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Abstract: Deficit irrigation or intentional under-irrigation offers the potential for sustainable water
resources management. The DSSAT CERES-Maize and AquaCrop models were coupled to simulate
the effects of deficit irrigation on corn yield and water productivity. The models were calibrated
and validated using observed values of crop and biomass yield under 40%, 50%, 60%, 70%, and 80%
depletion of the available soil water. Model simulation results showed that a 15% level of deficit
irrigation results in maximum yield while a 60% level of deficit irrigation leads to maximum water
productivity. Results suggest that it is not necessary to use large amounts of water in order to obtain
high crop yield. The net irrigation application depths ranged from 60 mm to 134 mm, with a depth of
77 mm as optimum under 60% deficit irrigation when applied at the start of tasseling to grain filling.
This study demonstrated the applicability of deficit irrigation as a water-saving management strategy
for corn production systems. Crop models such as DSSAT CERES-Maize and AquaCrop proved to
be viable tools to support decision making in corn production systems in the Philippines, especially
when employing deficit irrigation.

Keywords: AquaCrop; DSSAT CERES-Maize; crop models; deficit irrigation; water productivity

1. Introduction

Water scarcity leads to water stress, which in turn affects crop growth and productivity
in many ways. Inadequate irrigation water application leads to adverse physiological
effects like stunted growth, poor quality, and reduce quantity of crop yield. Water scarcity
problems also affect water productivity, which is basically defined as the ratio of the mass
of crop yield to the amount of irrigation water consumed [1]. Determining crop yield
response to irrigation is important for crop selection, economic analysis, and for practicing
effective irrigation management strategies. If water is limited, it is important to know how
to time irrigation application to optimize crop yield, water use efficiency and, ultimately,
profits [2]. Water stress can affect growth, development, and physiological processes of
crops, which can reduce biomass and yield [3–5]. Hence, innovations, strategies, and plans
to increase water use efficiency in crop production systems are necessary.

To address the issues of water scarcity, a number of water saving technologies and
management strategies have evolved through the years. These include an irrigation strategy
called deficit irrigation, which is basically defined as the intentional under-irrigation
of crops below full crop water requirements (crop evapotranspiration, ETc) [6]. Deficit
irrigation is a well-accepted practice to optimize and increase water use by allowing
crops to withstand mild water stress with none or only marginal decrease in yield and
quality [4,5]. Yield reduction is generally expected when crops are subjected to deficit
irrigation (DI) [7], yet a well-designed deficit irrigation regime can minimize the impact
on yield and still lead to growers’ profitability [8,9]. Deficit irrigation, coupled with
crop simulation models to investigate multiple alternatives, have a pivotal role to play in
sustainable water development [6].
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Yield prediction and process optimization are some of the horticultural parameters
that requires modeling, yet until now, few of them have been modeled and efforts have
focused on a limited number of processes of crop growth and development. Likewise, water
balance of plants, the uptake of minerals, the interaction with pests, diseases and genetics,
the interplant variability, and the formation of product quality are very important to model;
yet, they have been poorly addressed [10]. In developing countries such as the Philippines,
however, no study on deficit irrigation can be found in published peer-reviewed literature
much less the application of crop models for quantifying the effects of deficit irrigation on
crop yield and water productivity.

Crop simulation models are valuable tools in understanding crop growth in relation
to water [11]. Crop simulation models have been used for many different applications in
various countries around the world [12]. Among the widely used crop simulation models
include the AquaCrop model developed by the Food and Agricultural Organization (FAO)
of the United Nations. It is used for irrigation management, project planning, and scenario
simulations at different scales. The model has the capability to simulate soil water balance at
several soil horizons, crop growth and development in response to different water scenario,
and water productivity (AquaCrop Reference Manual). Other widely used crop simulation
models include those developed under the Decision Support System for Agrotechnology
Transfer (DSSAT), which is a comprehensive decision support system [13,14] that includes
the Cropping System Model (CSM) for over 42 crops. The model is capable of simulating
soil water balance at different soil depths; hence, the model can evaluate potential yield
reduction caused by soil water deficits.

Application of crop simulation models is unquestionably a sound approach in exam-
ining the effect of deficit irrigation on crop yield and water productivity [14], particularly
for corn production systems in the Philippines. Corn, particularly sweet corn, is one of the
most important crops that are produced perennially in the Philippines. However, sweet
corn growers in the Philippines usually employ surface irrigation applied on a weekly
basis if rainfall does not occur, and hence the soil moisture content is maintained near field
capacity. Consequently, farmers tend to use large amount of irrigation water, which leads
to huge water application losses and wastage.

In recent years, simulation modeling studies for corn have been conducted in the
Philippines. For instance, Bondad et al. (2015) [15] simulated the impact of conservation
agriculture on corn yield using the DSSAT CERES-Maize model, and their study showed
that there is a reasonably fair to good match between observed and simulated values
of silking and maturity dates, maximum leaf area index (LAI), yield, and above-ground
biomass, as indicated by the various statistical criteria such as root mean square error
(RMSE), relative root mean square error (RRMSE), and Nash–Sutcliffe model efficiency
(NSE). Lansigan and Salvacion (2015) [16] made assessments of the impact of climate
change on rice and corn yields using CERES-Maize and concluded that climatic change will
surely affect corn productivity in the country, Painagan and Guiterrez (2014) [17] conducted
a simulation study of corn yield using the Aquacrop model and concluded that the model
can simulate the yield of corn with fair accuracy. However, to date, no study has been
published in peer-reviewed literature on the application of both the FAO’s AquaCrop water
productivity model and DSSAT CERES-Maize in simulating the impact of deficit irrigation
system on corn yield and water productivity in the Philippines.

This study aimed to simulate and analyze the effect of deficit irrigation on corn yield
and water productivity as water saving strategy to promote sustainable water resources man-
agement by coupling AquaCrop (4.7) and DSSAT CERES-Maize crop simulation models.

2. Materials and Methods

To serve as basis for model calibration and validation, field experiments were con-
ducted at the University of the Philippines, Central Experimental Station, Los Baños,
Laguna, Philippines (14.1800 N 121.2500 E), with an elevation of 21 m above sea level, from
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March to May 2018 and from October to December 2018 for the first and second cropping
seasons, respectively.

The climate at the experimental site falls under Type I climate based on the Corona
classification, with two pronounced seasons: dry from November to April, and wet during
the rest of the year. This area has a tropical monsoon climate based on Koppen climate
classification. It has an average annual precipitation and temperature of 1942 mm and
27.1 ◦C respectively. During the year 2018, the driest month was March with a total rainfall
of only 22.5 mm, which occurred during the first cropping season. Most of the precipitation
during this year fell in the month of December, averaging 450 mm due to the occurrence of
strong typhoons. The soil at the experimental site is clay loam classified as Lipa clay loam
for the upper 25 cm layer. The site is nearly flat, well drained, and has an average water
content at field capacity and permanent wilting point of 0.32 and 0.14 m3/m3, respectively.

The climatological input data such as daily maximum and minimum temperature,
rainfall, relative humidity, dry and wet bulb temperature, wind speed, sunshine dura-
tion, and vapor pressure were collected from the National Agrometeorological Station,
University of the Philippines Los Baños, located about 500 m from the study area (Figure 1).
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Figure 1. Location of Philippine Agrometeorological Station and study area based on Google
Earth map.

Soil data such as textural class, field capacity, permanent wilting point, and bulk
density were obtained from the CHED-PCARI project [18]. Data for soil water content were
collected along the depth of the rootzone along 0.25–0.5 cm depth. Collection was done at
the start of the planting season, two days after every irrigation application and every after
rainfall to account the presence of rainfall, and also during harvest through the gravimetric
method, and were counterchecked using a soil moisture meter probe.

Crop management information, such as plant population, row spacing, seeding depth,
application of fertilizer, and irrigation application were also recorded. Plant phenological
growth parameters were also recorded. These included emergence date, anthesis date,
plant height, maximum rooting depth, observation of maximum canopy expansion and
dry above ground biomass which were measured through destructive sampling, harvest
date and fresh sweet corn ear physical characteristics.

Five irrigation treatments were evaluated for the entire duration of the study, using
randomized complete block design replicated three times, for a total of 15 experimental
plots. Irrigation treatments were set in terms of percent depletion of the available soil water
as follows:

Treatment 1: 40% depletion of the available soil water.
Treatment 2: 50% depletion of the available soil water.
Treatment 3: 60% depletion of the available soil water.
Treatment 4: 70% depletion of the available soil water.
Treatment 5: 80% depletion of the available soil water.
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The various irrigation treatments essentially represent the management allowable
depletion or deficit (MAD), which is used in irrigation water management as the basis for
determining when and how much to replenish the depleted soil water to its field capacity.

2.1. Model Calibration

Calibration of the DSSAT CERES-Maize model was performed using the observed
cultivar-specific coefficients of sweet corn under Los Baños, Laguna, condition using the
localized model input data taken from the October to December 2018 cropping season,
when soil water was optimal for crop growth. It was also the season when plants did not
experience stress. For this study, the localized model input data included the following:
daily weather data, parameters of the soil profile, local management condition, anthesis
day which was measured in days after planting (DAP), physiological maturity day mea-
sured in DAP, stem mass at maturity having a unit of kilogram of dry matter per hectare
(kg (dm) ha−1), leaf weight at maturity (kg (dm) ha−1), and emergence day measured in
DAP. In order to fine-tune the crop model, a manual iterative process of adjusting crop
genetic coefficient values of sweet corn was done until the simulated results corresponded
to the observed data.

During model calibration, the genetic coefficients for maize were parameterized for
local Philippine conditions (Table 1). These maize genetic coefficients were as follows: P1 is
the thermal time from seedling emergence to the end of the juvenile phase; P2 is the extent
to which development is delayed for each hour increase in photoperiod; P5 is the thermal
time from silking to physiological maturity; G2 is the maximum possible number of kernels
per plant; G3 is the kernel filling rate; and PHINT is the phylochron interval, the interval in
thermal time between successive leaf tip appearances.

Table 1. Estimated genetic coefficients of sweet corn under local Philippine conditions.

Variable Unit GSS0966 sh2 Saturn sh2 BSS0977 sh2 Calibrated Coefficient

Default sweet corn genetic coefficient
P1 Growing degree days (GDD) 150 180 175 164.0
P2 expressed as days 0.30 0.30 0.30 0.30

P5 expressed in degree days above a
base temperature of 8 ◦C 680 738 700 472.0

G2 number 600 850 500 550.0
G3 mg/day 5.50 15 5.0 3.0

PHINT degree days 43.0 35 50 43.0

The AquaCrop (4.7) model was also calibrated for local conditions using data taken
from the October to December 2018 cropping. Biomass was measured in tons per hectare
(tons ha−1), and the percent soil water content for the first 0.25 m depth of the soil profile in
which soil water absorption took place, was used for calibration. A trial-and-error approach
was used in adjusting the non-conservative parameters to minimize the difference between
the simulated and measured data.

The main parameters used to calibrate the AquaCrop (4.7) model under local condi-
tions are shown in Table 2. It also shows the default values in the AquaCrop program files.
The non-conservative parameters of the AquaCrop (4.7) were calibrated using the data col-
lected during the October to December 2018 cropping season. Calibrated values are mostly
lower than default values since the sweet corn variety of maize is a short-season crop.

Calibrated parameters were based on observations during the actual field experiments.
Maximum canopy cover was set at 70%, maximum rooting depth was set at 53 DAP, days
from sowing to flowering was set at 52 DAP, building up of harvest index starting from
flowering was set at 22 DAP as per observation when plant started to bear fruit. Number
of plants per hectare was set at 25,000 based on planting density, days from sowing until
the start of senescence was set at 70 DAP, and physiological maturity of sweet corn was set
at 80 DAP.
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Table 2. Default and calibrated values of non-conservative parameters used during the calibration of
the AquaCrop (4.7) model.

AquaCrop Non-Conservative Parameters Default Values Calibrated Values

Maximum canopy cover (CCx) in fraction soil cover 0.80 0.70
Calendar Days: from sowing to emergence 5 5

Calendar Days: from sowing to maximum rooting depth 100 53
Calendar Days: from sowing to start senescence 110 70

Calendar Days: from sowing to maturity (length of crop cycle) 125 80
Calendar Days: from sowing to flowering 70 52

Length of the flowering stage (days) 10 10
Building up of Harvest Index starting at flowering (days) 50 22

Water Productivity normalized for ETo and CO2 (WP) (gram m−2) 17.0 33.7
Crop performance under elevated atmospheric CO2 concentration (%) 50 50

Reference Harvest Index (HIo) (%) 50 45
Number of plants per hectare 185,000 25,000

Minimum effective rooting depth (m) 0.30 0.30
Maximum effective rooting depth (m) 1 1

For both models, the goodness of fit between simulated and observed data during
model calibration was assessed using standard statistical indices such as root mean square
error (RMSE), Normalized root mean square error (NRMSE), coefficient of determination
R2, Willmott’s index of agreement (d-stat), and Nash–Sutcliffe model efficiency coefficient
(NSE). These statistical indicators were calculated using the following equations:

RMSE =

√
1
n ∑n

i=1(Si −Oi)
2 (1)

NRMSE =

√
1
n ∑n

i=1(Si −Oi)
2

O
(2)

R2 =

 n(∑ SiOi)− (∑ Si)(∑ Oi)√[
n ∑ Oi

2 − (∑ Oi)
2
][

n ∑ Si
2 − (∑ Si)

2
]


2

(3)

d− stat = 1−
[

∑n
i=1(Si −Oi)

2

∑n
i=1 (|Si′| − |Oi′|)2

]
(4)

NSE = 1− ∑n
i=1(Si −Oi)

2

∑n
i=1 (Oi −O)

2 (5)

where Si = simulated data, Oi = observed data n = number paired values, O mean of
observed data.

The model performance is considered as acceptable when RMSE is close to zero. On
the other hand, the model performance is considered as perfect if NRMSE is less than 10%,
acceptable when NRMSE is between 10% and 20%, fair when NRMSE is between 20%
and 30%, and poor if NRMSE is greater than 30% [19]. The index of agreement (d) varies
between 0 and +1. The closer the value of d to 1.0 the better is the model performance,
with a d-value of 1.0 indicating that estimated and observed values are identical. NSE
values range from minus infinity (−∞) to 1. The higher the NSE, the better is the model
performance, with an NSE of 1.0 representing perfect prediction [20,21].

2.2. Crop Model Validation

Field data sets for all treatments from the March to May 2018 cropping season were
used for model validation. Fresh ear mass having a unit of kilogram of fresh matter per
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hectare (kg (fm) ha−1) and leaf and stem mass having a unit of kilogram of dry matter
per hectare (kg (dm) ha−1) were considered to validate the DSSAT CERES-Maize model,
whereas the AquaCrop (4.7) model was validated using fresh ear mass (kg (fm) ha−1),
dry above-ground biomass (ton ha−1), and percent soil water content data. Models were
validated by simulating the biomass and fresh ear yield of sweet corn under different levels
of deficit irrigation. The observed field experiment data from March to May 2018 cropping
season was used to validate the crop simulation models.

The goodness of fit between simulated and observed data during model validation
was similarly assessed using the same statistical indices used during model calibration.

2.3. Model Simulation

Several levels of deficit irrigation were simulated using the coupled DSSAT CERES-
Maize and AquaCrop model, ranging from 10% to 100% allowable depletion of the available
soil water content (ASWC). Several irrigation depths of the optimum deficit irrigation were
also simulated using the coupled model. Climatological data and soil data of Los Baños,
Laguna were used during simulation.

The AquaCrop model was used to simulate irrigation schedules as well as net irrigation
depths. The generated irrigation depths and irrigation schedule from the AquaCrop model
were then used as input data for the DSSAT CERES-Maize model. The DSSAT CERES-
Maize model was then used to simulate the responses of a maize crop subjected to several
deficit irrigation levels. Crop responses such as grain yield and dry above-ground biomass
at several deficit irrigation levels were then determined.

Nineteen levels of deficit irrigation, or percent depletion between field capacity and
permanent wilting point, with an interval of 5% were simulated using the calibrated and
validated models. The depths of irrigation used in the simulations were generated using
the AquaCrop model, which, in turn, were used to run the simulation using the DSSAT
CERES-Maize model. In the simulation process, deficit irrigation was applied throughout
the growing season.

2.4. Water Productivity

Water productivity is defined as the ratio of the mass of yield to the volume of water
consumed by the crop usually expressed as kg m−3 [8]:

WP =
Ya

ETa
(6)

where WP = water productivity (kg m−3) , Ya = mass of yield (kg), ETa = volume of
twater consumed by the crop (m3) .

In this study, water productivity was defined as the grain produced in kg. per m3 of
water used. The numerator was expressed as the marketable yield, whereas the denomina-
tor was expressed as the amount of water applied (the sum of rainfall and irrigation).

3. Results
3.1. DSSAT CERES-Maize Model Calibration Results

During field experiments, occurrence of silk was observed during 50–52 days after
planting, wherein 52 DAP presented the maximum occurrence of silk. P1 values of 154
to 174.59 with an average of 164.3 predicted anthesis day (52 DAP) yielded a minimum
RMSE value of 0.8165 day and NRMSE value of 1.60% (Table 3). As a result, a P1 value of
164.0 GDD was used as the genetic coefficient of sweet corn.

Moreover, the value of genetic coefficient P5, which is the thermal time from silking to
physiological maturity, was estimated based on actual observation of maturity during field
experiments. Maturity in sweet corn was referred to as the milk stage which occurs during
70 to 80 days after planting, based on sweet corn’s genetic characteristics. During field
experiments, maturity stage (milk stage) was observed beginning 72 days after planting,
as maturity progressed sugar will be converted into starch; therefore, sweet corn was
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harvested at 75 days after planting. P5 values of 463 to 481 degree days with an average of
472 degree days were the predicted physiological maturity with a minimum RMSE value
of 2.2 days and NRMSE value of 24.44% (Table 3). As a result, a P5 value of 472.0 was used.

Table 3. Statistical measures of the goodness of fit between observed and simulated growth parame-
ters during calibration of the DSSAT CERES-Maize model.

No. of Dataset RMSE NRMSE (%) R2 d-Stat NSE

Silking day (DAP) 3 0.8165 day 1.60
Maturity day (DAP) 9 2.2 days 24.44

Leaf dry mass (kg ha−1) 5 115.8 8.49 0.75 0.927 0.736
Stem dry mass (kg ha−1) 5 118.61 9.245 0.97 0.992 0.97

Mean leaf and stem dry mass obtained from the 15 experimental plots were 1364 kg ha−1

and 1283 kg ha−1, respectively. In the process of iteration, it was observed that a G2
(maximum possible number of kernels per plant) value of 550 and G3 (the kernel filling rate
during linear fill stage under optimal conditions) value of 3 gave the minimum value of
RMSE which is 115.8 and 118.61 kg ha−1 for leaf and stem dry mass, respectively (Table 3).
Phylochron interval (PHINT) as well as P2 (extent to which development is delayed for
each hour increase in photoperiod) were kept constant, since photoperiodism does not
affect the crop’s development.

Calibrated genetic coefficients for sweet corn were compared with the genetic coef-
ficients of GSS0966 sh2, Saturn sh2, and BSS0977 sh2. These sweet corn varieties were
pre-calibrated by DSSAT and used as default sweet corn genetic coefficients of crop simula-
tion model CERES-Maize. The genetic coefficient values of sweet corn calibrated under
local conditions are within the range of the default values as shown in Table 1.

Results showed a high degree of goodness of fit between simulated and observed data.
Dry mass of leaf and stem were predicted with R2 of 0.75 and 0.97, d value of 0.927 and
0.992, and NSE of 0.736 and 0.97, respectively, as shown in Table 3 and Figure 2.
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CERES-Maize model.

3.2. AquaCrop (4.7) Model Calibration Results

Results of model calibration are shown in Table 4 and Figure 3. Biomass observed
values were taken during 50 and 70 DAP of October to December 2018 cropping season. A
high goodness of fit between simulated and observed dry above-ground biomass and soil
water content was obtained. Calibration based on dry above-ground biomass showed an
R2 value of 0.901, d-stat value of 0.895, RMSE of 0.226 ton/ha, NRMSE of 5.1%, and NSE
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value of 0.98. On the other hand, calibration based on observed values of soil water content
which were taken during 40, 50, 60, and 70 DAP of the same cropping season showed an
R2 value of 0.897, RMSE of 5.2 mm, NRMSE of 1.9%, d-stat value of 0.845, and NSE value
of 0.69.

Table 4. Statistical measures of the goodness of fit between observed and simulated dry above-ground
biomass and soil water content.

Variables Mean
Observed

Mean
Simulated RMSE NRMSE R2 d-Stat Value NSE

Above-ground
biomass

(ton ha−1)
4.437 4.439 0.226 ton ha−1 5.1% 0.901 0.895 0.98

Soil water
content (mm) 275.4 280.1 5.2 mm 1.9% 0.897 0.845 0.69
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3.3. Results of the Validation of Calibrated Models

The simulation result of fresh fruit yield using DSSAT CERES-Maize and AquaCrop
were shown at Table 5. Both DSSAT CERES-Maize and AquaCrop exhibited good perfor-
mance in simulating the fresh fruit yield of sweet corn with R2 values of 0.9529 and 0.8707,
respectively (Figures 4 and 5).

Table 5. Comparison of simulated and observed fresh ear mass during validation of the DSSAT and
AquaCrop models during model validation.

Treatment
(Depletion of ASWC)

Simulated Fresh Ear Mass (kg ha−1)
Using DSSAT

Simulated Fresh Ear Mass (kg ha−1)
Using AquaCrop

Observed Ear Mass
(kg ha−1)

40% 7350.0 6909.9 7293.475
50% 6482.7 6842.34 6863.675
60% 6442.8 6779.3 6827.275
70% 6239.1 6756.8 6797.175
80% 6119.4 6734.2 6576.15
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3.4. Model Simulation Results

Simulation results for the various levels of DI are shown in Figure 6. Results showed
that 15% DI and 20% DI gave the highest grain yield at an average yield of 5267 kg ha−1

and 5216 kg ha−1, respectively.
In terms of water productivity, model simulation results showed that 60% DI obtained

the highest irrigation water productivity with 3.24 kg m−3. In this study, water productivity
was measured as the ratio of marketable yield and the amount of water used by the crop
throughout its growing season. Among all DI treatments, the 60% DI utilized the least
amount of water and still obtained a high yield, making it the most productive in terms
of water consumption. Moreover, 50% DI and 70% DI obtained the next highest irrigation
water productivity with 2.51 kg m−3 and 2.50 kg m−3, respectively. On the other hand,
40% DI obtained the lowest irrigation water productivity with 1.50 kg m−3. These results
showed that a small amount of irrigation water is capable of producing high yield.

Results also showed that there are phenological stages of crops wherein deficit irriga-
tion has less impact on crop growth and yield. It was found that V3 to V6 stages of corn
were not sensitive to water deficit. Furthermore, after the grain filling stage until harvest,
corn crop is no longer sensitive to water deficit. These results are generally consistent
with the findings of other studies (e.g., Denmead and Shaw, 1960) [22]. Under 60% deficit
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irrigation, different irrigation depths were applied at different phenological stage of corn.
(Table 6).
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Table 6. Irrigation depths, grain yield, water productivity, and irrigation schedule under 60% deficit
irrigation.

Depth of
Irrigation (mm)

Grain Yield
(kg ha−1)

Water Productivity
(kg/m3)

Phenological Stage
Applied with Irrigation

134.4 4356 3.2 all
97.2 4356 4.5 Emergence to early grain filling
85.1 4537 5.3 V10 to grain filling
81.2 4860 5.9 V12 to grain filling
77.3 5009 6.5 Start of tasseling to grain filling
72.4 3494 4.8 Emergence to late tasseling
69.9 5006 7.1 During tasseling to grain filling
60.3 4983 8.2 End of tasseling to grain filling

4. Discussion

The objective of this study was to simulate and analyze the effect of deficit irrigation
on corn yield and water productivity using the AquaCrop (4.7) and DSSAT CERES-Maize
crop simulation models.

Both DSSAT CERES-Maize and AquaCrop exhibited good performance in simulating
the effect of deficit irrigation through the response variable fresh fruit yield of sweet corn
with R2 values of 0.9529 and 0.8707, respectively. DSSAT CERES-Maize over-predicted
the response variable fresh ear weight at high irrigation application (40% depletion of the
Available Water). This result is also similar to the reported performance of CERES-Maize
by Lizaso et al. (2007) [23]. The study reported that “the model consistently over-predicted
fresh ear weight across the range of values examined”.

However, AquaCrop also over-predicted the response variable fresh ear weight at
low irrigation application (80% depletion of the Available Water). This performance of
AquaCrop is comparable to the study of Greaves and Wang (2016) [24], where they assessed
AquaCrop in simulating maize growth and productivity under tropical environment,
they reported that the model tended to overestimate the biomass accumulated, with the
deviation becoming more distinct in the deficit irrigation treatments especially in water
stress treatment, and therefore, they concluded that as water stress intensifies model
reliability lessens [25].

Simulation results showed that a net irrigation of 77.3 mm that was scheduled during
start of tasseling to grain filling stage produced the highest grain yield of 5009 kg ha−1.
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Furthermore, a 69.9 mm of net irrigation that was applied during tasseling to grain filling
stage produced a grain yield of 5006 kg ha−1. In terms of water productivity, an irrigation
depth of 6.3 mm that was applied at the end of tasseling stage to grain filling stage obtained
the highest water productivity of 8.2 kg m−3. These results agree with previous studies
that have shown that crop simulation models can predict yield accurately for a wide range
of environmental conditions [26–28].

The effect of stress is more severe during the reproductive stages partially because
evapotranspiration is usually the highest at that time. Stress during the vegetative stages
reduces total plant dry matter, which has been shown to be linearly related to yield [29,30].

These results highlight the importance of considering the crop’s phenological stage
when scheduling an irrigation. Results also showed that the tasseling stage, silking stage
until grain filling stage are the stages that are most susceptible to water stress. Water stress
can lower the crop’s yield at high level if it occurs during these stages.

5. Conclusions

Successful imposition of deficit irrigation strategy can be achieved if supported with a
decision support system like crop simulation models. In terms of yield, model simulation
results showed that 15% DI and 20% DI provide the highest grain yield at an average of
5267 kg ha−1 and 5216 kg ha−1, respectively. The 10% DI did not render any sign of water
stress, and yet gave a relatively lower yield compared to 15% and 20% DI. Results suggest
that maintenance of soil moisture very close to field capacity does not necessarily lead to
increased crop yield. In terms of water productivity, model simulation results showed that
60% DI generate the highest water productivity at 3.24 kg m−3. Among all DI treatments,
the 60% DI utilized the least amount of water and still obtained a high yield. Therefore, a
small amount of irrigation application can still lead to increased water use efficiency and
crop productivity, as long as it is being applied at the right phenological stage of a crop.
Results also showed that there are phenological stages of crops wherein deficit irrigation
has less impact on crop growth and yield. It was found out that V3 to V6 stages of corn
were not sensitive to water deficit. Furthermore, results showed that growth stages after
the grain filling stage until harvest corn crop are no longer sensitive to water deficit. Model
simulation results also showed that the tasseling stage and silking stage until grain filling
stage are the stages that are most susceptible to water stress, which consequently affects
the quality and quantity of crop yield. This study demonstrated that deficit irrigation is
a practical water saving management strategy that leads to the sustainable use of water
resources. Furthermore, the use coupled crop simulation model (DSSAT CERES-Maize
and AquaCrop) proved to be a viable tool to support decision making in corn production
systems in the Philippines, especially when imposing deficit irrigation.
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