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Abstract: Atmospheric pollution is a critical issue in our society due to the continuous development
of countries. Therefore, studies concerning atmospheric pollutants using multivariate statistical
methods are widely available in the literature. Furthermore, machine learning has proved a good
alternative, providing techniques capable of dealing with problems of great complexity, such as
pollution. Therefore, this work used the Self-Organizing Map (SOM) algorithm to explore and
analyze atmospheric pollutants data from four air quality monitoring stations in Salvador-Bahia. The
maps generated by the SOM allow identifying patterns between the air quality pollutants (CO, NO,
NO2, SO2, PM10 and O3) and meteorological parameters (environment temperature, relative humidity,
wind velocity and standard deviation of wind direction) and also observing the correlations among
them. For example, the clusters obtained with the SOM pointed to characteristics of the monitoring
stations’ data samples, such as the quantity and distribution of pollution concentration. Therefore,
by analyzing the correlations presented by the SOM, it was possible to estimate the effect of the
pollutants and their possible emission sources.

Keywords: machine learning; atmospheric pollution; Self-Organizing Maps; Salvador-BA

1. Introduction

Air pollution is one of the crucial challenges of modern society. In recent years,
pollution caused by industrial, vehicular, and toxic-chemical emission sources has increased
significantly. This increase can be seen mainly in low- and middle-income countries, also
called developing countries [1]. Despite the continuous pollution growth, awareness and
pollution control programs are limited and receive little attention and financial resources
from governments, international agencies, and philanthropic donors [1].

In addition, effectively managing regulations for controlling air pollution requires
considerable knowledge about the costs and benefits. Currently, the primary efforts for
measuring pollutants aim to avoid possible harm to people’s health, such as respiratory or
cardiovascular diseases that can result in hospitalizations and even death, usually affecting
vulnerable groups of the population [2].

Complex mixtures of solid particles and gaseous pollutants contribute to air pollution.
Among these are priority pollutants, commonly regulated by law and categorized as
primary and secondary. The primary pollutants are substances that can be released directly
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into the atmosphere, while the secondary pollutants are substances derivated from the
primary ones through photochemical reactions in the troposphere [3]. Regarding the
gaseous pollutants, to be particulary mentioned are sulfur dioxide (SO2), nitrogen dioxide
(NO2), carbon monoxide (CO), volatile organic compounds (VOCs), solid materials or
liquids suspended in the atmosphere due to their small size (called particulate matter
(PM)), and the ozone (O3). The ozone is one of the major photochemical pollutants formed
in the atmosphere by the reaction of nitrogen oxides (NOx) and hydrocarbons such as VOCs
in the presence of sunlight, similarly to particulate sulfate and nitrate aerosols created from
SO2 and NOx [3].

The dispersion of atmospheric pollutants results from different elements such as
temperature, relative humidity, atmospheric pressure, wind direction and speed, as well
as topography [4]. Consequently, the complexity of analyzing and identifying pollutants
and their primary sources in large-scale areas increases, which leads to the problem of
positioning monitoring stations for data collection.

There are several emission sources of air pollutants, and a single source can emit
several pollutants. For instance, the composition of fossil fuels used in motor vehicles can
emit different pollutants during combustion and evaporation, or by the wear of tires and
roads where vehicles run. Due to the increasing number of private vehicles, their emissions
have become a dominant source of CO, CO2, VOCs, NOx and PM. Meanwhile, industrial
processes normally include pollutants such as CO, PM, NOx, and SO2 [4–6].

Thus, monitoring the concentration of pollutants in the environment at specific points
is essential. Identifying the main components enables understanding of the current condi-
tion of air pollution, variations, correlations, and possible emission sources, which leads
to the development of public policies to raise awareness and reduce pollutants. There-
fore, many researchers have proposed the analysis of environmental data mainly using
multivariate statistical techniques [4,7,8].

Multivariate statistical methods such as correlation or cluster analysis [9–13], and prin-
cipal component analysis [7,14,15] are commonly applied in various studies to identify
the correlation among parameters that can influence air quality. Large databases that
carry various information about air pollution require techniques to extract and identify
characteristics inherent to the analyzed data.

In this context, machine learning has proved to be a great alternative to the traditional
methods used [16,17]. A well-known algorithm that belongs to the group of unsupervised
learning algorithms is self-organizing maps (SOM) [18]. The SOM supports data dimension-
ality reduction and clustering. In addition, the SOM does not need to make assumptions
about the parameters’ distribution, as it is capable of dealing with non-linear problems of
great complexity and dimension and is effective in using noisy data [19].

The SOM algorithm is adopted in many applications to analyze data from atmospheric
pollutants. For example, in Ref. [20], the SOM is used to analyze data regarding air quality.
In Ref. [21], the SOM is used to identify the level of pollution during foundry and land
mining. The study carried out in [22] used the SOM to highlight the impact on air quality
caused by the circulation of different air types, which alters the concentration of pollutants
in the atmosphere. For this purpose, it is essential to identify suitable placements for
positioning monitoring stations, as shown in [23]. Finally, the SOM has also been used to
obtain particulate-matter characteristics in the atmosphere by evaluating its concentration
in both internal and external exposure and connecting them to human activities. According
to [24], the SOM can also function as a pollution identifier by defining limits to classify
regions with low or high concentrations of a specific pollutant, such as ozone, enabling the
evaluation of pollution zones.

Therefore, this work proposes an SOM implementation to study and analyze atmo-
spheric pollutants to identify their patterns and characteristics. The main contributions are:

• A machine-learning-based approach for analyzing the air quality of Salvador monitoring
stations, using the Government of Bahia State database—to the best of our knowledge,
this work is the first to analyze this data using machine-learning algorithms.
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• We discuss the common factors among meteorological parameters and pollutants and
their clusters’ impact on each monitoring station.

2. Methodology
2.1. Case Study

Salvador city (State of Bahia) has a territorial area of 693.453 km2 and a population
of 2,675,656 people. Located in the northeastern region of Brazil, it has an urban core and
rugged topography formed by several columns and valleys, with a rainy tropical climate
with no dry season and an average annual temperature of 25 ◦C.

The Government of Bahia State, through CETREL S. A., the company that operated
the air monitoring stations from 2011 to 2016, provided the air quality database for this
work. It contains the air quality data of a monitoring network constituted of eight stations.
Nonetheless, we used data from four stations: Barros Reis (BR), Campo Grande (CG), Dique
do Tororó (DT), and Itaigara (IT), due to their inherent characteristics. Figure 1 illustrates
the stations’ distribution in Salvador and highlights the four chosen. It is important to
mention that this is the first air quality monitoring network ever installed in the city of
Salvador. Therefore, this work portrays the first analysis of the pollutant and meteorological
parameters in the database provided.
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Figure 1. Location of the eigth air monitoring stations deployed in Salvador-BA.

2.2. Dataset

The dataset contains the hourly average of twelve features related to meteorological
parameters and pollutants concentration. The meteorological parameters are wind speed
(WS), ambient temperature (TEMP), relative air humidity (RH), the standard deviation of
wind direction (STWD), rainfall, and wind direction. Meanwhile, the pollutants are SO2,
CO, O3, particulate matter whose aerodynamic diameter is less than 10 µm (PM10) and the
oxides of nitrogen NO2 and NO. We removed the rainfall and wind direction variables due
to the small amount of data available; thus, only ten features were used in our analysis.

We performed a data preprocessing step by removing the null lines, the measurement
errors (identified by a specific terminology), and the outliers to improve the quality of the
analysis. The outliers were removed by investigating the data dispersion and symmetry
and, subsequently, using the quartile separatrix measure [25] to divide the dataset into
three quartiles: Q1, Q2 and Q3. Finally, based on the interquartile range (AIQ) [25], outliers
with value greater than Q3 + 3× AIQ and less than Q1 − 3× AIQ, were removed from
the database. We kept outliers with values greater than Q3 + 1.5× AIQ and less than
Q1 − 1.5× AIQ to avoid a large reduction in the dataset. Table 1 presents the number
of data samples for each monitoring station considered in our analysis and their period
of operation.
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Table 1. The operation period for each monitoring station provided by CETREL S. A., and the number
of data samples available in the dataset before and after the preprocessing step.

Station Operation Start Date Operation End Date
Number of Rregis-
tered Samples

Number of Samples after Pre-
processing

Barros Reis (BR) 8 November 2013 31 December 2016 27,584 21,559
Campo Grande (CG) 2 July 2011 31 December 2016 48,234 24,559
Dique do Tororó (DT) 19 June 2011 31 December 2016 48,550 42,037
Itaigara (IT) 18 October 2013 30 April 2016 22,203 15,535

In the meantime, Tables 2–5 present the dataset for the Barros Reis (BR), Campo
Grande (CG), Dique do Tororó (DT), and Itaigara (IT) stations, respectively. As can be
observed, all pollutants and atmospheric data are shown after the preprocessing step for
each station in a concentration of pollutants in parts per billion (ppb).

Table 2. Descriptive statistics of pollutants and atmospheric data from the Barros Reis station
(P = 21,559 samples).

Parameters Magniture Maximum Mean Average Standard Variation
Deviation Coefficient

SO2 ppb 3.20 0.30 0.45 0.51 112.94%
CO ppb 2180.00 570.00 601.60 335.70 55.80%
O3 ppb 22.70 4.80 5.47 3.80 69.36%
PM10 µg/m3 129.80 37.30 40.10 19.88 49.58%
NO ppb 206.40 44.40 52.47 38.01 72.50%
NO2 ppb 49.20 13.30 14.15 7.61 53.84%
WS m/s 10.80 2.20 2.62 1.75 67.00%
TEMP °C 32.50 25.50 25.63 2.18 8.54%
RH % 91.00 69.00 68.60 9.31 13.57%
STWD ° 73.30 31.30 31.61 11.61 36.73%

Table 3. Descriptive statistics of pollutants and atmospheric data from the Campo Grande station
(P = 24,559 samples).

Parameters Magniture Maximum Mean Average Standard Variation
Deviation Coefficient

SO2 ppb 1.70 0.20 0.32 0.31 97.20%
CO ppb 1830.00 360.00 396.60 292.70 73.81%
O3 ppb 25.00 5.20 6.01 4.18 69.5%
PM10 µg/m3 77.30 19.30 21.10 12.53 59.38%
NO ppb 139.00 25.10 28.03 23.37 83.38%
NO2 ppb 44.00 13.30 13.37 6.42 48.00%
WS m/s 5.10 1.20 1.42 0.93 66.01%
TEMP °C 34.30 26.50 26.72 2.31 8.66%
RH % 94.00 72.00 71.12 9.54 13.41%
STWD ° 79.60 53.20 52.01 13.31 25.57%
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Table 4. Descriptive statistics of pollutants and atmospheric data from the Dique do Tororó station
(P = 42,037 samples).

Parameters Magniture Maximum Mean Average Standard Variation
Deviation Coefficient

SO2 ppb 2.00 0.20 0.33 0.40 123.15%
CO ppb 1000.00 220.00 239.40 163.90 68.44%
O3 ppb 34.30 7.20 8.15 5.37 65.88%
PM10 µg/m3 75.60 20.00 22.13 12.42 56.12%
NO ppb 73.60 12.40 13.77 11.54 83.78%
NO2 ppb 31.30 8.20 8.67 5.02 57.92%
WS m/s 6.90 1.50 1.63 1.01 61.72%
TEMP °C 33.90 26.30 26.46 2.31 8.75%
RH % 94.00 73.00 72.46 9.10 12.56%
STWD ° 78.80 33.00 38.45 15.34 39.90%

Table 5. Descriptive statistics of pollutants and atmospheric data from the Itaigara station
(P = 15,535 samples).

Parameters Magniture Maximum Mean Average Standard Variation
Deviation Coefficient

SO2 ppb 1.60 0.10 0.2502 0.33 131.89%
CO ppb 1210.00 190.00 226.48 207.26 91.51%
O3 ppb 27.50 7.90 8.47 4.32 51.00%
PM10 µg/m3 67.40 13.60 16.16 10.98 67.94%
NO ppb 70.70 11.40 15.50 13.45 86.77%
NO2 ppb 31.10 7.30 8.21 5.15 62.72%
WS m/s 10.20 2.70 2.76 1.58 57.24%
TEMP °C 33.40 25.00 25.04 2.27 9.06%
RH % 93.00 71.00 71.43 9.08 12.71%
STWD ° 51.30 22.80 24.32 8.13 33.42%

As can be observed, the BR station presents a higher concentration of SO2, CO,
and PM10. The SO2 has a maximum of 3.20 ppb and an average of 0.45 ppb due to
the burning of fuels with sulfur. Meanwhile, the CO has a maximum of 2180 ppb and an
average of 601.6 ppb, produced by burning organic fuels. The PM10 has an average of
40.10 ppb, almost double the value of other stations; it is a solid or liquid material that
remains suspended in the atmosphere that can cause a significant impact on human health.

The CG station also has a high level of CO, with a maximum of 1830 ppb and an
average of 396.6 ppb. Regarding the presence of nitrogen oxides (NO and NO2), the CG and
DT stations present higher average and maximum concentrations due to the combustion
processes and atmospheric chemical reactions. Concerning the O3, a secondary pollutant
formed in the atmosphere indicating the presence of photochemical oxidants, it has its
higher concentrations recorded at the DT and IT stations.

Therefore, the SO2, CO, and NO pollutants present the most significant variations
in concentration. These pollutants are mainly generated from the burning of fossil fuels.
Hence, the station location and the intensity of the vehicle’s traffic around its region can
lead to different concentration records at certain times of the day. The datasets comprise
24 h of daily data collection.

All stations show similar measured values regarding the meteorological parameters,
except for wind speed which has a high average at BR and IT stations, and the standard
deviation of wind direction at CG. Note that the values were rescaled from 0 to 1 to
improve the SOM results. In addition, this work performed the z-score normalization and
logarithmic transformation, obtaining data with null mean and unit variance and reducing
the data scale, respectively.
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2.3. Self-Organizing Maps (SOM)

The Self-Organizing Map (SOM) is a neural network model widely applied to data
dimensionality reduction and clustering [18,26]. The map consists of M neurons commonly
arranged in a two-dimensional array representing the incoming data by shifting the neu-
rons’ position towards it. The maps’ topology can be rectangular, hexagonal, or square,
among others [18].

The N-dimensional input data sample can be characterized as

x = [x1, x2, . . . , xN ]. (1)

Accordingly, each i-th neuron in the map is represented by a N-dimensional vector of
weights expressed as

wi = [wi1, wi2, . . . , wiN ]. (2)

Therefore, the topology of a two-dimensional map with M neurons can be expressed
as (Mh ×Mv), where Mh is the number of neurons in the horizontal and Mv is the number
of neurons vertically; thus, M = Mh ×Mv.

The SOM algorithm iteratively molds the neurons’ map to the input data topological
form, based on a similarity metric, according to the following steps [18]:

1. Randomly initialize the M neurons’ weight vectors.
2. Calculate the distance of each p-th input data sample, x(p), to all M neurons.
3. Define the winning neuron, also known as best matching unit (BMU); it is the j-th

nearest neuron to the input data defined based on a distance metric as follows:

j = arg min
i
||x(p)−wi||, i = 1, 2, . . . , M. (3)

4. Update the BMU neuron and its neighboring neurons’ weights according to following

wi(t + 1) = wi(t) + η(t)hi,j(t)(x(p)−wi) (4)

where η(t) is the learning rate (ranging from 0 to 1) and hi,j(t) represents the BMU
neighborhood function at the t-th iteration. The neighborhood function is described as

hi,j(t) = exp

(
−

d2
i,j

2σ2(t)

)
(5)

where d2
i,j is the distance from the i-th neuron to the BMU (j-th neuron) and σ2(t) is

the neighboring function size at the t-th iteration.
5. Repeat steps 2, 3 and 4 until the maximum number of iterations is reached, represented

here by T.

The number of iterations must be enough to process the dataset samples several times;
thus, T = b× P, where b is the repetition number that every set of P samples is presented
to the SOM. Moreover, increasing the iteration number (t) decreases the radius of the
neighborhood function, σ2(t). Consequently, the number of neurons nearby the BMU
to be updated is reduced, strengthening their connection and similarities. After training
the network, each p-th entry x(p) is associated with a specific BMU in the output layer,
and entries that share similar patterns will be associated with the same BMU or its neighbors,
which can be understood as a grouping in the SOM.

We applied the SOM to each monitoring station shown in Table 1. Each p-th sample in
the dataset has N = 10 dimensions, 6 regarding atmospheric pollutants (SO2, CO, O3, PM10,
NO, and NO2) and 4 concerning meteorological parameters (WS, TEMP, RH, and STWD).
Therefore, the SOM enables analyzing the influence and characteristics of these variables.
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2.4. SOM Parameters

The map size is the first parameter to be defined. For this purpose, it is necessary
to determine the number of neurons to be used during training; in addition, avoiding a
large or small number of neurons is vital to prevent problems such as non-identification of
characteristics and overfitting [27]. Commonly, the number of neurons can be determined
using the following heuristic equation

M ≈ 5
√

P (6)

where P is the number of input data samples [27].
Subsequently, the map topology (Mh ×Mv) was defined according to quality mea-

sures commonly used for the SOM network, the quantization error (QE) and topographic
error (TE) [28,29]. For each station, different values of Mh and Mv were tested, in which
Mh × Mv = M (Equation (6)). Finally, to analyze the results, three different types of
normalization were applied to the data: z-score, min–max, and logarithmic.

Hence, all tests were performed with b = 500, a hexagonal topology, and the training
algorithm was applied in two steps. Firstly, the learning rate and neighborhood function
were initialized as η(0) = 0.5 and σ2(0) = Mh

2 , respectively, and decreased over iterations.
Secondly, these values were fixed as η = 0.05 and σ2 = 1. Tables 6–9 present the quality
measures obtained for each test.

Table 6. SOM quality measures for Barros Reis Station data (best values in bold).

(Mh × Mv) M
z-Score Min-Max Logarithmic

QE TE QE TE QE TE

(27× 24) 648 1.4032 0.0649 0.2290 0.0636 0.7173 0.0606
(26× 26) 676 1.3898 0.0687 0.2273 0.0661 0.7108 0.0616
(29× 24) 696 1.3887 0.0668 0.2270 0.0668 0.7096 0.0607
(31× 23) 713 1.3805 0.0631 0.2259 0.0607 0.7051 0.0593
(27× 27) 729 1.3803 0.0612 0.2245 0.0653 0.7032 0.0629
(30× 25) 750 1.3766 0.0660 0.2250 0.0667 0.7017 0.0616
(32× 24) 768 1.3684 0.0649 0.2232 0.0622 0.6977 0.0601
(34× 23) 782 1.3652 0.0701 0.2229 0.0644 0.6950 0.0644
(33× 24) 792 1.3609 0.0655 0.2224 0.0673 0.6957 0.0587
(31× 26) 806 1.3597 0.0658 0.2219 0.0663 0.6948 0.0622

Table 7. SOM quality measures for Campo Grande Station data (best values in bold).

(Mh × Mv) M
z-Score Min-Max Logarithmic

QE TE QE TE QE TE

(31× 23) 713 1.4216 0.0666 0.2384 0.0626 0.7346 0.0625
(27× 27) 729 1.4187 0.0660 0.2382 0.0667 0.7294 0.0584
(30× 25) 750 1.4131 0.0650 0.2369 0.0664 0.7277 0.0626
(32× 24) 768 1.4082 0.0648 0.2360 0.0640 0.7253 0.0630
(28× 28) 784 1.4099 0.0619 0.2352 0.0685 0.7230 0.0610
(31× 26) 806 1.3994 0.0645 0.2341 0.0670 0.7215 0.0589
(34× 24) 816 1.3948 0.0642 0.2340 0.0624 0.7193 0.0592
(33× 25) 825 1.3949 0.0636 0.2334 0.0636 0.7173 0.0593
(35× 24) 840 1.3925 0.0651 0.2336 0.0669 0.7163 0.0630
(36× 24) 864 1.3898 0.0619 0.2324 0.0643 0.7146 0.0594
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Table 8. SOM quality measures for Dique do Tororó Station data (best values in bold).

(Mh × Mv) M
z-Score Min-Max Logarithmic

QE TE QE TE QE TE

(38× 25) 950 1.2812 0.0686 0.2175 0.0668 0.6834 0.0630
(37× 26) 962 1.2773 0.0684 0.2172 0.0670 0.6814 0.0641
(38× 26) 988 1.2742 0.0668 0.2163 0.0679 0.6802 0.0621
(36× 28) 1008 1.2687 0.0733 0.2157 0.0676 0.6798 0.0619
(32× 32) 1024 1.2667 0.0736 0.2152 0.0679 0.6777 0.0659
(40× 26) 1053 1.2628 0.0702 0.2146 0.0678 0.6745 0.0644
(39× 27) 1040 1.2639 0.0695 0.2152 0.0688 0.6750 0.0611
(38× 28) 1064 1.2581 0.0721 0.2141 0.0680 0.6747 0.0660
(37× 29) 1073 1.2600 0.0706 0.2136 0.0728 0.6718 0.0632
(40× 27) 1080 1.2609 0.0657 0.2136 0.0717 0.6730 0.0633

Table 9. SOM quality measures for Itaigara Station data (best values in bold).

(Mh × Mv) M
z-Score Min-Max Logarithmic

QE TE QE TE QE TE

(24× 23) 552 1.4306 0.0584 0.2428 0.0591 0.7736 0.0510
(26× 22) 572 1.4237 0.0603 0.2422 0.0566 0.7709 0.0485
(24× 24) 576 1.4210 0.0618 0.2421 0.0557 0.7704 0.0503
(27× 22) 594 1.4192 0.0548 0.2403 0.0589 0.7684 0.0547
(25× 24) 600 1.4152 0.0593 0.2412 0.0565 0.7659 0.0477
(27× 23) 621 1.4126 0.0574 0.2400 0.0585 0.7654 0.0444
(25× 25) 625 1.4063 0.0573 0.2399 0.0553 0.7625 0.0458
(27× 24) 648 1.4086 0.0572 0.2381 0.0561 0.7595 0.0472
(26× 26) 676 1.3945 0.0640 0.2371 0.0556 0.7553 0.0525
(27× 26) 702 1.3861 0.0578 0.2363 0.0559 0.7516 0.0538

Considering both QE and TE measures, the lowest values were obtained using min–
max normalization. Thus, Mh and Mv were chosen according to the best result, being
highlighted in each table.

3. Results
3.1. U-Matrix, Components Plane and Parameter Similarity

The SOM output can be represented by a unified distance matrix (U-matrix) and a
component plane, both illustrated in Figure 2. The U-matrix provides a visualization of the
relative distance between neurons in the map, which is evidenced through a color scale,
and highlights the calculated distance between the adjacent neurons [18]. The closer the
color approaches a dark blue in the U-matrix, the closer these neurons are, i.e., they have a
more significant similarity. On the other hand, the closer the color approaches a dark red,
the greater the distance between the neurons and their dissimilarity. In general, this form
of representation allows us to consider that neurons with smaller distances form a cluster.
In contrast, neurons with high distances can be considered as boundaries of a cluster.

The component plane shows the values of the weight vectors of each neuron through
a color code, where the blue and red colors correspond to low and high values, respectively.
This representation allows the recognition of parameter dependencies by comparing the
patterns of each plane. The color gradient of a plane represents the parameters’ value
(component) for the analyzed samples. Each neuron is assigned a color according to the
parameter value in that neuron; thus, it can be said that two or more parameters are related
based on a comparison of their color gradients. A coherent gradient indicates a positive
correlation, while an inverse gradient a negative correlation.
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Figure 2. Unified distance matrix (U-matrix) and component planes of all analyzed variables (SO2,
CO, O3, PM10, NO, NO2 , WS, TEMP, RH, and STWD) from the Itaigara station.

3.2. Itaigara Station

Analyzing the component planes in Figure 2, it is possible to note that the relative
humidity (RH) and temperature (TEMP) planes display inverse gradients, indicating a
negative correlation between these parameters—something already expected given their
characteristics. For CO, NO, and NO2 pollutants, their weight vectors present a dark red
color on the left side of the components’ plane, with a higher concentration of high values
at the top left side; hence evidencing a certain similarity between them. These pollutants
are generated by combustion, and incomplete burning of organic fuels, which are very
common in cities with a large circulation of vehicles (the leading emitter) [5].

The O3 pollutant can be formed by the reaction of nitrogen oxides with VOCs. How-
ever, it presents a different pattern than NO2, which contributes to the formation of photo-
chemical oxidants such as O3. As can be seen in the O3 component plane, its high-value
region is concentrated on the right side, similar to the wind speed component plane. There-
fore, it can be said that the O3 presence at the Itaigara Station probably came from another
region carried by the wind, as it has a low concentration near traffic routes and is generated
by photochemical reactions.

The PM10 showed a different pattern than the other pollutants. Its main concentration
region, with high weight vector values, is in the upper part of the plane. Since its emission
sources are diverse, such as vehicles, biomass burning, industries, and dust resuspension,
it is difficult to identify the major contributor pollutant. However, its formation can also be
carried out in the atmosphere through VOCs, SO2, and nitrogen oxides.

The most distinct pattern presented was by SO2, with high values and concentration
in the lower left part, it does not resemble any other component plane. This pollutant is
released mainly by heavy vehicles burning diesel oil in urban areas.

An SOM arranges similar patterns in the same neighborhood region, clustering the
network’s output. Hence, an investigation into the clustering of samples provides important
information about the data.

The U-matrix in Figure 2 illustrates how close or far the neurons are, showing their
clusters. However, the cluster boundaries are not clearly represented, making it challenging
to identify them. One of the methods for choosing the appropriate number of clusters is
the so-called Davies–Bouldin index [30], an evaluation measure commonly used in SOM
networks for validating clusters [31,32].
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3.2.1. Sample Grouping with the SOM Algorithm

For the Davies–Bouldin index, the lowest value found indicates the best number of
clusters for the analyzed problem. Thus, an experiment was conducted by varying the
number of clusters from two to eight and observing the obtained values. The best result
was achieved for a total of four clusters.

Aftwards, a hierarchical analysis was performed to define the neurons belonging to
the four clusters. For this purpose, the Euclidean distance was used as the similarity metric
and the Ward neuron linking criterion, illustrated by the dendrogram shown in Figure 3.
A dendrogram threshold value is defined for that to which cluster each neuron belongs
(horizontal line in Figure 3).
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Figure 3. Hierarchical analysis of the neurons clusters using the Ward linkage method and Euclidean
distance for the Itaigara station.

In addition, based on the hierarchical analysis, the SOM neurons were classified in
four clusters, as shown in Figure 4. Therefore, the samples assigned to each cluster and
its neurons present the characteristics of the distribution of pollutants and meteorological
parameters. Table 10 shows the mean value of samples for each parameter and cluster.
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Figure 4. SOM neurons grouped into four clusters obtained by the hierarchical analysis of the
Itaigara station.
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Table 10. Parameters’ average values for every cluster formed by the SOM network for the
Itaigara station.

Parameters
Parameter Average Value per Cluster

1 2 3 4

SO2 (ppb) 0.18 0.09 0.17 0.89
CO (ppb) 153.18 126.03 443.43 230.86
O3 (ppb) 11.93 7.38 5.45 7.61
PM10 (µg/m3) 17.73 12.92 17.97 15.83
NO (ppb) 9.20 9.15 29.64 19.28
NO2 (ppb) 6.10 6.81 12.29 9.10
WS (m/s) 4.15 1.83 2.26 2.20
TEMP (°C) 26.44 24.10 24.80 23.97
RH (%) 64.30 76.97 73.15 74.38
STWD (°) 21.59 26.16 26.39 23.43
#Samples 5240 4469 3799 2027

According to Table 10, cluster 1 samples exhibit, in general, a low concentration of
air pollutants, except for O3 and PM10, which have the highest average concentration. In
addition, cluster 1 presents a wind speed and temperature considerably higher, and lower
relative humidity. In total, about 34% of the data was assigned to cluster 1, thus sharing
those characteristics.

Cluster 2, presented in Table 10, shows the lowest concentrations of SO2, CO, PM10,
and NO pollutants, with intermediate values of O3, and NO2. It also presents the lowest
average wind speed, intermediate temperature, and high relative humidity. In addition,
cluster 2 is composed of 29% of the data, characterized by a low concentration of pollutants.

The highest concentrations of CO, PM10, NO, and NO2 are found in cluster 3, as can be
observed in Table 10. In contrast, SO2 and O3 show low values (with O3 having the lowest
total average among all clusters). The wind speed, temperature, and relative humidity have
intermediate values. A total of 24% of the data was assigned to cluster 3, characterized by
high pollutant concentration values.

Finally, cluster 4 is mainly characterized by the high concentration of the SO2 pollutant
compared to the others. The other pollutants present intermediate concentration values,
as well as wind speed, temperature, and relative humidity. In addition, cluster 4 has the
lower amount of samples; a total of 2027 (13%) were assigned here.

3.2.2. Parameter Correlation

The component planes allow an initial and preliminary analysis of parameters through
their visual gradients which, in a certain way, can turn out to be subjective and discretionary.
Thus, to carry out a more objective and effective analysis of the results, a correlation analysis
was applied between the component planes seen in Figure 2. Figure 5 shows the similarity
between the planes (parameters) using the Ward criterion and the Pearson correlation
coefficient, r.

As can be observed in Figure 5, two main branches are seen in the correlation anal-
ysis. The first branch, on the left of the figure, includes all the pollutants studied but O3,
whose origin is exclusively photochemical. Hence, O3 is clustered with the wind speed
and temperature.
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Figure 5. Parameter correlation using Ward criterion and distance 1− r, where r is Pearson coefficient,
for the Itaigara station.

The NO, NO2, and CO pollutants have a substantial similarity, probably due to a
similar emission source such as vehicular, given the station allocation and the monitoring
region. Those pollutants are correlated to PM10, which also has a vehicular origin. In
addition, the PM10 is connected to STWD, showing that intensive vertical turbulence
(atmospheric instability), which is characterized by high STWD values, increases the PM10
concentration. Thus, it can be said that the wind movement is dragging out PM10 from other
areas or causing the resuspension of particulate material at Itaigara station. In addition
to vehicle influence, the particulate matter may also be dispersed by the existing vehicle
movement, the wear of traffic lanes, and the vehicles’ brake pads.

The similarity between RH and SO2 shows the influence of RH on the formation or
decomposition process of molecules during the heterogeneous procedure (liquid phase).
In particular, the SO2 can react with the air humidity and other oxidants in the atmosphere
to form sulfuric acid H2SO4 and ammonium sulfate [33].

Meteorological parameters, such as wind speed, considerably influence the O3 pollu-
tant [24]. Given the similarity between O3, the wind speed, and temperature (Figure 5), we
consider that O3 is not generated at the monitoring station site but instead transported by
winds along with other pollutants such as VOCs. The temperature may also be responsi-
ble, since high temperatures result from the increase in the speed of chemical processes,
generating ozone in the region.

3.3. Barros Reis Station

In the BR station component planes (Figure 6), the weight vectors for the PM10, CO,
NO, and NO2 are displayed similarly across the map. The concentration of high values
is on the upper left side, with average values in the nearby regions. The low values are
located mainly in the lower right region of the map. All these pollutants can be formed
from combustion processes, which shows the similarity obtained and, in particular, if they
have a common source.

Unlike the pollutants discussed above, the O3 component plane has its highest con-
centration at the bottom right of the map. O3 is a secondary pollutant, i.e., its formation
depends on atmosphere reactions from other pollutants, such as NO2. Still, its plane does
not resemble the planes of primary pollutants. Similarly, PM10 is also a secondary pollutant
but is formed by SO2, and no similarity is seen in their plane. However, PM10 can also be
obtained from VOCs and nitrogen oxides, showing a relationship between their planes.

The SO2 plane displays a unique pattern, with its highest values concentrated in the
upper right region of the map, showing no similarity with the other pollutants. The compo-
nent planes referring to meteorological parameters showed different distributions, with a
negative correlation between TEMP and RH. At the same time, the high WS values are
concentrated in the upper central region, and STWD with values dispersed throughout
the map.
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Figure 6. Unified distance matrix (U-matrix) and component planes of all analyzed variables (SO2,
CO, O3, PM10, NO, NO2, WS, TEMP, RH and STWD) from the Barros Reis station.

3.3.1. Sample Grouping with the SOM Algorithm

Figure 6 presents the clusters through the U-matrix, representing the neurons with their
distance to adjacent neurons. The cluster number was defined with the Davies–Bouldin
index by varying it from two to eight, reaching the best result for three clusters.

Subsequently, a hierarchical analysis was performed to define the neurons belonging
to the three clusters. Thereupon, the Ward criterion and the Euclidean distance were used
as similarity metrics. Figure 7 displays the dendrogram obtained with the threshold value
used for segregation. Meanwhile, Figure 8 shows how the clusters were arranged on
the map.
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Figure 7. Hierarchical analysis of the neurons clusters using the Ward linkage method and Euclidean
distance for the Barros Reis station.
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Figure 8. SOM neurons grouped into three clusters obtained by the hierarchical analysis of the Barros
Reis station.

The samples are linked to a particular neuron belonging to one of the three clusters,
allowing the analysis of the sample’s distribution regarding the clusters.

Table 11 shows the average values of every parameter according to the cluster. As can
be seen, cluster 1 represents the samples with the lowest pollutant concentration, except for
O3 which has a median value among the others. Meteorological parameters such as wind
speed, temperature, and relative humidity also have low values. In total, the cluster has
10,599 samples with these characteristics, corresponding to 49.16% of the station data.

Table 11. Parameters average values for every cluster formed by the SOM network for the Barros
Reis station.

Parameters
Parameter Average Value per Cluster

1 2 3

SO2 (ppb) 0.28 0.64 0.59
CO (ppb) 442.11 973.00 621.71
O3 (ppb) 5.42 3.03 7.07
PM10 (µg/m3) 33.31 54.00 42.13
NO (ppb) 37.54 91.22 51.88
NO2 (ppb) 10.74 20.23 15.68
WS (m/s) 1.93 1.93 4.12
TEMP (°C) 24.66 24.74 27.68
RH (%) 72.64 72.19 60.05
STWD (°) 32.73 31.04 30.19
#Samples 10,599 4183 6777

In the meantime, cluster 2 exhibits the highest concentration of pollutants, displaying a
considerable difference from the values of other clusters except for O3, which has the lowest
average value obtained. Similar to cluster 1, the wind speed, temperature, and relative
humidity also have low values. Cluster 2 has 4183 samples, equivalent to 19.40% of the data.

Finally, the samples assigned to cluster 3 have an intermediate value of pollutants
concentration, with average values between the clusters 1 and 2 range, except for O3 which
has the highest average concentration recorded. In addition, cluster 3 has 31.44% of the
station data with the highest wind speed and the lowest relative humidity.
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3.3.2. Parameter Correlation

The component planes, shown in Figure 6, present the correlation between parameters.
Meanwhile, Figure 9 presents the parameters similarity obtained using the Ward linking
method and the Pearson correlation coefficient.
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Figure 9. Parameter correlation using Ward criterion and distance 1− r, where r is Pearson coefficient,
for the Barros Reis station.

As shown in Figure 9, there is a substantial similarity between CO and NO pollutants.
Given the BR station characteristics (located in between two avenues), it can be said that
motor vehicles are the primary emission source of those pollutants. Likewise, the NO2 and
PM10 pollutants are also emitted by combustion in vehicles; in addition, they can be formed
secondarily by photochemical processes. Regarding SO2, it can be said that the primary
emission source is the burning process of fuels, such as diesel and gasoline, from heavy
vehicles such as trucks, buses, microbuses, and light vehicles.

Unlike other pollutants, the O3 showed a clear relationship with meteorological pa-
rameters such as wind speed and temperature, similar to the Itaigara station. Nonetheless,
this relationship with meteorological parameters is not strong as in other stations.

The STWD indicates the local atmospheric stability. Its inverse relationship with RH
can be related to the regions’ water molecules’ dissipation. Hence, the data regarding pres-
sure and heat could improve the analysis precision by demonstrating the influence of the
wind direction. The RH and STWD present a negative relationship with the other pollutants,
consequently leading to the non-contribution or reduction in the present concentrations.

3.4. Campo Grande Station

Figure 10 illustrates the component planes for the CG station. Concerning the planes
of nitrogen oxide, a significant similarity between NO2 and CO can be observed, with high
values concentrated in the central part of the map. The NO plane is also similar to the CO
and NO2, but the high values are concentrated in the region to the right, while median
values are concentrated in the map center. The emission source of these pollutants is fuel
combustion, especially from vehicles.

The SO2 has high values concentrated in the lower right region of the map. The PM10,
on the other hand, did not show significant pattern similarities with other planes, having a
higher concentration in the upper part of the map and moderate concentration in the lower
part, equivalent to small regions of the SO2 and NO2 planes. Likewise, the O3 pollutant also
shows no similarity with other component planes. Despite its formation, resulting from
the reaction between NO2 and VOCs, its concentration of high values is located at the map
edges, having similarities with the concentration regions of high values of meteorological
parameters, such as WS, TEMP, RH, and STWD.
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Figure 10. Unified distance matrix (U-matrix) and component planes of all analyzed variables (SO2,
CO, O3, PM10, NO, NO2, WS, TEMP, RH and STWD) from the Campo Grande station.

3.4.1. Sample Grouping with the SOM Algorithm

To identify the CG station clusters through the U-matrix, illustrated in Figure 10, the
Davies–Bouldin was used and the cluster number varied from two to eight. The best
result was obtained for five clusters. Aftward, the neurons belonging to each cluster
were obtained according to a hierarchical analysis defined based on the Ward method
and Euclidean distance. Figure 11 shows the resulting dendrogram and the segregation
threshold. Meanwhile, Figure 12 displays the neurons distribution regarding the clusters.
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Figure 11. Hierarchical analysis of the neurons clusters using the Ward linkage method and Euclidean
distance for the Campo Grande station.
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Figure 12. SOM neurons grouped into five clusters obtained by the hierarchical analysis of the Campo
Grande station.

Each CG station dataset sample was integrated into the cluster with the neuron it most
resembles. Thus, an analysis was performed regarding the samples’ distribution by cluster
based on the average values of parameters, as shown in Table 12.

Table 12. Parameters average values for every cluster formed by the SOM network for the Campo
Grande station.

Parameters
Parameter Average Value per Cluster

1 2 3 4 5

SO2 (ppb) 0.14 0.26 0.23 0.38 0.82
CO (ppb) 250.98 269.62 456.78 655.67 404.37
O3 (ppb) 6.12 7.07 6.59 4.15 5.72
PM10 (µg/m3) 20.01 23.71 17.64 24.45 22.21
NO (ppb) 15.07 18.97 30.47 56.49 24.42
NO2 (ppb) 10.34 11.12 14.33 19.15 13.12
WS (m/s) 0.89 2.70 1.40 1.36 0.94
TEMP (°C) 25.21 25.73 29.22 26.26 26.90
RH (%) 77.31 75.14 61.52 73.56 68.58
STWD (°) 57.82 42.83 53.05 50.50 52.28
#Samples 6640 4166 6223 4229 3301

According to Table 12, cluster 1 has the lowest average values of concentration for
the SO2, CO, NO, and NO2 pollutants, while the PM10 and O3 show intermediate values.
Moreover, the wind speed and temperature are the lowest of all. Cluster 1 consists of
6640 data samples, equivalent to 27.04% of the dataset.

Cluster 2 also presents low average values of the concentrations of the pollutants,
with values slightly higher than those obtained in cluster 1, except for the O3 pollutant,
which has a higher concentration average. Similar behavior can be seen for the meteoro-
logical parameters except for the wind speed, which shows the highest average among all
clusters. In total, 16.96% of the data was assigned to cluster 2.
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The samples assigned to cluster 3 present intermediate values for all pollutants con-
centration and meteorological parameters, where the temperature has the highest average
and the relative humidity the lowest. This cluster has 25.34% of the data.

The highest concentrations of CO, PM10, NO, and NO2 are found in cluster 4, with an
intermediate concentration of SO2 and the lowest concentration of O3. Meanwhile, all
meteorological parameters showed intermediate values compared to other clusters. Cluster
4 has a total of 17.22% of the data.

Meantime, cluster 5 stands out with the highest average concentration of the SO2 pol-
lutant. The other pollutants, as well as the meteorological parameters, present intermediate
average values. In total, 7.44% of the data was assigned to cluster 5.

3.4.2. Parameter Correlation

The hierarchical representation for the CG station was obtained with the Ward method
and the Pearson correlation coefficient. Figure 13 presents the parameters’ correlation obtained.
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Figure 13. Parameter correlation using Ward criterion and distance 1− r, where r is Pearson coefficient,
for the Campo Grande station.

First of all, the similarity between CO, NO, and NO2 pollutants can be seen. These
pollutants are emitted in urban areas mainly by motor vehicles, and their similarity vali-
dates the idea of a potential common emission source. The temperature is also similar to
those three pollutants as it contributes to chemical processes that form them—for example,
the NO2 results from the sunlight action on NO. Thus, the temperature can impact the
amount of those pollutants present in every season.

The PM10 is a primary and secondary pollutant, and it is correlated to SO2. Thus,
its atmospheric formation can be linked to gases turning into particles due to chemical
reactions in the air, such as sulfur dioxide. The SO2 is generated from the burning of fuels
with sulfur in its composition, such as diesel oil or industrial fuel oil, and it appears to be
related to the PM10 due to motor vehicle emissions, among other processes.

The photochemical oxidant, O3, has a certain correlation with the wind speed, but with
a much lower similarity than that presented by the Itaigara station. In addition, there is no
apparent relationship with the temperature. The RH has a negative relationship with O3
and wind speed, which may be a consequence of solar radiation; low RH concentrations are
related to a high solar incidence and, therefore, a greater disposition to the O3 formation.

3.5. Dique do Tororó Station

The SOM network component planes for the DT station are shown in Figure 14.
The pollutants that are mainly emitted by combustion processes, such as CO, NO, NO2,
and PM10 showed similar distribution patterns of values, with the highest concentration
from the left side to the upper left side of the map. In contrast, the PM10 has higher values
at the bottom of the map, similar to the temperature and wind speed.
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Figure 14. Unified distance matrix (U-matrix) and component planes of all analyzed variables (SO2,
CO, O3, PM10, NO, NO2, WS, TEMP, RH and STWD) from the Dique do Tororó station.

As in the other stations, the SO2 showed a different pattern from the other pollutants,
with regions of high values concentration at the edges of the map. However, one of the
high-concentration edges slightly coincides with those of the CO, NO, and NO2. Lastly,
the O3 displays high values at the lower right region of the map, with a similar distribution
to the wind speed plane. The other planes, such as relative humidity and STWD (which
can influence the concentration of pollutants), showed patterns with well-defined regions
at the top of the map.

3.5.1. Sample Grouping with the SOM Algorithm

The map neurons, represented by their respective distances to adjacent neurons in the
U-matrix (Figure 14), were used to visualize and determine the clusters. For this purpose,
the Davies–Bouldin index was used, and the number of clusters varied from two to eight,
resulting in the best amount with three clusters. Again, hierarchical analysis was carried
out using the Ward criterion and Euclidean distance. Figure 15 illustrates the dendrogram,
and Figure 16 the segregation borders of the map.

Figure 15. Hierarchical analysis of the neurons clusters using the Ward linkage method and Euclidean
distance for the Dique do Tororó station.
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Figure 16. SOM neurons grouped into three clusters obtained by the hierarchical analysis of the
Dique do Tororó station.

Each cluster was assigned a certain number of samples according to their characteris-
tics. Table 13 presents the concentration averages of each pollutant according to the cluster.

Table 13. Parameters average values for every cluster formed by the SOM network for the Dique do
Tororó station.

Parameters
Parameter Average Value per Cluster

1 2 3

SO2 (ppb) 0.30 0.36 0.34
CO (ppb) 245.23 342.03 130.06
O3 (ppb) 9.68 5.18 6.05
PM10 (µg/m3) 21.23 29.66 18.23
NO (ppb) 15.14 20.06 3.91
NO2 (ppb) 8.71 12.13 5.45
WS (m/s) 2.23 0.67 0.66
TEMP (°C) 26.90 27.22 24.40
RH (%) 69.65 71.88 81.69
STWD (°) 29.18 60.49 47.53
#Samples 26,101 7511 8425

As can be seen in Table 13, cluster 1 represents the samples with the highest mean
value of O3 and intermediate values of the other pollutants (SO2, CO, NO, NO2, and PM10).
The highest concentration value is the wind speed, while relative humidity and STWD are
the lowest. Cluster 1 has 26,101 samples sharing its characteristics, equivalent to 62.09% of
the station data.

The pollutants in cluster 2 had the highest average concentration, except for O3 which
showed the lowest concentration among all clusters. The wind speed presents low values,
and the temperature parameter is the highest. In total, 17.87% of data constitutes this cluster.

Finally, the pollutants in cluster 3, that is, CO, NO, NO2, and PM10, had the lowest
average concentrations, with SO2 and O 3 showing intermediate values. The temperature
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and wind speed parameters have the lowest values found and the relative humidity the
highest. Cluster 3 represents 20.04% of the station data with 8425 samples.

3.5.2. Parameter Correlation

The DT station component planes, shown in Figure 14, presents the parameters
correlation. Meanwhile, Figure 17 illustrates the parameter similarity obtained through the
Ward criterion and the Pearson correlation coefficient.

CO NO NO
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Figure 17. Parameter correlation using Ward criterion and distance 1− r, where r is Pearson coefficient,
for the Dique do Tororó station.

As can be seen in Figure 17, the CO, NO, and NO2 pollutants have the most significant
similarity, a characteristic also observed for other stations. All stations are located in urban
centers with a large flow of vehicles, leading to the possibility of a common emission
source of these pollutants, mainly coming from the local vehicular fleet. The PM10 also
showed a certain similarity with those pollutants, indicating a possible emission from fuel
burning. The temperature parameter at the DT is also related to the mentioned pollutants,
different from other stations where it is associated with O3. In addition, the temperature
can contribute to NO2 formation and PM10 in secondary processes.

Like Barros Reis station, the RH and the STWD at the DT station are somewhat similar
but with a positive coefficient. The RH and STWD can be influenced by atmospheric param-
eters such as pressure and heat and, consequently, the wind conditions and water particles.

The SO2, different from the Itaigara station, is not correlated to either the PM10
or RH, as it is probably being generated by an independent source and not reacting to
other pollutants.

Given that O3 is a secondary pollutant, it was only correlated with wind speed, with no
apparent similarity with temperature or nitrogen oxides. Therefore, its concentration at the
DT station may be transported by the wind accompanied by other pollutants.

4. Discussion

The SOM implementation presented in the previous sections identifies the correlation
among different air quality parameters for many monitoring stations. The SOM compo-
nent planes provide a visual representation of the similarities between pollutants and
meteorological parameters, simplifying their analysis and highlighting peculiarities.

Usually, the CO, NO, and NO2 pollutants were related, showing higher similarities.
On the other hand, the meteorological parameters differed from PM10 and SO2. The RH and
STWD parameters at Barros Reis station showed a negative correlation, unlike at Dique de
Tororo station, where a positive correlation was presented. At Itaigara station, the influence
of atmospheric stability was identified through the relationship between STWD and PM10.
Meanwhile, Campo grande station shows some degree of similarity between PM10 and
SO2. These relations are essential to identify the influence of meteorology on air-pollutants
concentrations and information employed to create strategies for mitigating air-pollution
critical episodes.
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Unlike other pollutants, the O3 presents a more significant link with meteorological
parameters such as WS, as seen at Itaigara, Dique do Tororó and Campo grande stations.
Thus, we can infer that the wind is mainly responsible for the transport of O3. In addition,
the correlation of the TEMP, WS, and O3 parameters at Barros Reis and Itaigara stations
indicates an increase in O3 resulting from chemical processes, probably due to the influence
of solar radiation.

The data of Dique do Tororo and Barros Reis stations were grouped only into three clus-
ters, with their cluster 1 emphasizing a large number of samples with higher concentrations
of O3. In contrast, the other clusters present a sample distribution with intermediate to high
concentrations for the CO, NO, NO2, PM10, and SO2 pollutants. Meanwhile, the Itaigara
station has four clusters, with one mainly characterized by the SO2 pollutant; the remaining
clusters are defined by higher concentrations of CO, NO, NO2, PM10, and O3. Similar to
Itaigara, the Campo Grande station has one cluster (out of five) where SO2 is predominant,
while the other clusters display low and high concentrations.

Commonly, studies about atmospheric pollutants rely on methods such as principal
component analysis (PCA) and hierarchical analysis to define clusters based on similarity.
For example, the studies carried out by [8,34] describe the clusters’ characteristics according
to the percentage of their main components’ variance, thus, indicating which variables have
more significance for their definition. Meanwhile, by applying a hierarchical classification
on the SOM neurons, we can obtain the variables’ concentration value and influence on
defining each cluster.

In the meantime, in [13,35], the number of clusters is fixed for all monitoring stations,
and the k-nearest neighbors provide a relationship between the defined clusters of each sta-
tion. However, the SOM also allows an individual characteristic analysis of each pollutant,
like in [35].

Thereby, the SOM enables finding similarities and estimating the link between param-
eters more deeply. As described in this work, the SOM can obtain data patterns and cluster
characteristics and demonstrate the parameters’ influence, which is not trivial in other
techniques. Additionally, it can also deal with the non-linearity complexity of air pollution
data [36], simplifying the analysis process and increasing its precision; this shows the
advantage of using a machine-learning-based approach compared to traditional methods.

5. Conclusions

We implemented an SOM to analyze the air-quality data of four stations in the moni-
toring network of Salvador, Brazil. A detailed discussion regarding pollutants and their
correlation with meteorological parameters is provided, assisting in estimating possible
common emission sources and the influence of meteorological parameters. The latter
permits the establishment of relations between meteorology and pollutants concentration,
which is vital for developing, for example, alert systems to identify critical episodes of air
pollution or for assisting in developing strategies to improve air quality.

The SOM outputs enabled the identification of data particularities concerning the pa-
rameters analyzed. For example, the data samples’ concentration of Dique do Tororo
and Barros Reis stations showed a cluster with a high concentration of O3. In con-
trast, the other clusters presented well-defined contributions of remaining pollutants.
The Itaigara and Campo Grande stations presented a more detailed definition regarding
the clusters of (1) CO, NO, NO2; (2) MP10; (3) O3; and (4) SO2. Thus, the SOM also allows
an analysis of the particularities of each cluster.

The results showed that the SOM could identify characteristics, describe similarities,
recognize patterns, and define clusters of air-pollution problems. Unlike traditional meth-
ods, the SOM proved to be a good tool for studying atmospheric pollutants, providing
several aspects that can contribute to and improve discussions in this area. To the best of
our knowledge, this is the first study to analyze Salvador’s air-quality monitoring database.
Therefore, the tool developed and the results presented and discussed here can assist
further studies and aid in the development of public policies for pollution management.
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