

Article Integrating Sustainability and Users' Demands in the Retrofit of a University Campus in China

Guorui Chen^{1,*}, Li Cheng¹ and Foyuan Li²

- ¹ School of Architecture, Tianjin University, Tianjin 300072, China
- ² Research and Development Institution, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- * Correspondence: chenguorui@tju.edu.cn

Abstract: Green retrofit is essential for the sustainable development of Chinese Higher Education Institutions (HEIs). Limited by time and cost, a campus retrofit plan needs to consider both sustainability principles and usage demands to set feasible priorities. By integrating usage demands with sustainability principles, this paper aims to observe the relationship between the sustainability assessment tool (SAT) indicators of campus retrofit and users' needs in this process. The Chinese official SAT for campuses was combined with the campus environment components from six investigated HEIs, and then processed by a group of 15 members to establish an implementable framework of retrofit objectives. Taking the Weijin Campus of Tianjin University as an example, feedback from 432 users on the sample environment was analyzed according to our framework. The results show the difference between the users' perspective and sustainability indicators, emphasizing the importance of the sustainable development of HEIs and leading to the implementation of measures to improve sustainability awareness and guide a retrofit.

Keywords: university campus; green retrofit; sustainability; usage demand; retrofit programming; green campus

1. Introduction

Environmental and health problems caused by rapid urbanization are causing countries to turn to sustainable development in social and economic aspects [1]. As a carrier of educational and research activities, HEIs, such as universities, consume a large number of resources and could have more responsibility in ensuring sustainability [2,3]. Many countries have developed and implemented SATs for campuses, which have increased diversity in campus construction [4]. China also updated its own national SATs for campuses in 2019 (GB/T 51356-2019). These SATs reflect the consensus normative framework [5] and priorities [6] of HEIs' sustainable development adopted in different contexts. They represent the hardware standards of a sustainable campus and the supporting resources to help a campus realize sustainability [7]. Through these tools, HEIs can measure their degrees of sustainability, increase their sense of sustainability, develop strategies, disseminate best practices [8], and guide organizations toward sustainability [9].

At the environmental level, the SATs also mark the evaluation content and boundary of the sustainability principles of campus construction under different backgrounds [1]. This usually includes site, water, materials, energy, indoor environmental quality (IEQ), and other factors [10].

Many studies reported the efforts of HEIs in these aspects, including the realization of campus energy conservation [11,12], sustainable resource usage [13,14], environment performance [15], etc. More up-to-date research covers carbon neutralization [16,17] and near-zero energy consumption [18,19] renovation in HEI campus.

On the other hand, adapting to users' demands is also one of the motivations for campus retrofit in many HEIs. In addition to the topics of safety [20,21], space model

Citation: Chen, G.; Cheng, L.; Li, F. Integrating Sustainability and Users' Demands in the Retrofit of a University Campus in China. *Sustainability* 2022, *14*, 10414. https://doi.org/10.3390/ su141610414

Academic Editors: José Manuel Pagés Madrigal, Islam H. El Ghonaimy and Igor Calzada

Received: 9 July 2022 Accepted: 16 August 2022 Published: 22 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). development [22,23], and historical elements [24], previous studies discussed the decisionmaking mode [25] and social elements in campus retrofit design [26].

The sustainability of the campus environment is connected to users' demands. For example, the relationship between energy consumption and environmental performance has been taken into account more in the multi-objective optimization of sustainable campus retrofit [27,28]. Other researchers discussed the link between sustainability indicators and users' needs, such as the impact of IEQ and the outdoor space on usage [29,30], and there remains a discussion of students' views toward HEIs' sustainability [31,32]. However, studies that simultaneously consider the relationship between sustainability and usage demands as a whole in campus retrofit are limited, whereas some green buildings studies have shown a possible discrepancy between pursuing sustainability indicators and meeting usage demands [33,34]. However, at the HEI campus level, there is still a lack of corresponding evidence and recognition. In China, a sustainable campus is also called a 'Green campus'. China's first green university campuses were introduced at the end of the last century. In recent decades, Chinese researchers and designers have worked on the energy-saving design of campus buildings [35,36], SATs of campuses [37,38], new campus construction projects [39], and other green campus technical strategies [40]. Since new campus construction of HEIs in China has gradually entered a stable development period, the problems of sustainable development in old campuses have recently received more attention from researchers.

Compared with the simple overlay of various types of retrofit projects, it is vital to use the whole campus as the object of green retrofit projects [41,42]. This requires the examination of multiple aspects, including planning, architecture, and the landscape [18,43]. In China, the drivers of campus retrofit construction in universities still focus on meeting usage needs [44]. Meanwhile, under the constraint of resources, campus renovation should set feasible priorities [45,46]. This makes it more realistic to discuss usage demands in the green renovation of Chinese university campuses at a holistic level. However, the state of matching between evaluation criteria-oriented construction indicators and the specific issues of campus planning, the transportation system, landscape layout, building use, and other aspects is still unclear. Considering the diversity of China's climate and geography, as well as the uneven development between campuses, we believe that it would be beneficial to develop a regional matching assistant tool for campus green retrofit. This tool needs to focus on the integration of campuses in the context of sustainability indicators and allow for cross-institutional assessments with similar conditions in the same region.

Therefore, this study aims to develop a framework for the campus retrofit of HEIs based on integrating sustainability indicators with usage demands, and examine the characteristics of the relationship between usage demands and sustainability indicators in retrofit using sample campuses.

To fulfill this aim, this study investigates the usage status of several selected HEI campuses in the Tianjin region and integrates them with national campus SAT indicators to establish a retrofit tool. Then, based on the tool application in a case study, an explanation of the gap between usage demand and sustainability principles in university campus retrofit is provided and suggestions are made in the conclusions.

2. Materials and Methods

Mixed methods research (MMR) was used in this study. First, the Chinese Assessment Standard for Green Campus (GB/T 51356-2019, ASGC) was integrated with the usage demands of the old campus. The importance of each component of the assistant tool for campus green retrofit was identified by a team of 15 experts through the Analytic Hierarchy Process (AHP). The tool was then used on the Weijin Road Campus of Tianjin University in order to comprehensively assess its retrofit elements. Finally, the priority of each retrofit point was calculated, and suggestions for campus retrofit were developed. 2.1.1. Framework and Indicators

Users' demands

The Tianjin region was used as the background for tool development. This region, located in northern China, has 56 HEIs with more than 583,400 students. These campuses cover 1756 hectares, and their size has remained relatively stable in recent years (Figure 1).

Figure 1. Overview of the HEIs in Tianjin: (**a**) number of HEIs; (**b**) student number of HEIs (10,000 person); (**c**) construction area of HEIs (hm²); (**d**) average building area of HEIs (m²).

We investigated 6 university campuses from a possible 56 universities in the Tianjin area. The oldest of these campuses is the Hongqiao Campus of Hebei University of Technology, built in 1903, and the newest is the Weijin Road Campus of Tianjin University, built in 1952. All of the investigated campuses have been in operation for more than 70 years (Table 1). The feedback from the users of these campuses and their fieldwork reveals some typical conditions of old local university campuses.

Structured and semi-structured interviews were conducted to assess the needs of different people on campus to improve campus space usage [47]. Those surveyed included: (a) campus administrators, mainly from the campus administration, and (b) campus user groups, consisting of faculties, staff, and students. We also conducted fieldwork to identify these demands, and categorized the recorded and identified demand points.

Name	Campus Plan	Build Year	Enrollment	Land Covered (hm ²)	Area Covered (hm ²)	Plot Ratio	Per- Student Area (m ²)
TJU, Weijin Road Campus		1952	19,000	182.00	142.50	0.78	74.96
NKU, Balitai Campus		1923	11,000	122.50	124.20	1.01	112.90
TMU, Qixiangtai Campus		1951	10,100	18.58	15.20	0.82	49.70
TFSU, Machangdao Campus		1926	10,747	12.80	11.90	0.93	49.58
TAFA, Tianweilu Campus		1906	2400	5.19	6.94	1.33	34.70
HEBUT, Hongqiao Campus		1903	28,665	199.90	90.38	0.45	31.53

As shown in Figure 2, the feedback of the users' demands was summarized into usage issues, such as campus planning, architecture, and landscape, and connected with relevant retrofit measures. The retrofit measures were divided into 8 different categories. This process refers to the structure of HEI campus SATs [10,48] in order to be able to integrate the contents of the SAT with subsequent stages. It includes common contents in campus SATs, such as 'Campus planning', 'Energy', and 'Water ', but also content topics based on usage, such as 'Building facade and function' and 'Campus safety'.

Figure 2. Identifying usage issues toward retrofit.

Sustainable Criteria of Green Campus

A variety of SATs for HEIs have been developed (Table 2), which reflect the sustainable development of universities from concept to practice. There are calls for using a tool to evaluate global HEIs with the same criterion [9,49]. However, in practice, most SATs act more applicability in their original region [50].

As a guideline for the sustainable environmental construction of university campuses in China, ASGC is the national SAT for campus construction promulgated by the Ministry of Housing and Urban–Rural Development of China (MoHURD). The content of ASGC is divided into two sections for elementary and higher education institutions. Each section consists of 'Planning and Ecology', 'Energy and Resources', 'Environment and Health', 'Operation and Management', and 'Education and Publicity'. Among them, 28 indicators are related to campus retrofit and are distributed in three sections: 'Planning and Ecology', 'Energy and Resources', and 'Environment and Health' (Table 3).

Name	Country	Categories	Rating Results
LEED for school	US	Location and Transportation; Sustainable Site; Water Efficiency; Energy and Atmosphere; Materials and Resources; Indoor Environmental Quality; Innovation in Design.	Platinum; Gold; Silver; Certified.
STARS	US	Academics; Engagement; Operations; Planning and Administration; Innovation and Leadership.	Platinum; Gold; Silver; Bronze; Reporter.
BREEAM Education	UK	Management; Health and Well Being; Energy; Transport; Water; Material; Waste; Land Use and Ecology; Pollution.	Outstanding; Excellent; Very Good; Good; Pass.
DGNB	Germany	Ecological Quality; Economic Quality; Technical Quality; Process Quality; Site Quality.	Platinum; Gold; Silver; Bronze.
Green Star Education	Australia	Management; IEQ; Energy; Transport; Water; Material; Land Use and Ecology; Emissions; Innovation.	World Leadership; Best Practice; Australia Excellence.
UI GreenMetric	Indonesia	Setting and Infrastructure; Energy and Climate Change; Waste; Water; Transportation; Education and Research.	Global Ranking.
CASBEE	Japan	Q1: Indoor Environment; Q2: Quality of Service; Q3: Outdoor Environment on Site; LR1: Energy; LR2: Resources and Materials; LR3: Off-site Environment.	S; A; B+; B-; C.
ASGC	China	Planning and Ecology; Energy and Resources; Environment and Health; Operation and Management; Education and Publicity.	Three-star; Two-star; One-star.

 Table 2. Overview of major sustainable campus assessment systems by country.

Tier 1 Indicators	Tier 2 Indicators
Planning and Ecology	Increase green areas; Underground space development; Comprehensive safety planning; Outdoor wind environment improvement; Vegetation protection and ecological compensation; Green infrastructure for rainwater; Campus buses; Parking lots.
Energy and Resources	Energy-saving equipment; Resources planning; Reduction in energy consumption; High-standard energy-saving design; Renewable energy utilization; Waste heat utilization; Energy efficiency optimization; Reduction in the leakage rate of the pipe network; Reduction in water consumption; Water-saving irrigation; Rainwater recycling and utilization; Reclaimed water utilization system.
Environment and Health	Prefabricated building; Indoor acoustical environment; Indoor daylight; Indoor air quality testing; Surface water quality; Reduction in heat island intensity; Campus greening.

Table 3. Indicators related to retrofit in ASGC.

Integration

Addressing usage demands remains a driving force for university campus retrofit in China. In order to show a balance between sustainability goals and usage demands, we integrated the contents of Table 3 into Figure 2. The principle of integration is to merge indicators with the same retrofit content and retain indicators that will lead to different retrofit measures on both sides. This ensures that as many features of usage demands and sustainability principles as possible are covered in the framework of the tool.

As a result, we developed a framework of 8 primary indicators, 36 secondary indicators, and 66 tertiary indicators to support decision-making in green campus retrofit. These indicators include both the principles of sustainable campuses and the practical problems with the use of old campuses. (Table 4).

2.1.2. AHP

Next, an online questionnaire was organized to identify the weights of the indicators in the framework. The questionnaire for the pairwise comparison of indicators was developed according to AHP. AHP is a well-known structured, quantitative analysis method that was introduced by Saaty in the 1980s [51]. It has been widely used for the criteria weight-calculation of assessment tools [52,53]. AHP follows simple operating procedures, has high accuracy and the ability to manage complex factors, and is considered a successful technology for the research of evaluation systems [54]. The application of AHP has the following advantages: (a) As with most problems, campus retrofit can be fundamentally regarded as a combination of different hierarchical structures. (b) The hierarchical structure can match and describe the framework and content of the campus retrofit system in this study. (c) With pairwise comparisons, it is easy for researchers to judge various elements of complex campus retrofits.

Tier 1 Indicators	Tier 2 Indicators	Tier 3	Indicators	Source
	C1. Facility layout	D1 D2	Area of outdoor space Facility function layout	Usage Usage
	C2. Underground space	D2	Mind any income on the system	ASGC
	C3. Wind environment		Wind environment in winter Wind environment in summer Site connected to public transport	ASGC/Usage ASGC ASGC
B1. Campus planning	C4. Public transportation	D6	Minimum of public transport within walking distance	ASGC
	C5. Parking design C6. Social cooperation	D7 D8 D9 D10 D11 D12	Pavement connected to public transport Shaded and rain-proof bicycle parking lot Motor vehicle parking lot Utilization of the remaining space Public facilities open to the community Outdoor space open to the community	ASGC ASGC/Usage ASGC/Usage ASGC ASGC ASGC
B2 Architocture	C7. Architectural aesthetics	D13 D14	Old building facade retrofit Old building facade style update	Usage Usage
aesthetics and function	C8. Building functions	D15 D16 D17	Adjustment of room functions Area of functional room Building flow	Usage Usage Usage
	C9. Safety site planning		Emergency evacuation system Guiding signage system Separation of pedectrians and vehicles	ASGC ASGC Usage
B3. Campus safety	C10. Traffic safety	D21 D22	Barrier-free design of pedestrian passages Accessible sidewalk	ASGC/Usage ASGC/Usage
	C11. Building structure	D23 D24	Building structure reinforcement Building roof renovation	Usage Usage
	C12. Safety protection measures	D25 D26	Evacuation flow Handrails and other protection measures	Usage
	C13. Electricity safety	D27 D28	Safety of old electrical pipelines Safety of old electrical equipment	Usage Usage
	C14. Reduction in average ener C15. Energy efficiency	gy cons	umption	ASGC ASGC
		D29	Domestic hot water supplied by	ASGC
B4. Energy	C16. Renewable energy utilization	D30 D31	renewable energy Powered by renewable energy Cooling and heating by renewable energy	ASGC ASGC
	C17. Waste heat utilization	201		ASGC
	C18. Equipment energy-	D32	Heating efficiency	ASGC/Usage
	efficiency optimization	D33 D34	Equipment efficiency	ASGC/Usage
	C19. Building irregular shape		1 I	ASGC
	C20. Water-saving irrigation C21. Separate metering C22. Utilization of recycled wat	ter		ASGC ASGC ASGC
B5. Water	C23. Water equipment		Water-saving sanitary appliances Water supply network and equipment Rainwater collection rate Site rainwater infiltration measures Rainwater recycling and utilization	ASGC ASGC/Usage ASGC/Usage ASGC/Usage
	C24. Green intrastructure for rainwater	D40	bioretention and preliminary	ASGC/Usage
		D41	Flood storage and peak regulation facilities	ASGC/Usage
		D42 Volume capture ratio of annual rainfall of the site		ASGC/Usage
	C25. Surface water quality			ASGC

 Table 4. Retrofit framework integrating usage and sustainability principles.

Tier 1 Indicators	Tier 2 Indicators	Tier 3 Indi	icators	Source
		D43	Indoor noise	ASGC/Usage
		D44	Air-borne sound insulation performance between the members	ASGC/Usage
	c26. Indoor acoustical environment	D45	Impact sound insulation performance of floor slabs	ASGC/Usage
		D46	Indoor reverberation time of ordinary classrooms	ASGC/Usage
		D47	Indoor reverberation time of other rooms	ASGC/Usage
B6 Indoor		D48	More than 80% of the classrooms meet the requirements of daylighting	ASGC/Usage
environmental quality	C27. Daylighting	D49	Administrative offices meet the requirements of daylighting	ASGC/Usage
		D50	More than 75% of student dormitory rooms meet the requirements of daylighting	ASGC/Usage
		D51	Thermal comfort of classrooms	ASGC/Usage
	C28. Indoor thermal	D52 D53	Thermal comfort of student dormitories	ASGC/Usage
	C29 Indoor air quality	D54	Linkage of carbon oxide concentration monitoring and ventilation	ASGC/Usage
	C2). Indoor an quanty	D55	Linkage of indoor pollutant exceedance warning and ventilation	ASGC/Usage
	C30 Reduction in heat	D56	Ratio of the outdoor shadow area	ASGC
	island intensity	D57	Reflected solar radiation of roofs and roads	ASGC
		D58	Local plants	ASGC/Usage
B7. Ecology	C31. Greening planting	D59	Configuration density of trees	ASGC/Usage
0,	C32. Vegetation protection	and ecolog	rical compensation	Usage
	co_ regenation protection	D61	Green space rate	ASGC/Usage
	C33. Green space	D62 D63	Per-capita green space Public open campus green space	ASGC/Usage Usage
	C34 Building-material-say	ving design	- and open camp to green space	ASGC
	C35 Croop building	D64	Usage of green building materials	ASGC
B8 Construction	materials and local	D65	Usage of local building materials	ASGC
	building materials	D66	Usage of renewable and recyclable materials	ASGC
	C36. Prefabricated buildin	g		ASGC

Table 4. Cont.

In use, AHP is based on a hierarchical structure of a pairwise comparison of experts' judgments on both more- and less-important factors, and the steps that were used are shown in Figure 3. To quantify the relative importance among the elements, a one-way hierarchical scale of 1–9 was used for measurement [55] (Table 5) and forms a pairwise comparison matrix-like Formula (1).

	Γ1	a_{12}	a_{13}	• • •	•••	a_{1n}	
	a ₂₁	1	a ₂₃	• • •	•••	a_{2n}	
$X_{n*n} =$	a ₃₁	a ₃₂	1	• • •	• • •	<i>a</i> _{3n}	(1)
	:	:	:	÷	:	:	
	a_{n1}	a_{n2}	a_{n3}			1	

where a_{ij} represents the relative importance of x_i element relative to x_j element among n elements from the X level. The X_{n*n} matrix satisfies the following: (a) For any x_i and x_j , $a_{ij}>0$. (b) When i = j, $a_{ij} = 1$. (c) For the mutual comparison of x_i and x_j , $a_{ij} = 1/a_{ji}$.

Figure 3. AHP process in this study.

Table 5. Linguistic terms and numbers.

Linguistic Term	Number
Equally important	1
Equally to moderately important	2
Moderately important	3
Moderately to strongly important	4
Strongly important	5
Strongly to very strongly important	6
Very strongly important	7
Very strongly to extremely important	8
Extremely important	9

On this basis, the geometric mean (GM) of all comparison results in X_{n*n} is calculated, which is G_i in Formula (2). Additionally, the weight result w_i of Formula (3) is obtained by normalizing GM.

$$G_i = \sqrt[n]{\prod_{j=1}^n a_{ij}}$$
(2)

$$w_i = \frac{G_i}{\sum_{j=1}^n G_i} \tag{3}$$

This process helps to determine the relative importance of indicators, but the response of expert knowledge and perception may also be inconsistent. This means that the consistency of the judgment results must be evaluated through the validation mechanism. In the AHP, the consistency of the pairwise comparison matrix is calculated using the consistency ratio (CR).

$$CR = \frac{CI}{RI} \tag{4}$$

where $CI = (\lambda_{\text{max}} - n)/(n - 1)$, and λ_{max} represents the largest eigenvalues. *RI* is the random consistency index of the 1–9-dimension judgment matrix. According to Saaty [55], if the *CR* value is greater than 0.1, the pairwise comparison should be repeated.

In April 2020, we invited 19 experts working in urban planning, architecture, and campus management in Tianjin, and received 15 positive responses. As a result, we assembled a team of 15 local experts to undertake an online questionnaire (Table 6), all of whom had previous experience in old campus retrofit or new green campus construction. The questionnaire was sent by email and the responses were verified for consistency. All

experts were informed about the risk of having to fill out the questionnaire again in case of inconsistency (CR < 0.1).

Table 6. The team of experts.

Number of Years in Researching		HEIs	Research and	Design Institutes
or Working in Campus Retrofit	Ν	(%)	Ν	(%)
1–5 years	1	12.5%	0	-
6–10 years	4	50.0%	4	57.1%
11–15 years	2	25.0%	3	42.9%
More than 20 years	1	12.5%	0	-
Total	8	100%	7	100%

After two rounds of questionnaire surveys conducted in July, 15 valid questionnaires were finally obtained, calculated, and counted.

2.2. Tool Application

2.2.1. User Survey

We applied the assistant tool to determine the willingness to retrofit the Weijin Road Campus of Tianjin University. This university is one of the oldest modern universities in China. As the basis for a green campus, the university obtained an energy-saving campus certification from the MoHURD and the Ministry of Education (MoE) [56] and participated in the demonstration application of the campus energy management system (CEMS) [57]. It is a good sample for investigating the transition of Chinese HEIs from energy-saving campuses to a green campuses. Moreover, in 2018, Weijin Road Campus was selected by the MoHURD as the national green campus construction demonstration project to test the typical situation of sustainable development in the campuses of old HEIs [58,59]. Therefore, this is the most realistic campus to choose for a case study.

The response of users on campus was examined by using a tool that integrates demand and sustainability principles. Due to the influence of COVID-19, the Weijin Road campus was closed to the public by a smart access control system that recorded the attendance on campus and posted it to the campus mobile APP.

Accommodation and activities for students varied widely on campus during the pandemic. Based on the APP records from 7–11 September 2020, we calculated the average attendance distribution on campus between 06:00 and 24:00 on weekdays (Figure 4), and found the attendance number on campus peaks to be between 12:00 and 14:00. In order to cover more campus users, 12:00–14:00 was selected as the time for the survey.

Figure 4. Average attendance number on campus.

The next 5 working days were used for the investigation. A sample size of approximately 1% of the average campus attendance at that time was collected each day through random sampling in multiple fixed scenarios. The locations for data collection included restaurants, gardens, dormitories, and teaching buildings on campus. The sample groups surveyed comprised several different campus users, including (a) students, (b) teachers, (c) staff, and (d) other personnel (campus visitors, non-university staff, etc.). Respondents were asked to provide basic information to avoid repeated collection.

In the research, we created electronic and paper versions of the questionnaire based on the same question system, constructed the logic of the questions and answers in the interview, and adopted various collection strategies according to the respondents. We used positive statements to describe the issues in the form of 'In the current situation of X-level at Weijin Road Campus, I am satisfied with the x_i -aspect', and used Likert scales (1 = strongly disagree to 5 = strongly agree) to process the feedback. This made the users' scores proportional to their satisfaction.

In addition, some tier 3 indicators in the framework were not easily understood by the respondents. Therefore, these indicators were consolidated and replaced with their parent indicators in the form of questions. These made the collected feedback from the users of Tianjin University's Weijin Road Campus more accurate, and reduced the distortion of respondents' feedback due to the collection form.

Finally, 432 valid samples were recovered, and the basic information of the respondents is shown in Table 7.

	Total n = 432	Percentage
Age		
<18	6	1.39%
18–25	158	36.57%
25–30	96	22.22%
30-40	64	14.81%
40–50	48	11.11%
50-60	46	10.65%
>60	14	3.24%
Identity		
Student	258	59.72%
Teacher	86	19.91%
Staff	76	17.59%
Others	12	2.78%
Gender		
Female	136	31.48%
Male	296	68.52%
Accommodation		
Boarding at school	284	65.74%
Boarding outside school	148	34.26%

Table 7. Baseline characteristics of the respondents.

2.2.2. Calculation of Results

The arithmetic mean of satisfaction was used to initially quantify the results of feedback. In order to compare the relative values of different data, the following formula was used to normalize the indicators' weights and average satisfaction:

$$S = (x_i - x_{min})/(x_{max} - x_{min})$$
(5)

where *S* is the synthetical weight or satisfaction index; x_i is the absolute value of the weight or average satisfaction; and x_{max} and x_{min} represent the maximum and minimum values in the corresponding data. This makes the data from the two different dimensions more comparable. The results comprise the absolute and relative values of the indicators in the overall level of campus retrofit under the two main orientations of sustainability principles and usage demands.

3. Results

3.1. Weights

The mathematical function of the weight calculations is to show the degree of importance of each element of the corresponding indicator. Appendix A shows the weight of each element calculated in the framework of the assistant tool. In the calculation of the primary indicators, the elements with the highest weights are 'Energy' and 'Campus safety', followed by 'Indoor environmental quality', 'Water', and 'Campus planning'. The weights of these five elements were significantly higher than those of the next three elements: 'Architectural aesthetics and function', 'Ecology', and 'Construction'. This indicates that the performance of campus safety and energy efficiency are the most sensitive and affected issues in established campus retrofit.

By determining the synthetical weight (Appendix B), the secondary indicators, which provide strong guidance and functions for the relevant design strategies, can be broadly divided into three groups (Table 8): an emphasis on indicators with *S* values higher than 0.6, a relative emphasis on *S* of 0.3 to 0.6, and general indicators with a synthetical weight below 0.3. In addition to 'Green building materials', the secondary indicators with the highest weight in each category were related to usage demands. The highest percentage of important indicators was found in 'Indoor environmental quality', 'Water', and 'Energy'. This result shows that experts have a higher perception of specific issues under the relevant topics during retrofit. The weights of the primary indicators of 'Ecology' and 'Construction' were low. After further communication with the respondents, since existing campus landscapes have formed certain styles and usage habits over the course of their long-term development, universities regularly maintain and improve their campuses, while campus retrofit mainly focuses on small-scale construction, so these indicator weights are lower.

3.2. Satisfaction

The overall average satisfaction score of Tianjin University Weijin Road Campus was 3.53 (Appendix A), the score rate was 70.68%, and the sample satisfaction rate was 87.28%. These data indicate that users' feedback regarding the campus was generally positive, but there was still room for optimization and improvement.

As with the weights, the synthetical satisfaction results (Appendix B) could be grouped into three similar categories (Table 9). They included satisfactory issues with an *S* value greater than 0.6, relatively satisfactory issues with an *S* value between 0.3 and 0.6, and less satisfactory issues with an *S* value below 0.3. Regarding the primary indicators, 'Ecology' contained the most satisfactory indicators. Compared with dissatisfactory issues, 'Campus safety' and 'Indoor environmental quality' contained more satisfactory indicators. The scores of 'Construction', 'Architecture aesthetics and function', 'Campus planning', and 'Water' were average, and the score of 'Energy' was low. Regarding the secondary and tertiary indicators, users gave positive feedback regarding the architectural style of the campus, safety of the building structure, safety protection measures in the building, number of irregular buildings on campuses, greening irrigation, quality of surface water, quality of indoor air, heat island intensity, green planting, vegetation protection, etc. The issues that received negative comments were mainly associated with usage demands. Users gave negative feedback regarding the underground space on campuses, electricity safety, waste heat utilization, equipment energy efficiency, green rainwater infrastructure, etc.

Tion 1 In directory	S of Tier 2 Indicators									
Ther I Indicators	<i>S</i> < 0.3	(%)	S Within 0.3–0.6	(%)	<i>S</i> > 0.6	(%)	Highest S	Resource		
B1. Campus planning	3	50.00%	3	50.00%	0	0.00%	C1. Facility layout	Usage		
B2. Architecture aesthetics and function	0	0.00%	2	100.00%	0	0.00%	C8. Building functions	Usage		
B3. Campus safety	1	20.00%	4	80.00%	0	0.00%	C13. Electricity Safety	Usage		
B4. Energy	2	33.33%	3	50.00%	1	16.67%	C18. Equipment energy efficiency	ASGC/Usage		
B5. Water	4	66.67%	0	0.00%	2	33.33%	C24. Green infrastructure for rainwater	ASGC/Usage		
B6. Indoor environmental quality	0	0.00%	2	50.00%	2	50.00%	C26. Indoor acoustical environment	ASGC/Usage		
B7. Ecology	4	100.00%	0	0.00%	0	0.00%	C31. Greening planting	ASGC/Usage		
B8. Construction	3	100.00%	0	0.00%	0	0.00%	C35. Green building materials	ASGC		

Table 8. Synthetical weights of the indicators in the framework.

Table 9. Synthetical satisfaction of indicators in the framework.

		S of Tier 2 Indicators						
Tier 1 Indicators	<i>S</i> < 0.3	(%)	S Within 0.3–0.6	(%)	<i>S</i> > 0.6	(%)	Lowest S	Resource
B1. Campus planning	2	33.33%	3	50.00%	1	16.67%	C2. Underground space	ASGC
B2. Architecture aesthetics and function	1	50.00%	0	0.00%	1	50.00%	C8. Building functions	Usage
B3. Campus safety	1	20.00%	2	40.00%	2	40.00%	C13. Electricity safety	Usage
B4. Energy	5	83.33%	0	0.00%	1	16.67%	C18. Equipment energy efficiency	ASĞC
B5. Water	2	33.33%	2	33.33%	2	33.33%	C24. Green infrastructure for rainwater	ASGC/Usage
B6. Indoor environmental quality	0	0.00%	3	75.00%	1	25.00%	C28. Indoor thermal	ASGC/Usage
B7. Ecology	0	0.00%	1	25.00%	3	75.00%	C33. Green space	ASGC/Usage
B8. Construction	0	0.00%	3	100.00%	0	0.00%	C36. Prefabricated building	ASGC

The satisfaction results essentially reflected the actual perception of users on campuses. The green space ratio of Weijin Road Campus is 36%. Additionally, the campus is adjacent to the city's water body, and there are four small artificial lakes on the campus. The rich ecological resources of the campus are essential for the 'Begonia Festival' and other landscape cultural activities. From a biological perspective, this explains the users' positive comments regarding campus ecology [60]. Campus users made positive comments regarding campus ecology. Tianjin University invests nearly CNY 300 million each year in the retrofit of the existing buildings and campuses to improve their overall appearance and function. The previous forms of campus retrofit were mainly fragmentary and gradual, avoiding the disturbance to normal teaching and living activities due to the overall retrofit.

Meanwhile, the Weijin Road campus was built in the 1950s, 76.14% of the buildings were built more than 20 years ago, and 31.25% of the buildings were built before 1970. It is difficult to improve the use of underground space through general retrofit and repair due to the limitations of the built environment. The overall score of campus safety was high, but some of the old buildings on campus, such as the former Liulitai Student Dormitory (which has been gradually renovated) and Qilitai Student Dormitory, have aging electrical facilities and poor electrical safety. Some of the old buildings that have not been retrofitted have aging heating equipment and leaking pipelines. While some of the old buildings that have been retrofitted excessively focus on reducing energy consumption, and due to the subjective differences [61] in some users' perceptions of the indoor thermal environment in the winter, the feedback regarding energy was generally negative. Old buildings and limited retrofit also reduced some positive comments on indoor environmental quality. Meanwhile, the drainage of rainwater and sewage pipes in some areas of the campuses are poor, and water accumulation is more serious in the rainy season.

4. Discussion

This study constructed a comprehensive campus retrofit auxiliary tool that integrates usage demands and sustainability indicators, and examined users' feedback on the sample campus based on this tool. It can be found from the results that: (a) There are differences in the content between users' demands and sustainability indicators in the setting of HEI campus retrofit issues. (b) Retrofit issues related to usage account for a higher proportion of the more sensitive content in each category. (c) The users' feedback from the sample campus is more based on the perceivable characteristics of the campus.

As mentioned, previous studies emphasized the importance of usage perspective in buildings [33,34]. The application of green assessment systems does not entirely imply the satisfaction of users' demands [62]. This provides the basis for similar discussions about HEI campuses. By integrating usage demands in retrofitting, along with the Chinese official green campus assessment standard from a whole-campus level, this study suggests a new perspective for observing the difference between campus users' demands in the context of a sustainability assessment system for higher education.

The combination of results from previous studies with the development of sustainability assessment systems can be understood in two ways. One aspect is the difference between the contents. Although some previous studies described some common characteristics of both campus sustainability indicators and users' needs [63,64], evidence suggests that there is a difference [62]. Our findings provide more evidence for this view from the perspective of user needs in the context of HEI. Some issues of usage demands, such as the layout of campus facilities, building functions, building structural safety, and campus architectural appearance, have not been included in the ASGC, while, for the aspect of commonality, the results of weights and feedback explain more important retrofit issues from the perspective of demand. For instance, although energy indicators had a high weight in the framework, users provided more feedback based on comfort, and little feedback involved concerns about energy consumption and carbon emissions in use. The sustainability principles that users were concerned about were also more oriented toward the health and comfort aspects of use, such as poor heating in winter and indoor noise.

Furthermore, the update of ASGC also explained this difference, to some extent. Unlike STARS and UI GreenMetric, ASGC is closely related to China's Assessment Standard for Green Buildings (ASGB). Green building assessment tools, including ASGB, pay more attention to economic and environmental factors in the early stage [65,66], while neglecting end users [67]. The first vision of ASGC (CSUSGBC 04-2013) promulgated in 2013 adopted the model structure of 'Land conservation', 'Water conservation', 'Material conservation', and 'Energy conservation' from ASGB (GB/T 50378-2006). In recent years, user-side indicators, such as comfort and psychological experience, are constantly being included in various green building assessment systems [63]. ASGB also changed its structure in the 2019 update based on users' feedback from the application. The updated ASGC in the same year synchronized this approach, adopting a more comprehensive framework and incorporating more user-related indicators. However, the economy and environment remain important themes. Their importance in sustainability principles cannot be overstated, but the question remains of how to associate this factor with the demands of campus users [68]. Relevant studies have underlined the role of users' awareness [69-71]. In the practice of raising awareness, improving the clarity of information regarding campus energy consumption is seen as an effective method [72–74]. The improvement of energy awareness can increase users' enthusiasm for campus energy-saving retrofitting, change some retrofit demands from the perspective of comfort, and raise the awareness of users of energy saving.

Another aspect is reflected in the meticulous expressions of the content of sustainable campus evaluation indicators and users' demands. Compared with the ASGC, which has two tiers, users tend to express their specific needs from a more practical perspective and are more likely to provide clear retrofit suggestions [75,76]. This difference explains, to some extent, demand orientation dominating the retrofitting of university campuses in China. A college campus can be viewed as a more streamlined model of a city [77], including a community, workplaces, natural landscapes, and complex social and economic aspects. This makes it easier to implement repairs based on actual demand. rather than systematic green retrofits, since corrections to usage problems allow us to more easily find paradigm solutions. Similarly, some cities have introduced guidelines for green retrofit in urban areas to reduce the trial costs of retrofitting large-scale urban areas [78,79]. This may provide a

16 of 21

good reference for the green retrofitting of local university campuses; however, the specificity of universities in terms of educational attributes and population needs to be considered.

5. Conclusions

This study aimed to inspect the difference between sustainability principles and users' demands in campus retrofitting through the construction of the assistance tool for the green retrofitting of established university campuses. To achieve this goal, six selected university campuses were investigated to determine typical campus usage issues. We identified the indicators involved in campus retrofit using the Green Campus Evaluation Criteria, and established the scope and characteristics of green campus retrofit through integration with users' demands. By calculating the weight assignments and case satisfaction, the difference between users' demands for campus retrofit and the sustainability principles was explained. This difference is reflected in the content and clarity. The differences in content may stem from the different orientations between the concepts and the awareness of users. This reflects the resistance to the green retrofit of established university campuses due to complexity. We recommend improving the clarity of information regarding campus energy and developing different local guidelines to promote the improvement of users' awareness and reduce the cost of trial.

Limitation

University campuses are also considered important places of activity for residents from the surrounding communities [80]. However, due to the impact of the epidemic, local universities have adopted closed management during study, which means that the campuses were inaccessible to city residents other than students, faculty, and staff. Therefore, this study only considered the use demand of the institutional users and their views on campus retrofit. We hope to expand the research scope of this assistant tool in the future to analyze the users' demands in campus retrofit from a more comprehensive perspective.

Author Contributions: Conceptualization, G.C. and L.C.; methodology, G.C., L.C. and F.L.; software, G.C. and L.C.; validation, G.C., L.C. and F.L.; formal analysis, G.C.; investigation, G.C. and L.C.; resources, G.C.; data curation, G.C.; writing—original draft preparation, G.C.; writing—review and editing, L.C. and F.L.; visualization, G.C., L.C. and F.L.; supervision, F.L.; project administration, G.C. and F.L.; funding acquisition, G.C. and F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was jointly funded by the National Natural Science Foundation of China, grant number 52078325, and Ministry of Housing and Urban–Rural Development of the People's Republic of China, grant number S122018003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors would like to thank the team of Chinese experts for their participation in this research, especially Kun Song and his Campus Retrofit Research Team from Tianjin University for their knowledge and experience regarding sustainable campus construction.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

 Table A1. Weight and average satisfaction.

Tier 1	Weight	Satisfaction	n Tier 2	Weight	Satisfactio	on Tier 3	Weight	Satisfaction
			C1	0.038	3.727	D1 D2	0.016	3.322 4.032
B1		3.694	C2	0.011	3.182	02	0.022	1.002
	0.153		C3	0.028	3.655	D3 D4 D5	0.015 0.012 0.007	3.192 4.22 3.325
			C4	0.02	3.606	D6 D7 D8	0.006 0.007	4.328 3.235
			C5	0.035	3.513	D8 D9 D10	0.013	3.624 3.445 2.222
			C6	0.021	4.319	D10 D11 D12	0.018 0.005 0.005	3.192 2.983
B2	0.07	3.832	C7	0.029	4.234	D13 D14	0.016 0.013	4.321 4.123
			C8	0.041	3.541	D15 D16 D17	$0.014 \\ 0.016 \\ 0.011$	3.987 2.972 3.835
В3	0.187	3.976	C9	0.022	3.875	D18 D19	$\begin{array}{c} 0.015 \\ 0.008 \\ 0.016 \\ 0.014 \\ 0.01 \end{array}$	4.128 3.383
			C10	0.039	3.735	D20 D21 D22		3.358 3.774 4.283 4.567 4.358 3.994 4.728 3.127
			C11	0.041	4.492	D23 D24	0.026 0.015	
			C12	0.043	4.324	D25 D26 D27	0.024 0.019	
			C13	0.041	3.38	D27 D28	0.014	3.516
	0.188	3.48	C14 C15	$0.017 \\ 0.036$	3.512 3.528	D29	0.012	3.432 3.343 3.256 2.832 3.583 3.368
D <i>1</i>			C16	0.034	3.342	D30 D31	0.009 0.013	
В4			C17	0.03	3.312	D32	0.023	
			C18	0.058	3.212	D33 D34	$0.016 \\ 0.019$	
			C19	0.015	4.58			
B5	0.166	3.632	C20 C21 C22	$0.012 \\ 0.01 \\ 0.008$	4.328 3.526 3.987	Das	0.000	3.674 4.152 3.178 2.923 3.282 3.328 3.128 2.728
			C23	0.045	3.853	D35 D36 D37 D38 D39 D40 D41 D41	0.028 0.017 0.019 0.016	
			C24	0.071	3.04		0.006 0.004 0.013 0.014	
			C25	0.02	4.757	1/42	0.014	2.720
B6	0.167	3.775	C26	0.052	3.641	D43 D44 D45 D46 D47	0.015 0.01 0.009 0.011 0.006	3.128 3.738 3.682 4.125 3.728
			C27	0.037	3.746	D48 D49 D50	0.015 0.009 0.013	4.125 3.973 3.152 3.452 4.127 3.383
			C28	0.05	3.593	D51 D52 D53	0.018 0.013 0.02	
			C29	0.028	4.378	D54 D55	0.01 0.019	

Tier 1	Weight	Satisfaction	n Tier 2	Weight	Satisfaction	Tier 3	Weight	Satisfaction
B7	0.048	4.216	C30	0.01	4.782	D56 D57	0.005 0.005	
			C31	0.017	4.312	D58 D59 D60	0.006 0.007 0.004	4.343 4.578 3.777
			C32	0.006	4.156	D00	0.004	0.000
			C33	0.015	3.764	D61 D62 D63	0.007 0.005 0.003	3.988 3.158 4.384
B8	0.021	3.929	C34	0.003	3.752	D64 D65 D66	0.007	
			C35	0.015	4.027		0.007 0.003 0.005	
			C36	0.003	3.592	200	0.000	

 Table A1. Cont.

Appendix B

Table A2. Synthetical results of weight (Sw) and satisfaction (Ss).

Tier 1	Tier 2	Sw	Ss
	C1. Facility layout	0.5164	0.3944
	C2. Underground space	SwSwSity layout 0.5164 0erground space 0.1163 0d environment 0.3608 0ic transportation 0.2497 0ing design 0.4719 0d cooperation 0.2719 0itectural aesthetics 0.3880 0ding functions 0.5508 0y site planning 0.2868 0fifc Safety 0.5314 0dding structure 0.5586 0ety protection measures 0.5857 0tuction in average energy consumption 0.2072 0reg efficiency 0.4812 0ewable energy utilization 0.4538 0tig irregular shape 0.1799 0er-saving irrigation 0.1299 0arate metering 0.000 0ization of recycled water 0.0816 0er equipment 0.6135 0oor acoustical environment 0.7143 0oor acoustical environment 0.7143 0oor arit quality 0.2739 0uction in heat island intensity 0.1016 1ening planting 0.2143 0etation protection and ecological compensation 0.0523	0.0815
P1 Compus Dianning	C3. Wind environment	0.3608	0.3530
b1. Campus Flanning	C4. Public transportation	0.2497	0.3249
	C5. Parking design	0.4719	0.2715
	C6. Social cooperation	Swat0.5164d space0.1163nment0.3608oortation0.2497gn0.4719ation0.2719l aesthetics0.3880ctions0.5508anning0.2868y0.5314ucture0.5586on average energy consumption0.2072iency0.4812energy utilization0.4538utilization0.3990energy utilization0.4538utilization0.3990energy efficiency0.8099egular shape0.1799g irrigation0.1299structure for rainwater0.0816oment0.6135structure for rainwater0.7143ctical environment0.7143ctical environment0.7191aterial-saving design0.0066<	0.7342
P2 Auchitesture costhetics and function	C7. Architectural aesthetics	0.3880	0.6854
b2. Architecture aesthetics and function	C8. Building functions	0.5508	0.2876
	C9. Safety site planning	Sw 0.5164 0.1163 0.3608 0.2497 0.4719 0.2719 0.3880 0.5508 0.2868 0.5508 0.2868 0.5586 0.5586 0.2072 0.4812 0.4538 0.3990 0.8099 0.1799 0.1299 0.1058 0.0816 0.6135 1.0000 0.2508 0.7143 0.4955 0.6900 0.3739 0.1016 0.2143 0.0523 0.1791 0.0066 0.1808 0.0004	0.4793
	Tier 2C1. Facility layout C2. Underground space C3. Wind environment C4. Public transportation C5. Parking design C6. Social cooperationC7. Architectural aesthetics C8. Building functionsC7. Architectural aesthetics C8. Building functionsC1. Traffic Safety C11. Building structure C12. Safety protection measures C13. Electricity SafetyC14. Reduction in average energy consumption C15. Energy efficiency C16. Renewable energy utilization C17. Waste heat utilization C18. Equipment energy efficiency C19. Building irregular shapeC20. Water-saving irrigation C21. Separate metering C22. Utilization of recycled water C23. Water equipment C24. Green infrastructure for rainwater C25. Surface water qualityC26. Indoor acoustical environment C27. Daylighting C28. Indoor thermal C29. Indoor air qualityC30. Reduction in heat island intensity C31. Greening planting C32. Vegetation protection and ecological compensation C33. Green spaceC34. Building-material-saving design C35. Green building materials and local building materials C36. Prefabricated building	0.5314	0.3990
B3. Campus Safety	C11. Building structure	0.5586	0.8335
	C12. Safety protection measures	0.5857	0.7371
	C13. Electricity Safety	SwSs 0.5164 0.3944 0.1163 0.0815 0.3608 0.3530 0.2497 0.3249 0.4719 0.2715 0.2719 0.7342 0.2719 0.7342 0.2719 0.7342 0.2719 0.7342 0.2719 0.7342 0.5508 0.2876 0.5508 0.2876 0.5586 0.8335 res 0.5857 0.5586 0.8335 ergy consumption 0.2072 0.272 0.2710 0.4812 0.2801 ation 0.4538 0.1799 0.8840 0.1299 0.7394 0.1058 0.2790 2 0.1799 0.816 0.5436 0.6135 0.4667 rainwater 1.0000 0.0000 0.2508 0.9856 0.9856 0.9856 0.9739 0.7681 1 intensity 0.1016 0.0016 0.0023 0.6406 0.1791 0.1791 0.4156 g design 0.0066 0.0004 0.3169	0.1952
	C14. Reduction in average energy consumption	0.2072	0.2710
B4. Energy	C15. Energy efficiency	0.4812	0.2801
B4 Energy	C16. Renewable energy utilization	0.4538	0.1734
DT. LIICIEY	C17. Waste heat utilization	0.3990	0.1561
	C18. Equipment energy efficiency	0.8099	0.0987
	C19. Building irregular shape	0.1799	0.8840
	C20. Water-saving irrigation	0.1299	0.7394
	Tier 2SwC1. Facility layout 0.5166 C2. Underground space 0.1166 C3. Wind environment 0.3609 C4. Public transportation 0.2497 C5. Parking design 0.4719 C6. Social cooperation 0.2719 ionC7. Architectural aesthetics 0.3886 C8. Building functions 0.5506 C9. Safety site planning 0.2866 C10. Traffic Safety 0.5314 C11. Building structure 0.5586 C12. Safety protection measures 0.5856 C13. Electricity Safety 0.5586 C14. Reduction in average energy consumption 0.2077 C15. Energy efficiency 0.4812 C16. Renewable energy utilization 0.4538 C17. Waste heat utilization 0.3990 C18. Equipment energy efficiency 0.8099 C19. Building irregular shape 0.1799 C20. Water-saving irrigation 0.1299 C21. Separate metering 0.1056 C22. Utilization of recycled water 0.0816 C23. Water equipment 0.6133 C24. Green infrastructure for rainwater 0.0006 C25. Surface water quality 0.2735 C30. Reduction in heat island intensity 0.1016 C31. Green space 0.1795 C33. Green space 0.1795 C34. Building-material-saving design 0.0066 C35. Green building materials and local building materials 0.1806 C36. Prefabricated building 0.0066	0.1058	0.2790
B3. Campus SafetyC9. Safety si C10. Traffic S C11. Buildin C12. Safety p C13. ElectricB4. EnergyC14. Reducti C15. Energy C16. Renewa C17. Waste h C18. Equipm C19. BuildinB5. WaterC20. Water-s C21. Separat C22. Utilizat C23. Water e C24. Green i C25. SurfaceB6. Indoor environmental qualityC26. Indoor C27. Dayligh C28. Indoor C29. IndoorB7. F. LC30. Reducti C31. Greenin	C22. Utilization of recycled water	0.0816	0.5436
D3. water	C23. Water equipment	0.6135	0.4667
	C24. Green infrastructure for rainwater	1.0000	0.0000
	C25. Surface water quality	Sw 0.5164 0.1163 0.3608 0.2497 0.4719 0.2719 0.3880 0.5508 0.2868 0.5586 0.5586 0.2072 0.4812 0.4538 0.2072 0.4812 0.4538 0.3990 0.8099 0.1799 0.1299 0.1058 0.0816 0.6135 1.0000 0.2508 0.7143 0.4955 0.6900 0.3739 0.1016 0.2143 ion 0.1020 eerials 0.1808 0.0004	0.9856
	C26. Indoor acoustical environment	0.7143	0.3450
B6 Indoor environmental quality	C2. Underground space 0.1163 0.0815 C3. Wind environment 0.3608 0.3330 C4. Public transportation 0.2497 0.3249 C5. Parking design 0.4719 0.2715 C6. Social cooperation 0.2719 0.7342 C7. Architectural aesthetics 0.3880 0.6854 C8. Building functions 0.5508 0.2876 C9. Safety site planning 0.2868 0.4793 C10. Traffic Safety 0.5314 0.3990 C11. Building structure 0.5586 0.8335 C12. Safety protection measures 0.5867 0.7371 C13. Electricity Safety 0.5586 0.1952 C14. Reduction in average energy consumption 0.2072 0.2710 C15. Energy efficiency 0.4812 0.2801 C16. Renewable energy utilization 0.4538 0.1734 C19. Building irregular shape 0.1799 0.8840 C20. Water-saving irrigation 0.1299 0.7394 C13. Separate metering 0.1058 0.2790 C21. Utilization of recycled water 0.6135 0.4667 C24. Green infrastructure	0.4053	
bo. muoor environmentai quality	C28. Indoor thermal	0.6900	0.3175
	C29. Indoor air quality	0.3739	0.7681
	C30. Reduction in heat island intensity	0.1016	1.0000
R7 Feelegy	C31. Greening planting	0.2143	0.7302
D7. ECOlogy	C32. Vegetation protection and ecological compensation	0.0523	0.6406
	C33. Green space	0.1791	0.4156
	C34. Building-material-saving design	0.0066	0.4087
B8. Construction	C35. Green building materials and local building materials	0.1808	0.5666
	C36. Prefabricated building	0.0004	0.3169

References

- Li, M.; Wiedmann, T.; Fang, K.; Hadjikakou, M. The role of planetary boundaries in assessing absolute environmental sustainability across scales. *Environ. Int.* 2021, 152, 106475. [CrossRef] [PubMed]
- Jorge, M.L.; Madueño, J.H.; Calzado, Y.; Andrades, J. A proposal for measuring sustainability in universities: A case study of Spain. Int. J. Sustain. High. Educ. 2016, 17, 671–697. [CrossRef]
- 3. Lee, K.-H.; Barker, M.; Mouasher, A. Is it even espoused? An exploratory study of commitment to sustainability as evidenced in vision, mission, and graduate attribute statements in Australian universities. *J. Clean. Prod.* 2013, *48*, 20–28. [CrossRef]
- 4. Veidemane, A. Education for sustainable development in higher education rankings: Challenges and opportunities for developing internationally comparable indicators. *Sustainability* **2022**, *14*, 5102. [CrossRef]
- 5. Franco, I.; Saito, O.; Vaughter, P.; Whereat, J.; Kanie, N.; Takemoto, K. Higher education for sustainable development: Actioning the global goals in policy, curriculum and practice. *Sustain. Sci.* **2019**, *14*, 1621–1642. [CrossRef]
- Fukuda-Parr, S.; Muchhala, B. The Southern origins of sustainable development goals: Ideas, actors, aspirations. World Dev. 2020, 126, 104706. [CrossRef]
- Lozano, R.; Ceulemans, K.; Alonso-Almeida, M.; Huisingh, D.; Lozano, F.J.; Waas, T.; Lambrechts, W.; Lukman, R.; Hugé, J. A review of commitment and implementation of sustainable development in higher education: Results from a worldwide survey. *J. Clean. Prod.* 2015, 108, 1–18. [CrossRef]
- Du, Y.; Arkesteijn, M.; den Heijer, A.; Song, K. Sustainable Assessment Tools for Higher Education Institutions: Guidelines for Developing a Tool for China. Sustainability 2020, 12, 6501. [CrossRef]
- 9. Lauder, A.; Sari, R.F.; Suwartha, N.; Tjahjono, G. Critical review of a global campus sustainability ranking: GreenMetric. J. Clean. Prod. 2015, 108, 852–863. [CrossRef]
- 10. Alba-Hidalgo, D.; Del Álamo, J.B.; Gutiérrez-Pérez, J. Towards a definition of environmental sustainability evaluation in higher education. *High. Educ. Policy* **2018**, *31*, 447–470. [CrossRef]
- Cho, H.M.; Yun, B.Y.; Yang, S.; Wi, S.; Chang, S.J.; Kim, S. Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building. *Appl. Energy* 2020, 275, 115313. [CrossRef]
- Zhu, B.; Wang, Z.; Sun, C.; Dewancker, B. The motivation and development impact of energy saving to sustainability in the construction of green campus: A case study of the Zhejiang University, China. *Environ. Dev. Sustain.* 2021, 23, 14068–14089. [CrossRef]
- 13. Ismaeil, E.M.H.; Sobaih, A.E.E. Assessing xeriscaping as a retrofit sustainable water consumption approach for a desert university campus. *Water* **2022**, *14*, 1681. [CrossRef]
- 14. Oliveira, R.A.F.; Lopes, J.P.; Abreu, M.I. Sustainability perspective to support decision making in structural retrofitting of buildings: A case study. *Systems* **2021**, *9*, 78. [CrossRef]
- 15. Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. *Energy Build.* **2016**, *121*, 217–229. [CrossRef]
- 16. Sen, G.; Chau, H.-W.; Tariq, M.A.U.R.; Muttil, N.; Ng, A.W.M. Achieving sustainability and carbon neutrality in higher education institutions: A review. *Sustainability* **2021**, *14*, 222. [CrossRef]
- 17. Osorio, A.M.; Úsuga, L.F.; Vásquez, R.E.; Nieto-Londoño, C.; Rinaudo, M.E.; Martínez, J.A.; Filho, W.L. Towards carbon neutrality in higher education institutions: Case of two private universities in Colombia. *Sustainability* **2022**, *14*, 1774. [CrossRef]
- Fonseca, P.; Moura, P.; Jorge, H.; De Almeida, A. Sustainability in university campus: Options for achieving nearly zero energy goals. *Int. J. Sustain. High. Educ.* 2018, 19, 790–816. [CrossRef]
- 19. Duarte, D.C.D.C.; Rosa-Jiménez, C. Cost-optimal nZEB reform strategies and the influence of building orientation for Mediterranean university buildings: Case study of the University of Málaga. *Heliyon* **2022**, *8*, E09020. [CrossRef]
- 20. Motra, G.B.; Paudel, S. Performance evaluation of strengthening options for institutional brick masonry buildings: A case study of Pulchowk Campus. *Prog. Disaster Sci.* 2021, 10, 100173. [CrossRef]
- 21. Chernoff, W.A. Retrofit design for preventing theft on the university campus. Secur. J. 2021, 1–24. [CrossRef]
- Xia, B.; Wu, K.; Guo, P.; Sun, Y.; Wu, J.; Xu, J.; Wang, S. Multidisciplinary innovation adaptability of campus spatial organization: From a network perspective. SAGE Open 2022, 12, 1–19. [CrossRef]
- Harper, D.J.; Mathuews, K.B. Designing library space to support evolving campus needs. In *Designing Effective Library Learning Spaces in Higher Education*; Sengupta, E., Blessinger, P., Cox, M.D., Eds.; Emerald Publishing Limited: Bingley, UK, 2020; Volume 29, pp. 147–166.
- Ahmed, N.; Rafeeqi, S.F.A. Infusing life: Restoration of Nadirshaw Edulji Dinshaw city campus in Karachi. Proc. Inst. Civ. Eng. Munic. Eng. 2012, 165, 115–119. [CrossRef]
- Lundström, A.; Savolainen, J.; Kostiainen, E. Case study: Developing campus spaces through co-creation. *Arch. Eng. Des. Manag.* 2016, 12, 409–426. [CrossRef]
- Leung, T.N.; Chiu, D.K.; Ho, K.K.; Luk, C.K. User perceptions, academic library usage and social capital: A correlation analysis under COVID-19 after library renovation. *Libr. Hi Technol.* 2021, 40, 304–322. [CrossRef]
- 27. Liao, Y.T.; Chiang, C.M.; Liu, K.S.; Tzeng, C.T. Decision-making factors of school building renovations for improving built environment. *J. Environ. Prot. Ecol.* **2014**, *15*, 1246–1254.
- 28. Ruggiero, S.; Iannantuono, M.; Fotopoulou, A.; Papadaki, D.; Assimakopoulos, M.N.; De Masi, R.F.; Vanoli, G.P.; Ferrante, A. Multi-objective optimization for cooling and interior natural lighting in buildings for sustainable renovation. *Sustainability* **2022**, *14*, 8001. [CrossRef]
- 29. Von Sommoggy, J.; Rueter, J.; Curbach, J.; Helten, J.; Tittlbach, S.; Loss, J. How does the campus environment influence everyday physical activity? A photovoice study among students of two German universities. *Front. Public Health* **2020**, *8*, 561175. [CrossRef]

- 30. King, S.B.; Kaczynski, A.T.; Wilt, J.K.; Stowe, E.W. Walkability 101: A multi-method assessment of the walkability at a university campus. *SAGE Open* **2020**, *10*, 1–9. [CrossRef]
- 31. Grindsted, T.S. Regional planning, sustainability goals and the mitch-match between educational practice and climate, energy and business plans. *J. Clean. Prod.* **2018**, *171*, 1681–1690. [CrossRef]
- 32. Leiva-Brondo, M.; Lajara-Camilleri, N.; Vidal-Meló, A.; Atarés, A.; Lull, C. Spanish university students' awareness and perception of sustainable development goals and sustainability literacy. *Sustainability* **2022**, *14*, 4552. [CrossRef]
- 33. Gou, Z.; Prasad, D.; Lau, S.S.-Y. Are green buildings more satisfactory and comfortable? Habitat Int. 2013, 39, 156–161. [CrossRef]
- 34. Li, Y.; Li, M.; Sang, P.; Chen, P.-H.; Li, C. Stakeholder studies of green buildings: A literature review. J. Build. Eng. 2022, 54, 104667. [CrossRef]
- 35. Hu, S.; Liu, F.; Tang, C.; Wang, X.; Zhou, H. Assessing Chinese campus building energy performance using fuzzy analytic network approach. *J. Intell. Fuzzy Syst.* 2015, 29, 2629–2638. [CrossRef]
- Liu, Q.; Wang, Z. Green BIM-based study on the green performance of university buildings in northern China. *Energy Sustain.* Soc. 2022, 12, 12. [CrossRef]
- Zhu, B.; Dewancker, B. A case study on the suitability of STARS for green campus in China. *Eval. Program Plan.* 2021, *84*, 101893. [CrossRef]
 Shuqin, C.; Minyan, L.; Hongwei, T.; Xiaoyu, L.; Jian, G. Assessing sustainability on Chinese university campuses: Development
- of a campus sustainability evaluation system and its application with a case study. *J. Build. Eng.* **2019**, *24*, 100747. [CrossRef]
- 39. Tan, H.; Chen, S.; Shi, Q.; Wang, L. Development of green campus in China. J. Clean. Prod. 2014, 64, 646–653. [CrossRef]
- Zhang, D.; Hao, M.; Chen, S.; Morse, S. Solid Waste Characterization and Recycling Potential for a University Campus in China. Sustainability 2020, 12, 3086. [CrossRef]
- Schopp, K.; Bornemann, M.; Potthast, T. The whole-institution approach at the university of Tübingen: Sustainable development set in practice. Sustainability 2020, 12, 861. [CrossRef]
- Kohl, K.; Hopkins, C.; Barth, M.; Michelsen, G.; Dlouhá, J.; Razak, D.A.; Bin Sanusi, Z.A.; Toman, I. A whole-institution approach towards sustainability: A crucial aspect of higher education's individual and collective engagement with the SDGs and beyond. *Int. J. Sustain. High. Educ.* 2021, 23, 218–236. [CrossRef]
- 43. Dipeolu, A.A.; Akpa, O.M.; Fadamiro, A.J. Mitigating environmental sustainability challenges and enhancing health in urban communities: The multi-functionality of green infrastructure. *J. Contemp. Urban Aff.* **2020**, *4*, 33–46. [CrossRef]
- 44. Li, Y.; Yuan, K.; Chen, L. Reconstruction of an university's old buildings. Ind. Constr. 2012, 42, 30–33.
- 45. Shiue, F.-J.; Zheng, M.-C.; Lee, H.-Y.; Khitam, A.F.; Li, P.-Y. Renovation construction process scheduling for long-term performance of buildings: An application case of university campus. *Sustainability* **2019**, *11*, 5542. [CrossRef]
- 46. Ares-Pernas, A.; Carvajal, C.C.; Rodríguez, A.G.; Ibáñez, M.I.F.; Casás, V.D.; Fernández, M.S.Z.; Pita, M.D.P.S.; Allut, A.D.G.; Pérez, M.P.C.; López, M.J.C.; et al. Towards a sustainable campus: Working together to achieve the green campus flag on the UDC peripheral campus of Ferrol. *Int. J. Sustain. High. Educ.* 2020, *21*, 1367–1390. [CrossRef]
- 47. Tookaloo, A.; Smith, R. Post occupancy evaluation in higher education. *Procedia Eng.* 2015, 118, 515–521. [CrossRef]
- 48. Findler, F.; Schönherr, N.; Lozano, R.; Stacherl, B. Assessing the Impacts of higher education institutions on sustainable development—An analysis of tools and indicators. *Sustainability* **2018**, *11*, 59. [CrossRef]
- 49. Shi, H.; Lai, E. An alternative university sustainability rating framework with a structured criteria tree. J. Clean. Prod. 2013, 61, 59–69. [CrossRef]
- De AraÚjo Góes, H.C.; Magrini, A. Higher education institution sustainability assessment tools: Considerations on their use in Brazil. Int. J. Sustain. High. Educ. 2016, 17, 322–341. [CrossRef]
- 51. Saaty, R.W. The analytic hierarchy process—What it is and how it is used. *Math. Model.* **1987**, *9*, 161–176. [CrossRef]
- 52. Elshafei, G.; Katunský, D.; Zeleňáková, M.; Negm, A. Opportunities for using analytical hierarchy process in green building optimization. *Energies* **2022**, *15*, 4490. [CrossRef]
- 53. Kamaruzzaman, S.N.; Lou, E.C.W.; Wong, P.F.; Wood, R.; Che-Ani, A.I. Developing weighting system for refurbishment building assessment scheme in Malaysia through analytic hierarchy process (AHP) approach. *Energy Policy* **2018**, *112*, 280–290. [CrossRef]
- AbdelAzim, A.I.; Ibrahim, A.M.; Aboul-Zahab, E.M. Development of an energy efficiency rating system for existing buildings using Analytic Hierarchy Process—The case of Egypt. *Renew. Sustain. Energy Rev.* 2017, 71, 414–425. [CrossRef]
- 55. Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [CrossRef]
- 56. Tianjin University. Available online: http://news.tju.edu.cn/info/1016/40931.htm (accessed on 7 August 2022).
- 57. National Development and Reform Commission (NDRC) People's Republic of China. Available online: https://www.ndrc.gov. cn/xwdt/ztzl/qgjnxcz/bmjncx/202006/t20200626_1232117.html?code=&state=123 (accessed on 6 August 2022).
- National Center for Schooling Development Programme. Available online: https://www.csdp.edu.cn/article/7887.html (accessed on 7 August 2022).
- 59. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Available online: https://www.mohurd. gov.cn/gongkai/fdzdgknr/tzgg/201804/20180404_235620.html (accessed on 7 August 2022).
- Tok, E.; Agdas, M.G.; Ozkok, M.K.; Kuru, A. Socio-psychological effects of urban green areas: Case of Kirklareli city center. J. Contemp. Urban Aff. 2020, 4, 47–60. [CrossRef]
- 61. Saraoui, S.; Belakehal, A.; Attar, A.; Bennadji, A. Evaluation of the thermal comfort in the design of the museum routes: The thermal topology. *J. Contemp. Urban Aff.* **2018**, *2*, 122–136. [CrossRef]
- Khoshbakht, M.; Gou, Z.; Lu, Y.; Xie, X.; Zhang, J. Are green buildings more satisfactory? A review of global evidence. *Habitat Int.* 2018, 74, 57–65. [CrossRef]

- Worden, K.; Hazer, M.; Pyke, C.; Trowbridge, M. Using LEED green rating systems to promote population health. *Build. Environ.* 2020, 172, 106550. [CrossRef]
- 64. Grzegorzewska, M.; Kirschke, P. The impact of certification systems for architectural solutions in green office buildings in the perspective of occupant well-being. *Buildings* **2021**, *11*, 659. [CrossRef]
- 65. Cole, R.J. Postscript: Green building challenge 2000. Build. Res. Inf. 1999, 27, 342–343. [CrossRef]
- 66. Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. *Build. Environ.* **2017**, *123*, 243–260. [CrossRef]
- 67. Martek, I.; Hosseini, M.R.; Shrestha, A.; Edwards, D.J.; Seaton, S.; Costin, G. End-user engagement: The missing link of sustainability transition for Australian residential buildings. *J. Clean. Prod.* **2019**, 224, 697–708. [CrossRef]
- 68. Yahuza, M.S.; Erçin, Ç. Determination of user's need and comfort in designing and purchasing green buildings in Kano State, Nigeria. *Eur. J. Sustain. Dev.* **2020**, *9*, 127. [CrossRef]
- 69. Hopkins, E.A. Barriers to adoption of campus green building policies. Smart Sustain. Built Environ. 2016, 5, 340–351. [CrossRef]
- 70. Raji, A.; Hassan, A. Sustainability and stakeholder awareness: A case study of a Scottish University. *Sustainability* **2021**, *13*, 4186. [CrossRef]
- Şahin, H.; Erkal, S. An investigation of university students' attitudes toward environmental sustainability. *Eur. J. Sustain. Dev.* 2017, 6, 147–154. [CrossRef]
- Macarulla, M.; Casals, M.; Gangolells, M.; Forcada, N. Reducing energy consumption in public buildings through user awareness. In *Ework and Ebusiness in Architecture, Engineering and Construction*; Mahdavi, A., Martens, B., Scherer, R., Eds.; Taylor & Francis Group: Vienna, Austria, 2015; pp. 637–642.
- 73. Méndez, J.I.; Ponce, P.; Peffer, T.; Meier, A.; Molina, A. A gamified HMI as a response for implementing a smart-sustainable university campus. In *Working Conference on Virtual Enterprises, Smart and Sustainable Collaborative Networks* 4.0; Springer: Cham, Switzerland, 2021.
- Ogbuanya, T.C.; Nungse, N.I. Effectiveness of energy conservation awareness package on energy conservation behaviors of off-campus students in Nigerian universities. *Energy Explor. Exploit.* 2020, 39, 1415–1428. [CrossRef]
- Prati, D.; Spiazzi, S.; Cerinšek, G.; Ferrante, A. A User-oriented ethnographic approach to energy renovation projects in multiapartment buildings. *Sustainability* 2020, *12*, 8179. [CrossRef]
- Senior, C.; Salaj, A.; Vukmirovic, M.; Jowkar, M.; Kristl, Ž. The spirit of time—The art of self-renovation to improve indoor environment in cultural heritage buildings. *Energies* 2021, 14, 4056. [CrossRef]
- 77. Heijer, A.D.; Magdaniel, F.T.C. The university campus as a knowledge city: Exploring models and strategic choices. *Int. J. Knowl.-Based Dev.* **2012**, *3*, 283. [CrossRef]
- 78. Dirutigliano, D.; Delmastro, C.; Moghadam, S.T. A multi-criteria application to select energy retrofit measures at the building and district scale. *Therm. Sci. Eng. Prog.* 2018, *6*, 457–464. [CrossRef]
- 79. Nan, Y.; Jing, G. Formation of better streets: Interpretation of urban design guidelines for Beijing street regeneration and governance. *China City Plan. Rev.* **2019**, *28*, 45–55.
- 80. Wang, X.; Zheng, W. College neighborhood in coexistence with the city-Analysis on sustainable campus construction planning for the University of Calgary in Canada. J. Zhejiang Univ. Sci. Ed. 2017, 44, 221–227. [CrossRef]