecedented climate change
has severely affected environmental quality and public health. The exponential growth
in carbon dioxide emissions due to the extensive use of fossil fuel energy is recognized
as the primary source of environmental degradation. According to British Petroleum [1],
global direct primary energy consumption has risen substantially during the past few
decades. Fossil fuels remain the primary energy source. More specifically, oil represented
about 31% of primary energy consumption in 2019, while coal and natural gas shares
were about 25.3% and 22.7%, respectively. The increase in fossil fuel consumption due
to the dependence of some economies on these traditional energy sources has caused
harmful effects on environmental quality. In reaction to this situation, the United Nations
Framework Convention on Climate Change initiated the Paris Agreement signed in 2015.
It was suggested, among other things, that the transition from non-renewable to renewable
energy be accelerated. The question of whether renewable energy sources could be suitable
substitutes for traditional energy sources has arisen. Such a situation was also exacerbated
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by the fact that forecasting fossil fuel prices has become challenging in recent years, putting
both customers and producers at risk of price fluctuations.

In the past few decades, there has been a growing body of literature analyzing factors
affecting the development of clean energy [2–4]. Among others, the impact of fossil
fuel prices on renewable energy has been examined by many scholars, such as Murshed
and Tanha [5], Zhao et al. [6], Brini et al. [7], and Apergis and Payne [8–10]. Two main
conclusions may be derived when reviewing the literature on this subject. The first is
that almost all studies have examined the impact of oil prices on renewable energy. The
effects of other fossil fuel energy sources, such as natural gas and coal, have been ignored.
The second statement is the inconclusive and mixed results reached by prior studies. For
instance, substantial research highlighted the favorable effect of oil prices on renewable
energy [6–10]. Far fewer studies conclude that the linkage between oil prices and renewable
energy is negative [11]. Finally, scarce literature argues that the outcomes of oil prices on
renewable energy may be nonlinear, suggesting an optimal threshold level [4].

Using data covering the period 1980–2018, we aimed to examine the effects of fossil
fuel prices on renewable energy consumption in China. Unlike most previous literature, we
considered all types of fossil fuels, namely, oil, coal, and natural gas. China is considered
an appropriate case study for several reasons. First, China’s economy relies significantly
on fossil fuel energy sources, which provided more than 85% of total primary energy
consumption in 2019. Table A1 in the Appendix A suggests that 24.6% of global fossil fuel
energy and 23.4% of renewable energy are consumed by China. A worldwide overview
leads us to consider China as the largest consumer of coal. According to the China National
Coal Association, the demand for coal was about 2500 megatons in 2008 and increased
to about 4000 megatons in 2020. China is also considered the largest importer of oil. The
fact that China surpassed the United States in terms of annual total crude oil imports
characterized 2017 as a watershed moment. Regarding natural gas, China is ranked third
globally, accounting for around 6.4% of worldwide natural gas consumption. Second,
China has long been considered the world’s largest contributing country to CO2 emissions,
owing to its massive use of fossil fuel energy sources, particularly coal. Indeed, China
accounted for around 28% of global CO2 emissions in 2019, surpassing the developed
world [12].

This research adds to the current literature in various ways. First, it is among a handful
of empirical studies that analyze the effects of all fossil fuel prices (oil, coal, and natural gas)
on renewables. The majority of previous research concentrated exclusively on the impact
of oil prices. Second, unlike previous studies that have relied on conventional econometric
techniques to check the presence of cointegration, we employed the novel dynamic Autore-
gressive Distributed Lag simulations approach proposed by Philips [13] and Jordan and
Philips [14]. According to Abbasi et al. [15], this method avoids problems when estimating
short- and long-run effects using the conventional ARDL approach developed by Pesaran
et al. [16]. The dynamic ARDL also allows predicting, stimulating, and plotting the effects
of a counterfactual change in the explanatory variable on the dependent variable. Third,
the empirical analysis considers the potential presence of structural breaks in the data when
estimating the impact of fossil fuel prices on renewable energy. To deal with this issue, we
identify the dates of breakpoints using the Bai and Perron [17,18] multiple breakpoint test.

The remainder of this research is structured as follows. The existing literature is
presented in Section 2, while Section 3 details the data and econometric methodology. The
empirical results are discussed in Section 4, while Section 5 is reserved for the conclusion.

2. Literature Review

In the past two decades, increasing concerns about climate change, energy security,
and environmental quality have urged academicians and policy makers to rethink the use
of traditional fossil energy. There has been a consensus that renewable energy development
has become an overriding objective. As Büyüközkan and Güleryüz [19] pointed out,
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renewable energy sources have received much interest from investors as a green alternative
to traditional fossil energy.

The existing literature has well documented the main drivers of renewable energy.
Regarding this issue, Marques et al. [20] emphasized that renewable energy determinants
may be divided into three categories, socioeconomic, political, and country-specific fac-
tors. Aguirre and Ibikunle [21] examined factors affecting renewable energy investment
in 38 economies from 1990 to 2010. According to the findings, specific energy regulations
hinder renewable energy investment. In their work, Damette and Marques [22] identified a
positive association between national revenues and energy consumption on the one hand
and renewable energy on the other hand. Kumar et al. [23] examined whether renewable
and non-renewable energy sources are substitutes or complements. To this end, the authors
used a sample of 12 OECD countries over the period 1995–2009. The empirical results
confirm the validity of the two hypotheses. Indeed, non-renewable energy is shown to
complement renewable energy in eight countries while substituting it in four others. Other
studies have associated renewable energy with economic globalization and technological
progress. Using a sample of 30 OECD nations from 1970 to 2015, Gozgor et al. [24] explored
the response of renewable energy to economic globalization. The findings show that a
more globalized economy promotes the development of the renewable energy industry.
Moreover, Padhan et al. [25] examined the relationship between renewable energy use and
globalization in OECD countries. Overall, it has been reported that increased globalization
stimulates renewable energy consumption. Bamati and Raoofi [26] investigated the afore-
mentioned relationship in 25 countries from 1990 to 2015. According to the Generalized
Least Squares estimator, technological exports considerably increase renewable energy pro-
duction only in developed countries, whereas no significant effect was found in developing
countries. Similar impacts were also reported for the two groups of countries in terms of
GDP per capita and oil prices.

Previous studies have also discussed the role of oil price fluctuations as a driver of
renewable energy. Zhao et al. [6] developed a general equilibrium model to investigate
the outcomes of international oil price fluctuations on renewable energy development and
investment in China. The results suggest that an increase in oil prices stimulates investment
in renewable energy. The Russian context was analyzed by Karacan et al. [11]. The authors
used data from 1990 to 2015 to investigate the linkage between CO2 emissions, income, oil
prices, and renewable energy. Contrary to expectations, the Vector Error Correction model
suggests a negative linkage between oil prices and renewable energy. Using data over the
period 1980–2011, Brini et al. [7] focused on the linkages between energy consumption,
trade, oil prices, and output in Tunisia. The empirical evidence suggests that when oil
costs rise, so does renewable energy use. In addition, unidirectional short-run causality
between the two variables is confirmed. Apergis and Payne [8] studied the causal linkages
between economic growth, CO2 emissions, oil prices, and renewable energy. To this end,
they used a sample of 25 OECD countries from 1980 to 2011. The panel cointegration
results support the presence of a long-run relationship between variables. More specifically,
findings reveal that renewable energy, economic growth, CO2 emissions, and oil prices
all have a positive and significant relationship. In other work, Apergis and Payne [10]
investigated the same relationship in 11 South American countries between 1980 and 2010.
The authors conclude that the long-run association between carbon dioxide emissions, oil
prices, economic growth, and renewable energy is positive and statistically significant.

Apergis and Payne [9] examined the nonlinear association between renewable energy,
economic growth, CO2 emissions, and fossil fuel (oil and coal) prices in Central America
using the Panel Smooth Transition Regression model. Their findings confirmed the pres-
ence of long-run relationships between the considered variables. Additionally, the fully
modified ordinary least squares revealed positive and significant effects of oil and coal
prices on renewable energy. Murshed and Tanha [5] recently analyzed the impact of oil
price shocks on renewable energy in selected South Asian net oil-importing countries from
1990 to 2018. The long-run analysis revealed a nonlinear relationship, suggesting that an
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increase in oil prices initially impedes renewable energy use. Then, overcoming a specific
threshold, further increases in oil prices enhance renewable energy consumption. Guo
et al. [27] explored the asymmetric effects of oil prices on renewable energy in G7 countries
based on the linear and nonlinear ARDL models. Their findings indicate significant asym-
metric impacts of oil prices on renewable energy use in all countries except France and
Germany. Li and Leung [28] considered the coal and natural gas prices when analyzing
the linkages between economic growth and renewable energy consumption in selected
European countries from 1985 to 2018. The Pooled Mean Group estimator suggests that
coal and natural gas prices positively affect long-term renewable energy consumption.

3. Materials and Methods

We sought to examine the effects of fossil fuel prices on renewable energy use in China
from 1980 to 2018. Unlike most previous works, the current study considers all types of
fossil fuels. The effects of crude oil, coal, and natural gas prices on renewable energy use
are particularly analyzed in this research. Data on fossil fuel prices were obtained from
the World Bank Commodity Price Data dataset compiled by the World Bank. The oil price
is measured by the real average crude oil price, which includes Dubai, Brent, and WTI
crude oil prices, whereas the annual real coal price represents the coal price. Finally, natural
gas price is measured by the natural gas index, which is the average of natural gas prices
in Europe, the U.S., and Japan. The dependent variable, renewable energy consumption,
is provided by the U.S. Energy Information Administration and is expressed in million
tons of oil equivalent. The empirical model also includes a set of control variables. As in
Bamati and Raoofi [26], we include the real GDP expressed in U.S. dollars since countries
with higher income are more likely to implement renewable energy projects and have
more access to technological innovations that promote renewable energy development.
Foreign direct investments as a share of GDP are also introduced in the model since foreign
investors are seen as a source of knowledge transfer that may promote energy efficiency
through renewable energy development [29]. Data relative to these two variables were
obtained from the World Development Indicators. Moreover, we introduce a variable on
the patents on environmental technologies to check how innovation affects renewable
energy consumption. The corresponding data were extracted from the Organization for
Economic Co-operation and Development dataset. Finally, a variable measuring the level
of carbon dioxide emissions is included, as environmental degradation may induce a shift
toward more clean energy sources. This variable is especially relevant for China, the most
polluting country in the world. Data on annual CO2 emissions were obtained from BP
Statistical Review of World Energy June 2020. To give the data series a constant variance,
we used the logarithmic transformation of all variables.

The empirical analysis was carried out in different stages. We started by checking
the properties of the data, particularly the stationarity. Indeed, both the conventional and
dynamic ARDL models require I (0) or I (1) variables, as well as a strictly I (1) dependent
variable [30–32]. To this end, we implemented the ADF unit root test with bootstrapped
critical values. We conducted 10,000 bootstrap replicates to simulate critical values. The
unit root test with two endogenous structural breaks proposed by Lumsdaine and Pa-
pell [33] was also performed. Then, we implemented the conventional ARDL bounds
approach to check the presence of long-run cointegrating relationships. The upper and
lower bounds critical values and approximate p-values were obtained from Kripfganz
and Schneider [34]. This step also includes estimating the short- and long-run impacts of
fossil fuel prices on renewable energy. The third step consists of assessing the reaction of
renewable energy consumption to variations in fossil fuel prices using the dynamic ARDL
simulations approach.

The ARDL approach developed by Pesaran et al. [16] has some advantages compared
to other cointegration techniques. It allows testing the presence of cointegration in the pres-
ence of variables having different orders of integration but not of order two or above [35].
Moreover, the ARDL approach is not sensitive to the sample size [36]. However, Sarkodie
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et al. [37] pointed out that the dynamic ARDL simulations approach outperforms the
conventional ARDL approach in many ways. First, it avoids the complexity and difficulties
encountered when interpreting the conventional ARDL results. Furthermore, it allows
simulating and plotting the impact of a counterfactual change in the independent variable
on the dependent variable, all else being equal. Such graphs quantifying the response of the
dependent variable to shocks on the independent variable may not be obtained when using
the original ARDL approach developed by Pesaran et al. [16]. Finally, we further refined the
analysis by accounting for possible structural breaks. To this end, we began by identifying
the dates of breakpoints in fossil fuel prices using the multiple breakpoint test developed
by Bai and Perron [17,18]. Then, we re-estimated the dynamic ARDL simulations model
incorporating the time dummies.

For the sake of saving space, we only discuss the econometric specification of the
dynamic ARDL simulations. The error-correction form of the dynamic ARDL simulations
model may be written as follows:

∆(ren)t = α0+ β0rent−1 + γ1∆ f osst + β1 f osst−1
+γ2∆patentt + β2 patentt−1 + γ3∆gdpt + β3gdpt−1
+γ4∆carbont + β4carbont−1 + γ5∆ f dit + β5 f dit−1 + δECTt−1
+εt

(1)

where ren represents the dependent variable (renewable energy consumption) and f oss
refers to fossil fuel prices (oil, coal, and natural gas). Moreover, patent, gdp, carbon, and
f di represent the control variable discussed earlier. Finally, ECT is the error-correction term,
and α0 the intercept and ε the error term. Considering the various fossil fuels, Equation (1)
may be written as follows:
Model 1

∆(ren)t = α01+ β01rent−1 + γ11∆oilpt + β11oilpt−1
+γ12∆patentt + β12 patentt−1 + γ13∆gdpt + β13gdpt−1
+γ14∆carbont + β14carbont−1 + γ15∆ f dit + β15 f dit−1
+δ1ECTt−1 + ϑt

(2)

Model 2

∆(ren)t = α02+ β02rent−1 + γ21∆coalpt + β21coalpt−1
+γ22∆patentt + β22 patentt−1 + γ23∆gdpt + β23gdpt−1
+γ24∆carbont + β24carbont−1 + γ25∆ f dit + β25 f dit−1
+δ2ECTt−1 + µt

(3)

Model 3

∆(ren)t = α03+ β03rent−1 + γ31∆ngaspt + β31ngaspt−1
+γ32∆patentt + β32 patentt−1 + γ33∆gdpt + β33gdpt−1
+γ34∆carbont + β34carbont−1 + γ35∆ f dit + β35 f dit−1
+δ3ECTt−1 + ρt

(4)

4. Results and Discussion
4.1. Stationary and Cointegration Analyses

Although the ARDL technique allows testing the presence of long-run connections
between variables with different orders of integration, it cannot be used in the presence
of variables integrated of order 2 or above. Furthermore, because the conventional and
dynamic ARDL simulation models require I (1) variables, it is essential to confirm that the
dependent variable is stationary at the first difference. We start by performing the ADF
unit root test with bootstrapped critical values. As pointed out by Dorta and Sanchez [38],
the Bootstrap ADF unit root test is more precise than the conventional ADF unit root test.
The results are summarized in Table 1.
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Table 1. Results of the bootstrap ADF unit root test.

Variables
Level 1st Difference

t-Statistic p-Value t-Statistic p-Value

ren 1.299 0.940 −6.376 *** 0.000
oilp −1.290 0.866 −5.900 *** 0.000
coalp −1.887 0.473 −6.845 *** 0.000
ngasp −1.644 0.641 −6.225 *** 0.000
patent −2.526 0.140 −6.833 *** 0.000
gdp −1.083 0.161 −3.337 ** 0.017
carbon −1.404 0.202 −2.753 * 0.078
f di −2.128 0.318 −4.761 *** 0.000

Note: ***, **, and * denote the rejection of the null hypothesis at the 1%, 5%, and 10% levels, respectively. The
Akaike information criterion was used to select the optimal lag length; 10,000 bootstrap replicates were conducted
to simulate critical values.

When considering variables in levels, the ADF unit root test with 10,000 bootstrap
replicates shows that test statistics are higher than the bootstrap critical values. The null
hypothesis of unit root cannot be consequently rejected. However, when differentiating
variables, the table suggests that all variables become stationary. Moreover, all variables,
except the gross domestic product and CO2 emissions, are stationary at a 1% level. While
the ADF unit root test may offer an idea about the stationarity of variables, it may have
size distortions and low power in the presence of structural breaks in the data-generating
process. To address this issue, we performed the unit root test with two structural breaks
developed by Lumsdaine and Papell [33]. The findings are summarized in Table 2.

Table 2. Results of Lumsdaine–Papell unit root test with two structural breaks.

Intercept Intercept and Trend

Level 1st. Difference Level 1st. Difference

t-Statistic TB1/TB2 t-Statistic TB1/TB2 t-Statistic TB1/TB2 t-Statistic TB1/TB2

ren −3.581 1990/2007 −9.167 *** 2000/2007 −5.505 2001/2013 −9.163 *** 2000/2007
oilp −4.041 1999/2004 −7.497 *** 1988/1998 −4.189 1992/2014 −7.716 ** 1998/2014
coalp −4.765 2003/2009 −8.387 *** 1992/2010 −5.384 1988/2003 −8.101 *** 2003/2008
ngasp −4.336 1999/2014 −7.354 *** 1999/2005 −5.183 1993/2008 −8.013 *** 1987/2008
patent −5.835 1998/2003 −7.952 *** 1987/2000 −5.699 1988/1998 −9.545 *** 1988/2000
gdp −4.405 2005/2014 −5.993 * 1991/2004 −5.795 2000/2012 −6.901 ** 2000/2008
carbon −6.725 ** 2002/2013 −5.737 2001/2006 −6.182 1996/2008 −7.572 *** 2001/2010
f di −5.129 1986/1991 −6.610 ** 1990/1995 −9.720 *** 1992/2004 −8.853 *** 1992/1997

Critical
values

1% −6.740 −7.190
5% −6.160 −6.750

10% −5.890 −6.480

Note: ***, **, and * denote the rejection of the unit root null hypothesis at the 1%, 5%, and 10% levels, respectively.
The Akaike information criterion was used to select the optimal lag length. TB1 and TB2 stand for the date of the
breakpoints. Critical values were obtained from Lumsdaine and Papell [33].

Findings of the Lumsdaine–Papell unit root test with an intercept show that all vari-
ables, except carbon dioxide emissions, have a unit root at levels. When the model includes
a time trend and an intercept, the table shows that t-statistics associated with levels of almost
all variables are lower than the critical values reported at the bottom of Table 2. Foreign
direct investments are the only variable that seems stationary at levels. When taking the
first difference, the two variants of the Lumsdaine–Papell unit root test suggest rejecting the
null hypothesis of a unit root. Most notably, the two unit root tests confirm the mandatory
condition of a strict first-difference stationary dependent variable, i.e., renewable energy
consumption. Furthermore, the stationarity analysis suggests that none of the variables
considered in the analysis are integrated of order 2 or above, a mandatory condition for
implementing the conventional ARDL and dynamic ARDL simulation models.
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The next step was to investigate whether there is a cointegrating relationship between
renewable energy and the set of explanatory variables, including fossil fuel prices. To
this end, we started by implementing the conventional ARDL approach proposed by
Pesaran et al. [16]. The study used the approximate p-values and critical values suggested
by Kripfganz and Schneider [34] based on response surface regressions. The results are
presented in Table 3.

Table 3. Results of the ARDL bounds test for cointegration.

Model Statistic
1% 5% 10% p-Value

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

Model 1 : ren = f (oilp, patent, gdp, carbon, f di) F 6.795 *** 4.426 6.616 3.042 4.696 2.485 3.916 0.001 0.009
t −4.626 ** −3.641 −5.203 −2.845 −4.237 −2.461 −3.771 0.001 0.027

Model 2 : ren = f (coalp, patent, gdp, carbon, f di) F 6.922 *** 4.416 6.554 3.046 4.668 2.492 3.899 0.001 0.007
t −3.954 * −3.642 −5.199 −2.854 −4.244 −2.473 −3.782 0.005 0.078

Model 3 : ren = f (ngasp, patent, gdp, carbon, f di) F 7.232 *** 4.436 6.678 3.038 4.724 2.477 3.933 0.001 0.007
t −4.713 ** −3.640 −5.208 −2.837 −4.230 −2.448 −3.759 0.001 0.023

Notes: The Akaike information criterion was used to select the optimal lag length for the ARDL model. The
critical values were derived from Kripfganz and Schneider [34]. ***, **, and * denote the rejection of the null
hypothesis of no cointegration at 1%, 5%, and 10%, respectively.

The computed F-statistics indicate that the null hypothesis of no cointegration should
be rejected at the 1% level for the three considered models as its values are higher than
the upper bound critical values derived from Kripfganz and Schneider [34]. Moreover, the
null hypothesis is rejected at the 10% level for model 2 and at the 5% level for models 1
and 3 when considering t-statistics. These findings strongly support the long-run linkages
between fossil fuel prices and renewable energy use. Our results corroborate some previous
studies. For instance, Damette and Marques [22] focused on 24 European countries using a
set of cointegration techniques, including Westerlund and Edgerton [39], Westerlund [40],
and Pedroni [41,42], and revealed the presence of a significant relationship between oil
prices and renewable energy in the long run. Furthermore, Murshed and Tanha [5] con-
cluded that oil prices have a long-run connection with renewable energy in four South
Asian oil-importing economies.

4.2. Conventional ARDL Model Results

Upon confirming the long-run linkages between renewable energy use and fossil fuel
prices, we assessed the long- and short-run impacts of fossil fuel prices (and the other
control variables) on renewable energy. Before using the dynamic ARDL simulations, we
estimated the conventional ARDL approach. Panel A of Table 4 summarizes the long-run
effects, while the findings of the error-correction model estimating short-run effects are
provided in Panel B. Finally, some diagnostic tests are reported at the bottom of Table 4.

The table suggests that gross domestic product and patents on environmental tech-
nologies positively affect long-term renewable energy use. On the contrary, the effects of
foreign direct investments are negative and significant at the 1% statistical level. More-
over, only patents on environmental technologies have a favorable but limited effect on
renewable energy consumption in the short run. Regarding the effects of fossil fuel prices
on renewable energy, the estimated ARDL models show that they have a positive but
insignificant effect in both the short and long run. These findings imply that the demand
for renewable energy sources does not react to fluctuations in fossil fuel prices. Finally,
the error-correction terms are negative and statically significant in the three considered
models, confirming the presence of long-run cointegrating relationships between fossil fuel
prices, among others, and renewable energy. The validity of the estimated ARDL models
was checked using the Jarque–Bera normality test, the Engle’s LM test for the presence
of ARCH effects, Ramsey’s RESET test for specification errors, the Breusch–Godfrey test
for higher-order serial correlation, and the cumulative sum of recursive residuals test for
parameter stability. The table confirms that the null hypotheses of normality, no ARCH
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effects, no omitted variables, and no serial correlation in errors could not be rejected. Finally,
the last row of Table 4 reveals the stability of the parameters.

Table 4. Results of the conventional ARDL model.

Model 1 Model 2 Model 3

Coef. p-Value Coef. p-Value Coef. p-Value

Panel A. Long-run effects

patentt−1 0.509 *** 0.000 0.403 *** 0.007 0.479 *** 0.000
gdpt−1 0.919 *** 0.000 0.889 *** 0.000 0.872 *** 0.000
carbont−1 0.159 0.544 0.186 0.486 0.238 0.284
f dit−1 −11.735 *** 0.000 −10.503 *** 0.000 −12.003 *** 0.000
oilpt−1 0.044 0.498 – – – –
coalpt−1 – – 0.138 0.264 – –
ngaspt−1 – – – – 0.070 0.295

Panel B. Short-run effects

Error correction term −0.624 *** 0.000 −0.550 *** 0.001 −0.644 *** 0.000
∆ patent 0.141 ** 0.011 0.099 0.103 0.132 ** 0.018
∆ gdp −0.759 0.209 −0.439 0.432 −0.612 0.337
∆ carbon 0.099 0.540 0.102 0.488 −0.263 0.433
∆ f di −1.696 0.369 −0.765 0.693 −1.455 0.422
∆ oilp 0.028 0.486 – – – –
∆ coalp – – 0.076 0.203 – –
∆ ngasp – – – – 0.045 0.266
constant 18.770 *** 0.005 13.719 ** 0.042 20.578 *** 0.002

Normality test 0.853 0.842 0.878
ARCH test 0.529 0.402 0.875
RESET test 0.252 0.195 0.223

Serial correlation test 0.754 0.289 0.963
Stability test 0.749 0.491 0.583

Notes: The Akaike information criterion was used to select the optimal lag length for the ARDL model. *** and **
represent the statistical significance at 1% and 5%, respectively. For the Jarque–Bera normality test, ARCH test,
RESET test, and serial correlation test, p-values are reported, while test statistics are reported for the cumulative
sum test for parameter stability. The corresponding critical values for this test are 1.143 (1%), 0.947 (5%), and
0.850 (10%).

4.3. Dynamic ARDL Simulations

We next used the dynamic ARDL simulations approach developed by Philips [13] and
Philips and Jordan [14] to assess the impacts of fossil fuel prices on renewable energy use.
The estimation results associated with the three models are reported in Table 5.

The error-correction term, which captures the speed with which short-run disequilib-
rium is adjusted towards long-run equilibrium, is negative and statistically significant at 1%
for the three considered models. The negative and significant error-correction terms sup-
port our prior findings, indicating the presence of long-run cointegrating linkages between
fossil fuel prices and renewable energy in China. Moreover, the dynamic ARDL simulation
approach suggests that renewable energy use is affected by gross domestic product for the
three considered models in the long run. Thus, the rising economic activity experienced in
China over the latest decades has been associated with more clean energy sources. These
findings may be explained by the conservation hypothesis, according to which economic
growth leads to increased energy use, including renewable energy sources. These results
corroborate previous research, suggesting that gross domestic product is a crucial driver
of renewable energy in developed and developing countries [2,43,44]. Moreover, focusing
on the Chinese economy, Zhao et al. [45] concluded that gross domestic product positively
affects the demand for renewable and non-renewable energy sources. The results show that
economic activity has a higher impact on renewable energy demand than on non-renewable
energy demand. The table also suggests that the impact of foreign capital on renewable
energy consumption is negative and statistically significant in the long run. These findings
suggest that FDI flows have been related to a reduction in renewable energy consumption
over the previous decades, which might be attributed to foreign investors in China relying
more on non-renewable energy sources. Zhao et al. [45] indicate that non-renewable energy
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sources, among other things, are attracting foreign investors to China, owing to the low
price of coal and energy subsidies provided by local governments. According to the same
study, firms engaged in international trade (most foreign) exert a favorable impact on
non-renewable energy use while hurting renewable energy. Furthermore, Jun et al. [46]
and Cheng et al. [47] claim that foreign direct investments have increased environmental
deterioration in China, which might be attributed to the heavy usage of non-renewable
fossil fuel energy sources in their activities.

Table 5. Results of the dynamically simulated ARDL model.

Model 1 Model 2 Model 3

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Error correction term −0.428 *** 0.000 −0.432 * 0.083 −0.377 *** 0.000
patentt−1 0.109 *** 0.004 0.096 *** 0.007 0.111 *** 0.002
∆patent 0.057 0.134 0.049 0.194 0.054 0.144
gdpt−1 0.312 ** 0.014 0.388 *** 0.009 0.259 ** 0.019
∆gdp −0.849 0.152 −0.640 0.249 −1.025 * 0.077
carbont−1 0.175 0.230 −0.052 0.749 0.199 0.122
∆carbon −0.352 0.296 −0.192 0.537 −0.311 0.373
f dit−1 −3.557 *** 0.007 −3.580 *** 0.005 −3.562 *** 0.006
∆ f di 1.439 0.306 0.993 0.449 1.976 0.175
oilpt−1 0.068 * 0.064 – – – –
∆oilp −0.057 0.220 – – – –
coalpt−1 – – 0.135 ** 0.036 – –
∆coalp – – −0.022 0.687 – –
gaspt−1 – – – – 0.083 ** 0.028
∆gasp – – – – −0.074 0.152
constant 7.680 * 0.061 6.361 0.109 8.693 ** 0.035

Simulations 10,000 10,000 10,000
R2 0.643 0.670 0.664
Prob. > F 0.002 0.001 0.000

Note: ***, **, and * represent the statistical significance at 1%, 5%, and 10%, respectively.

Regarding the impact of CO2 emissions on renewable energy use, the dynamic ARDL
simulation estimates suggest the insignificance of the corresponding coefficients for the
three considered models. These findings imply that environmental degradation has not
driven a shift to clean energy sources in China, despite the worsening of most environ-
mental and ecological indicators in recent decades. Indeed, China is the biggest warming
greenhouse gas emitter globally, with about 28% of global CO2 emissions in 2019 [1]. More-
over, China is also emitting increased levels of other greenhouse gases, such as methane
and sulfur dioxide. Our findings imply that the recent increase in greenhouse gas emissions
and the degradation of almost all environmental indicators in China have not led to a shift
to clean energy sources. In a recent study, Lu et al. [48] revealed that nearly 70% of Chinese
municipal cities did not fulfil the National Ambient Air Quality Standard requirements.
The impact of patents on environmental technologies on renewable energy use is positive
and statistically significant at the 1% level in all models, meaning that a rise in the number
of patents on environmental technologies boosts renewable energy consumption in China.
Indeed, developing new and modern renewable energy technologies enables more effective
and relatively low-cost technologies to be implemented. This situation drives firms to
switch from non-renewable to renewable energy sources. In a study by Wang et al. [49],
the authors conclude that patents on clean energy technologies contribute to lowering
environmental degradation, which is implicitly attributable to the rise in clean energy use.
Finally, Table 5 suggests that all control variables have no significant short-run effects on
renewable energy demand. These findings imply that the significant effects previously
identified (gross domestic product, foreign direct investments, patent on environmental
technologies) are reached only in the long run.
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As we move on to the impact of fossil fuel prices on renewable energy, we see in
Table 5 that the oil price coefficient is positive and statistically significant at the 10% level.
Moreover, if oil prices rise by 1%, renewable energy use will rise by 0.068%. Consequently,
a transition from non-renewable to renewable energy sources has occurred. In such a case,
renewable energy sources, such as wind, solar, and bioenergy, are considered substitutes for
oil in the long run. These findings could be explained by the fact that China has surpassed
the U.S. as the world’s largest oil importer, accounting for one-sixth of global oil imports
in 2019. Indeed, oil imports increased from 1.893 million barrels per day in 2000 to 11.825
million barrels per day in 2019 [1]. Any change in international oil prices affects industries
that rely heavily on it. The rise in oil prices also affects electricity prices as a considerable
share of crude oil is used to generate electricity. In such a case, a continuous rise in oil prices
stimulates the use of renewable energy sources. Our findings are consistent with Apergis
and Payne [9], who investigated the effect of oil prices on energy utilization in a sample
of Central American developing countries between 1980 and 2010. The fully modified
ordinary least squares reveal that a 1% increase in oil prices leads to a 0.285% increase
in long-run renewable energy use. Murshed and Tanha [5] also concluded that oil prices
positively affect renewable energy in four net oil-importing South Asian countries after
reaching a given threshold level. Contrary to long-run effects, the coefficient associated with
oil prices is not significant in the short run. These findings imply that oil price fluctuations
have no substantial impact on renewable energy consumption in the short run. This could
be related to the fact that the transition to renewable energy sources is a long-run process
rather than an immediate response to increased oil prices.

The long-run impact of coal price on renewable energy is higher than that associated
with the oil price. Indeed, a 1% increase in coal prices induces a 0.135% increase in
renewable energy consumption in the long run. These findings align with Apergis and
Payne [9], who found that the demand for renewable energy increases when coal prices
rise. Indeed, renewable energy sources are considered substitutes for coal, and any change
in its price in the long run affects the demand for renewable energy. These findings are
interesting since they reveal that, despite the abundance of coal in China, the persistence of
coal price hikes drives more enterprises to migrate to renewable energy sources. Indeed,
China has a proven coal reserve of about 141,595 million tons in 2019, representing 13.2%
of the global proven coal reserves. Moreover, China produced about 47.6% of global
coal in 2019, and at the same time, it imports about 6.4 exajoules of coal, mainly from
Australia and Indonesia. Coal is the primary energy source in China, accounting for about
61.23% of total energy consumption and 64.07% of electric power production in 2018.
These facts confirm the abundance of coal in China and its importance to the economy.
Consequently, any long-term change in the price of coal motivates firms to move toward
renewable energy sources. Finally, our results suggest that the coefficient associated with
the natural gas price is statistically significant only in the long run. The analysis, however,
shows that natural gas prices have no substantial influence on renewable energy use in
the short run, which is compatible with our earlier findings on the short-run insensitivity
of renewable energy consumption to oil and coal prices. As in the case of oil, the Chinese
economy imports natural gas from abroad and is a net natural gas importer. In 2019,
China produced about 177.6 billion cubic meters of natural gas, while the economy needs
are about 307.3 billion cubic meters. During the same year. Chinese natural gas imports
were about 84.8 billion cubic meters of liquefied natural gas, mainly from Australia (39.8),
Qatar (11.24), and Malaysia (10), and 47.7 billion cubic meters of natural gas pipelines,
mainly from its neighbors, Turkmenistan (31.6), Kazakhstan (6.5), and Uzbekistan (4.9).
The situation makes it so that natural gas prices affect the production cost in firms that rely
heavily on natural gas in their production process and electricity price. All those factors
mean that the rise of natural gas prices induces a switch toward renewable energy sources
in the long run.

To better understand how renewable energy consumption responds to changes in
fossil fuel prices, we used a new feature of the dynamic ARDL simulation model to predict,
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simulate, and plot the impact of a counterfactual change in the explanatory variable (fossil
fuel prices) on the dependent variable (renewable energy consumption) while keeping
other explanatory variables unchanged. In other words, the graphs allow plotting the
impulse response of renewable energy consumption to fossil fuel prices in the short and
long run. Figure 1 separately plots the response of renewable energy consumption to a
±1% change in predicted oil price, coal price, and natural gas price.
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As shown, a 1% increase in oil prices has a long-run positive effect on renewable
energy consumption. The short-run impact of oil increase is weak and not statistically
significant. Starting from about t = 5, the impact of oil price increases is stabilized. Like-
wise, a 1% decline in oil prices negatively affects renewable energy only in the long run.
Nevertheless, the same plot reveals the absence of significant short-run effects of oil price
changes (increase and decrease). Figure 1 also shows that a 1% increase in coal price affects
renewable energy use in the short- and long-run. However, the short-run effect is weak and
increases to reach its maximum in the long run. The decline in coal price by 1% reduces the
demand for renewable energy in the short and long run. Finally, the impact of natural gas
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price increases (decreases) is positive (negative) and results in a rise (decline) in renewable
energy consumption in the long run. Another important remark that might emerge from
Figure 1 is that the long-run impact of coal price upturns (decreases) is higher than that of
oil prices and natural gas prices.

4.4. Dynamic ARDL Simulations with Structural Breaks

In this section, we check the validity of our prior findings when structural breaks
are considered. To this end, a two-stage procedure was followed. First, we identified
the dates of breakpoints in fossil fuel prices using the Bai–Perron multiple breakpoint
test. Then, we re-used the dynamic ARDL simulations approach by introducing time
dummies corresponding to breakpoints obtained from the Bai–Perron test. The results of
the Bai–Perron multiple breakpoint test are reported in Table 6. The maximum number
of breakpoints was limited to five. The number and dates of significant breakpoints were
endogenously determined based on the sequential testing of l + 1 vs. l breaks proposed
by Bai and Perron [17,18]. The null hypothesis of l breakpoint was tested against the
alternative of l + 1 breakpoint at year t.

Table 6. Results of Bai–Perron multiple breakpoint test.

F-Statistic
Critical Values

Significant Breakpoint Dates
1% 5% 10%

Oil price

0 vs. 1 62.474 *** 12.290 8.580 7.040 2005
1 vs. 2 40.492 *** 13.890 10.130 8.510 1986
2 vs. 3 22.019 *** 14.800 11.140 9.410 1999
3 vs. 4 9.425 15.280 11.830 10.040 NA

Coal price

0 vs. 1 48.156 *** 12.290 8.580 7.040 2007
1 vs. 2 22.973 *** 13.890 10.130 8.510 1986
2 vs. 3 2.689 13.890 10.130 8.510 NA

Natural
gas price

0 vs. 1 38.403 *** 12.290 8.580 7.040 2000
1 vs. 2 27.132 *** 13.890 10.130 8.510 1987
2 vs. 3 20.989 *** 14.800 11.140 9.410 2014
3 vs. 4 0.880 15.280 11.830 10.040 NA

Note: The maximum number of breakpoints was set to 5. The sequential testing of l + 1 vs. l breaks was used to
detect the number and dates of significant breakpoints. *** denotes the rejection of the null hypothesis at 1% level.

As shown, the findings of the sequential test suggest rejecting the null of 0, 1, and 2
breakpoints in favor of the alternative of 1, 2, and 3 breakpoints for oil and natural gas
prices, and rejecting the null of 0 and 1 breakpoints in favor of the alternative of 1 and 2
breakpoints for coal price. Therefore, the table suggests the presence of three significant
breakpoints for oil price (2005, 1986, and 1999), two significant breakpoints for coal price
(2007 and 1986), and three significant breakpoints for the natural gas price (2000, 1987, and
2014). The breakpoints mentioned above are significant at the 1% level for oil, coal, and
natural gas prices.

We then introduced the endogenously determined breakpoint dates in models 1–3
and re-estimated them using the dynamic ARDL simulations. The results are reported in
Table 7. The table suggests the validity of previous results. Indeed, the long-run impact of
oil prices on renewable energy use is positive and statistically significant at the 5% level,
whereas no significant impact was identified in the short run. The findings also indicate
that natural gas price positively and significantly affects renewable energy consumption
in the long run with a coefficient of 0.085. Finally, the coefficient associated with coal
price is also positive and weakly significant in the long run. However, the impacts of
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natural gas and coal prices are not statistically significant in the short run. Furthermore,
the analysis suggests that following the introduction of time dummies, the long-run effects
of oil prices and natural gas prices on renewable energy have been amplified and became
more significant, while the magnitude and significance of the impact of coal prices fell.
Finally, the error-correction terms associated with all models are significant at 1% and
negative, confirming the long-run relationships between fossil fuel prices and renewable
energy consumption. As in Table 6, patents on environmental technologies and gross
domestic products positively affect renewable energy in the long run, while foreign direct
investments are negatively associated with renewable energy.

Table 7. Results of the dynamically simulated ARDL with structural breaks model.

Model 1 Model 2 Model 3

Coef. p-Value Coef. p-Value Coef. p-Value

Error correction term −0.518
*** 0.000 −0.436 *** 0.000 −0.369 *** 0.000

patentt−1 0.107 *** 0.008 0.105 ** 0.013 0.098 *** 0.003
∆patent 0.034 0.421 0.058 0.168 −0.008 0.837
gdpt−1 0.471 *** 0.003 0.386 ** 0.016 0.233 * 0.065
∆gdp −0.423 0.485 −0.189 0.601 −0.928 * 0.073
carbont−1 0.039 0.804 0.074 0.682 0.236 * 0.092
∆carbon −0.650 0.117 −0.189 0.601 −0.523 0.170

f dit−1
−4.190

*** 0.003 −3.574 *** 0.009 −3.725 *** 0.003

∆ f di 1.300 0.361 1.000 0.477 1.613 0.214
oilpt−1 0.095 ** 0.018 – – – –
∆oilp −0.002 0.965 – – – –
coalpt−1 – – 0.121 0.105 – –
∆coalp – – 0.105 0.139 – –
gaspt−1 – – – – 0.085 ** 0.034
∆gasp – – – – −0.016 0.761
d86 0.098 0.318 0.085 0.374 – –
∆d86 0.073 0.371 0.033 0.619 – –
d87 – – – – 0.067 0.415
∆d87 – – – – 0.011 0.840
d99 −0.221 * 0.084
∆d99 −0.035 0.604
d00 – – – – 0.0001 0.999
∆d00 – – – – −0.142 ** 0.048
d05 −0.043 0.645 – – – –
∆d05 0.005 0.925 – – – –
d07 – – −0.013 0.908 – –
∆d07 – – −0.042 0.535 – –
d14 – – – – −0.042 0.594
∆d14 – – – – 0.009 0.852
constant 7.506 * 0.069 6.249 0.148 9.880 *** 0.010

Simulations 10,000 10,000 10,000
R2 0.747 0.696 0.813
Prob. > F 0.010 0.010 0.000

Note: ***, **, and * represent the statistical significance at 1%, 5%, and 10%, respectively.

Overall, considering structural breaks did not affect the main results of the dynamic
ARDL simulation procedure, which indicates that rising fossil fuel prices boost renewable
energy consumption in the long run. To better detect the effects of fossil fuel prices
on renewable energy consumption through the augmented dynamic ARDL simulation
procedure, we plotted the prediction of changes of an explanatory variable and its outcome
on the dependent variable, all else being equal. Figure 2 plots the response of renewable
energy use to a 1% increase and decrease in oil, coal, and natural gas prices. The figure
confirms the findings previously reached. Indeed, a 1% increase (decreases) in oil, coal,
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and natural gas prices positively (negatively) affects renewable energy only in the long run.
These effects are not found to be significant in the short run.
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5. Concluding Remarks

The past few decades have seen the rise of clean energy sources in all aspects of human
life. A growing body of literature has been devoted to the key drivers of clean energy
development. This study is part of the continuing debate about how to increase the share
of clean energy sources in the energy mix. More precisely, we empirically investigated
the effects of fossil fuel prices, specifically oil, coal, and natural gas, on renewable energy
use in China from 1980 to 2018. To this end, the analysis was conducted based on the
novel dynamic ARDL simulations procedure proposed by Philips [13] and Jordan and
Philips [14], which has the advantage of predicting, stimulating, and plotting the impact
of a counterfactual change in the explanatory variable on the dependent variable, all else
being equal. Beyond fossil fuel prices, we incorporated gross domestic product, carbon
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dioxide emissions, environmental technologies patents, and foreign direct investments as
control variables.

The initial data exploration using the bootstrap ADF and Lumsdaine and Papell’s [33]
unit root tests suggests that all considered variables are integrated of order 0 or 1, and
therefore, the suitability of the ARDL approach is verified. Moreover, we found strong
evidence of long-run cointegrating relationship between the prices of all fossil fuels and
renewable energy consumption. When estimating the short- and long-run effects using the
dynamic ARDL simulations, the findings show that patents on environmental technologies
and gross domestic product positively affect long-term renewable energy use. In contrast,
foreign direct investments have adverse effects on renewables. Turning to fossil fuel prices,
increasing oil, coal, and natural gas prices led to a rise in renewable energy in the long
run. However, there is no evidence that oil, coal, and natural gas prices significantly affect
renewable energy in the short run. These results confirm that renewable energy sources can
eventually substitute fossil fuel energy in the long run. The impulse response plots confirm
that both positive and negative shocks in oil, coal, and natural gas prices have long-run
effects on renewable energy consumption. However, the highest impact is recorded for
coal price. Finally, coal price also affects renewable energy consumption in the short run.
When considering the presence of structural breaks, the results confirm the robustness of
the dynamic ARDL simulations, as we conclude that fossil fuel prices affect renewable
energy consumption only in the long run. Plots of the dynamic ARDL simulations with
structural breaks show that the 1% increase (decrease) in oil, coal, and natural gas prices
affects renewable energy consumption only in the long run. The short-run effects are not
found to be statistically significant.

Author Contributions: Conceptualization, O.B.-S. and T.Z.; methodology, O.B.-S., A.H. and T.Z.; soft-
ware, O.B.-S. and T.Z.; validation, O.B.-S. and A.H.; formal analysis, T.Z. and M.N.; investigation, O.B.-S.,
A.H. and T.Z.; resources, O.B.-S. and A.H.; data curation, O.B.-S., A.H. and T.Z.; writing—original draft
preparation, O.B.-S., A.H. and T.Z.; writing—review and editing, O.B.-S., A.H., T.Z., H.S. and M.N.;
visualization, H.S. and M.N.; supervision, O.B.-S.; project administration, O.B.-S. and T.Z.; funding
acquisition, T.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi
Arabia through project number RG-20 201.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used during the study are available from the correspond-
ing author on reasonable request.

Acknowledgments: This research has been funded by Scientific Research Deanship at University of
Ha’il—Saudi Arabia through project number RG-20 201.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Energy, environmental and economic statistics in the most-polluting countries.

CO2 Emissions Non-Renewable Energy
Consumption

Renewable Energy
Consumption GDP

Value Share Value Share Value Share Value Share

China 9810.456 28.5% 120.825 24.6% 6.750 23.4% 1.43 × 1013 16.9%
U.S. 5029.389 14.6% 79.046 16.1% 5.709 19.8% 1.99 × 1013 23.5%

India 2471.946 7.2% 30.718 6.2% 1.326 4.6% 2.69 × 1012 3.2%
Russia 1595.685 4.6% 26.278 5.3% 0.021 0.07% 1.46 × 1012 1.7%
Japan 1117.672 3.2% 16.119 3.3% 1.008 3.5% 4.57 × 1012 5.4%

Notes: Values are expressed in million tonnes of carbon dioxide (CO2 emissions), constant 2015 USD (GDP), exajoules
(non-renewable and renewable energy consumption), while share represents the proportion of a given country in the
world. Data are from bp Statistical Review of World Energy July 2021 and World Development Indicators.
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