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Abstract: Pumped storage plants (PSP) must switch frequently between various working conditions.
Moreover, PSPs can fall easily into an S-shaped zone under low water head conditions, especially
during back-to-back starting (BTBS), which reduces the stability and safety of unit operation. In this
paper, a nonlinear PSP model for BTBS is established by combining an electrical subsystem with a
refined hydraulic-mechanical subsystem. The influences of the hydraulic, mechanical, and electrical
factors on the BTBS process are investigated quantitatively. Choosing the speed overshoot and speed
stable time as the optimization objectives, and considering a variety of constraints, the multi-objective
particle swarm optimization (MOPSO) algorithm is introduced to study and optimize two typical
startup strategies. The results show that: (1) The parameters of a hydraulic-mechanical-electrical
system have a significant impact on BTBS process, and the most unfavorable working condition
corresponds to the lowest water head; (2) In the control schemes, a novel constant excitation voltage
strategy is proposed based on the multi-objective optimization scheme. Compared with the constant
excitation current strategy or single-objective, the optimization strategy proposed can considerably
improve the speed overshoot and the speed stable time by at least 68.27% and 3.22% under the worst
working conditions. (3) It is further verified that the problem of trapping in the S-shaped region
under various working conditions may be avoided by the obtained optimal control scheme. The
results give prominence to the effectiveness of the proposed optimization strategy for maintaining
the safety and stabilization of PSP operation.

Keywords: pumped storage plant; back-to-back starting; low water head condition; constant excitation
voltage; multi-objective optimization; optimal control scheme

1. Introduction

In order to cope with climate change, many renewable energy sources have been
developed, such as tidal, wind, solar, and hydro energies [1]. As unstable renewable energy
is connected to the grid in large quantities and the load demand is diversified, the power
grid’s supply and demand fluctuation is becoming more serious [2,3]. As an essential
energy storage technology, a pumped storage plant (PSP) can effectively adjust the impact
of unstable energy on the power system and enhance the consumption capacity of the power
grid for unstable energy such as solar energy and wind power [4,5]. However, during the
large fluctuation transition process of the pumped storage unit (PSU), due to the influence
of the S-shaped curve of the pump turbine, the water hammer effect in the penstock of the
diversion system causes an effect similar to the rapid closing of guide vanes, and the inflow
decreases rapidly, resulting in the sharp rise of water pressure and speed, threatening the
structural safety of unit and diversion pipelines [6,7]. The above operation characteristics
and various potential operation accidents not only seriously endanger the safe and stable
operation of PSPs, but also affect the safety and stability of the power supplies.
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At present, the conventional startup mode of large PSPs at home and abroad is mainly
via a static frequency converter starting and BTBS as standby [8–10]. During variable
frequency starting, it is necessary to absorb electric energy from the power grid. If the
power grid or the frequency converter fails, the unit cannot be started in this way, but the
BTBS mode can meet the requirements well. Therefore, the experience and technology
of BTBS should be explored in the context of building a resilient power grid. Among the
numerous startup conditions of the PSU, the BTBS mode is the most complicated, requiring
the mutual cooperation of monitoring, speed regulation, excitation, protection, and other
systems of the two units, which presents an enormous challenge to the stable operation of
PSPs. However, this issue has not been fully addressed until now. Previous studies have
mainly focused on the transient electrical characteristics and electromechanical variation
law. Relevant research findings are summarized as follows:

For BTBS modelling, previous studies focus on the electrical perspective by greatly
simplifying the hydraulic and mechanical systems. The functions offered by turbine
manufacturers and obtained by model tests, which are used to describe the dynamic
behaviors among the mechanical torque, gate valve opening (GVO), and speed, have
been widely adopted [11,12]. However, these models are mostly oversimplified based on
strong assumptions in reflecting the coupling characteristics of the hydraulic-mechanical-
electrical subsystems of a PSP under various working conditions, especially the S-shaped
characteristics under low head conditions. Therefore, a nonlinear model with a detailed
hydraulic-mechanical system, i.e., the logarithmic curve projection (LCP) method for pump
turbine [13], and the method of characteristics (MOC) for conduit systems [14], has been
adopted to improve the accuracy of the BTBS transient processes simulation in this work,
which can overcome the shortcomings of the above-simplified models.

For analysis of influencing factors, Konidaris [12] systematically discussed the main
parameters’ impact on the performance of the BTBS based on the physical laws behind the
transient process. Osburn and Atwater [15] described the design and testing of a BTBS
system. The feasibility of this kind of startup is analyzed theoretically. Guidance was
developed in order to correctly select the main parameters for a successful start [16]. By
means of simulating the transient starting performance for a PSU, alternative designs and
their effects on the startup ability of the PSU for reliable improvement of the starting system
were studied [17]. Proposals were offered to achieve safe and reliable fault clearance on the
basis of the fault characteristics and actual deexcitation test results of the PSP [18].

For control optimization, there are many applications of the MOPSO algorithm in
energy systems; A. Beiranvand applied the MOPSO algorithm in the optimization analysis
of thermal power generation [19], and M. Ghazvini proposed the Coupled Multi-Objective
Evolutionary Approaches [20]. There are also multi-objective optimization cases in the field
of materials and chemicals [21,22], which give some inspiration to this paper. However,
the BTBS model is more complicated. There exists no report on the optimization of the
BTBS control scheme, and only some research on the startup strategy of PSPs under turbine
conditions has been involved. Xu et al. [23] studied the optimal control for the turbine
startup process of PSPs under low head conditions. There are hydraulic, mechanical, and
electrical interferences between two units, and more control factors must be taken into
account during the BTBS process. Moreover, BTBS generally happens during the low power
consumption period, and the upper-reservoir water storage has been exhausted during the
peak power consumption period. Thus, the PSU can more easily be under low water head
conditions and fall into the S-shaped zone.

Through reviews of relevant works, it was found that too little work has been devoted
to BTBS in the previous research, which mainly focused on the BTBS workflow or the
influence of electrical factors on the transient process of BTBS. Many other factors, such
as effects from the S-shaped characteristics, are likely to affect the transient processes of
BTBS and have not been studied. In addition, to our best knowledge, the control scheme
optimization strategy for BTBS has not been proposed in previous works.
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Accordingly, in this paper, the effect mechanisms of the hydraulic-mechanical-electrical
coupling factors on BTBS are investigated, and the optimization strategy for BTBS control
at low water head conditions is proposed. A nonlinear model for PSP by incorporating
an electrical subsystem with a refined hydraulic-mechanical subsystem is established to
conduct the study, and the effects of the electrical and hydraulic-mechanical subsystems on
the process of BTBS are quantitatively investigated subsequently. Moreover, on the basis of
the analysis of the influencing factors, a novel multiobjective optimization scheme for the
BTBS control strategy is proposed. The innovations of this paper are as follows.

(1) It is the first to establish a nonlinear PSP model combining the electrical subsystem
with the fine hydraulic and mechanical subsystems for BTBS;

(2) The effects of the hydraulic-mechanical-electrical parameters on the BTBS are compre-
hensively investigated on the basis of the model mentioned above;

(3) An innovative multi-objective optimization scheme is proposed for the control strategy
of BTBS at low water head conditions for the first time, which is proven to be suitable
for a variety of working conditions.

The remainder of the paper proceeds as follows: The nonlinear model of a PSP
with a refined hydraulic-mechanical subsystem is constructed and validated in Section 2.
In Section 3, the effects of the hydraulic-mechanical-electrical parameters on the BTBS
processes are then studied. In Section 4, an innovative multi-objective optimization scheme
for BTBS in the condition of low head is proposed on the basis of the analysis above. In
Section 5, a case study is conducted and the optimization result is also authenticated in
other working conditions. In Section 6, the conclusions of these analyses are brought forth.
Figure 1 presents the flowchart of this research.
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2. Refined Modelling of a Pumped Storage Plant for Back-to-Back Starting

The BTBS mode is also called synchronous starting mode, which uses one PSU as a
generator to provide the current with increasing frequency. The other PSU to be started is
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used as a motor, and the current with variable-frequency output by the former is used to
accelerate to the rated speed synchronously. The BTBS is affected by the coupling factors
of the hydraulic-mechanical and electrical systems. The basic form of BTBS is shown in
Figure 2.
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2.1. The Hydraulic-Mechanical Subsystem

(1) Conduit System

On the basis of hydromechanical theory, the momentum and continuity equations,
which describe the unsteady pressure and flow in penstocks, can be formulated as fol-
lows [24]:

∂Q
∂t

+ gA
∂H
∂x

+
f

2dA
Q|Q| = 0 (1)

a2 ∂Q
∂x

+ gA
∂H
∂t

= 0 (2)

The details of all variable symbols in the study are presented in the Nomenclature.
The MOC method is used to solve the above equations, considering the elasticity of the
water hammer in the penstocks [25].

(2) The Pump turbine Model

As the key equipment of energy conversion, it is crucial to model the pump turbine
accurately. At present, the characteristic curves have been widely adopted in nonlinear
modelling for pump turbines provided by manufacturers, as shown in Figure 3. The
nonlinear model can be described by (3) and (4):{

M11 = fM(Y, N11)
Q11 = fQ(Y, N11)

(3)
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characteristic curve.

As shown in Figure 3, the S-shaped area raises obstacles for the pump turbine mod-
elling, which presents a multivalued characteristic. The Logarithmic-Curve-Projection
(LCP) method [13] is proposed to convert the unit speed N11 in the way of logarithmic
projection so as to overcome the difficulty. The equation is as follows:

X = n11/eq11

n11 = N11/N11r
q11 = Q11/Q11r

(5)

The results obtained by means of the LCP method are shown in Figure 4; the LCP
curves reflect the change rule of Q11 and M11 with abscissa X. It immensely reduces the
complexity of the calculation procedure problems whether compared with the Suter or
improved Suter methods [26].

Thereafter, in a given moment, the unit moment and the unit flow are computed using
interpolation in accordance with the LPC curves.

(3) The Turbine Governor System

The governor of the PSP is comprised of a controller and servomechanism. As the
actuator of the governor, the servomechanism uses the output signal of the PID controller
to drive the guide vanes. Considering the main nonlinear factors (dead zone, saturation,
and output limiting), the whole model of the governor is shown in Figure 5.
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2.2. The Electrical Subsystem

(1) Synchronous Machine

Since it is very difficult to gain an accurate value of the original parameters of the
synchronous machine through analysis and calculation, 18 original parameters of a syn-
chronous machine are usually converted into 11 machine parameters composed of steady-
state, transient, and sub-transient parameters in engineering, which can be obtained directly
through experiments. The mathematical model of a synchronous machine expressed by
11 machine parameters includes voltage balance equations of stator winding (8), excitation
equations of stator winding (9), voltage balance equations of rotor winding (10), and a rotor
motion Equation (11) [27]. {

vd =
.
ϕd −ω

.
ϕq − Raid

vq =
.
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.
ϕd − Raiq

(6)
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ϕd = E′′q − X′′d id
ϕq = −E′′d − X′′q iq

(7)
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E
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(
X′q − X′′q

)
iq

(8)

{ .
δ = (ω− 1)ω0
Tj

.
ω = Mt −Me

(9)

(2) The Excitation System

A DC exciter is adopted, as shown in Figure 6 [28]. The primary elements of the excita-
tion system block are the lead-lag compensator, main regulator, exciter, and damping block.
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2.3. Model Validation with On-Site Measurement

The proposed PSP model is validated by a case study in this subsection. In previous
studies, in many cases the electrical subsystem model has been validated by measure-
ment [29]. Therefore, the goal of this paper is to use the model to prove the hydraulic-
mechanical subsystem.

The research data in this section are from a large PSP in Hubei Province of China,
and the topology of its regulation system is shown in Figure 7. The parameters of the
pump turbine and the generator and motor of the PSU are shown in Table A1, and the
characteristic curves of the pump turbine are shown in Figure 3. The pipeline parameters of
the diversion system that can be used for modelling after processing are shown in Table A2.
The dimensional parameters of the surge chamber are shown in Table A3. In addition, the
basic parameters of each module of the regulation system are shown in Table A4.Sustainability 2022, 14, 10289 9 of 36 
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Figure 7. Layout diagram of the considered PSP.

In this case study, PSU-2 is offline when PSU-1 begins a single-unit load rejection. The
water level of the upper reservoir is 306.98 m, and the downstream reservoir is 96.11 m, so
the gross head is 210 m. When the PSU-1 operates normally with 300 MW load, the load
is suddenly rejected. The guide vane is normally closed in 30 s. The variation waveform
of various parameters in the simulation test is shown in Figure 8. Through analysis of the
graph, the characteristic values of each parameter change are extracted and compared with
the results of field measurements. Table 1 shows the comparison results.
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Figure 8. Simulation results of PSU-1 during a single-unit load rejection. (a) Guide vane opening.
(b) Rotational speed. (c) Volute water pressure. (d) Draft tube water pressure.

Table 1. Full load rejection results of PSU-1 compared to on-site measurements.

Unit Number Category Maximum Pressure at
Measuring Point of Volute Inlet

Minimum Water Pressure at
MEASURING Point of Draft Tube Maximum Speed

1#

Measurement 299.32 m 26.6 m 140%
Refined model 297.05 m 27.9 m 136%
Absolute error −2.27 m 1.3 m −4%
Relative error −0.75% 4.88% 2.85%

As revealed in Figure 8 and Table 1, the calculation results of the full load rejection tran-
sition process achieve consensus results with the on-site measurements, which effectively
verifies the accuracy of the PSP mathematical model constructed in this paper.

3. Analysis of Factors Affecting Back-to-Back Starting
3.1. Excitation Current

The excitation system of the two units adopts separate excitation sources (grid-side
power supply or auxiliary power supply), and the closed-loop control modes of the constant
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excitation current (CEC) are adopted for the two units. After the speeds of the two units
are synchronously accelerated to 90% of the rated value, the excitation control modes are
changed to the closed-loop working modes of the constant terminal voltage. Figure 9 is an
example of successful BTBS (given excitation current i∗g = 1.2, i∗m = 0.6), while Figure 10
is an example of a failed start due to improper matching of excitation current (given that
excitation current i∗g = 0.8, i∗m = 0.5).

To explore the impact of given excitation current (i∗g, i∗m) on the BTBS process, BTBS
under different excitation currents (i∗g, i∗m) are simulated, as may be observed in Figure 11.
The range of i∗f d is [0, 2], the default values are kept for other parameters of the PSP.

In Figure 11, The blue circle within the green area means that the BTBS is successful
when the excitation current is (i∗m, i∗g). It shows that the BTBS results are altered by the given
excitation current. The excitation current of the generator and motor must maintain an
appropriate proportion to ensure successful BTBS. In particular, the proportion is affected
by the characteristics of the units, and the requirements of the excitation current for the
units are also different.
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3.2. Control Way of the Excitation System

There are usually four control modes of an excitation system: constant terminal voltage
regulation, constant excitation current regulation, constant reactive power regulation, and
constant power factor regulation [30]. However, in the BTBS process of a large PSU, the
excitation mode is usually constant excitation current regulation or constant terminal
voltage regulation.

One innovation of this paper is the discovery that the closed-loop working mode of
constant excitation voltage (CEV) (Note: not constant terminal voltage) can also realize
BTBS. Two control modes are simulated and compared. For the convenience of comparison,
only the oscillation stages before the two machines run into synchronous acceleration are
presented. The simulation results of BTBS with CEC (i∗g = 1.4, i∗m = 1.2) are shown in
Figure 12. Figure 13 shows the simulation results of BTBS with CEV (V∗g = 1.4, V∗m = 1.2).
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Figure 12. Simulation results of BTBS with CEC. (a) Excitation current; (b) Rotor speed; (c) Rotor
angle difference.
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By studying Figures 12 and 13, it is revealed that under the same initial conditions,
the oscillation in the starting process of CEC is much larger than in that of CEV. The above
physical process shows that there must be an oscillation process when the two machines
enter the oscillation stage before synchronous acceleration. The rotor circuit passively plays
a specific damping role in this oscillation process, and the excitation current will oscillate
accordingly. If the CEC closed-loop mode is adopted, the excitation current of the two
machines will be forced to remain constant, which will weaken the damping effect of the
rotor circuit. When the closed-loop mode of CEV is adopted, the excitation current of the
two machines is allowed to oscillate passively to a certain extent, which is equivalent to
increasing the damping of the rotor circuit. In this way, the excitation circuit should adopt
the closed-loop mode of CEV.
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3.3. Initial Difference between Rotor Positions

Due to the randomness of the initial difference between rotor angles of two units, there
must be an adjustment from the initial angle difference to the target angle difference, which
begins after the water pump is started. Table 2 shows the BTBS results of the two machines
under different initial angles. The variation of rotor angle difference under different initial
conditions is shown in Figure 14.

Table 2. BTBS results of the two machines with different initial rotor angles.

Initial Rotor Angel
Difference (◦) Start Time of Speed Rise (s) Rotor Angle Difference at

Steady State (◦) Description of BTBS

0 3 17.66 Successful start; Slight oscillation
−90 8 19.24 Successful start; Slight oscillation
−180 10 20.89 Successful start; Moderate oscillation
−270 10 21.19 Successful start; Moderate oscillation
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Figure 14. The influence of initial rotor angle differences between two machines.

By observing the simulation results, it can be observed that different initial rotor angles
have a certain impact on the startup time of the unit, but have little impact on the target
angle difference when the rotor angle difference is stable. With the change of initial rotor
angle difference between units, the oscillation in the startup synchronization will change
to varying degrees, but it will not affect the successful startup of the unit. Therefore, the
influence of the initial difference between rotor positions on BTBS may be ignored.

3.4. Water Head

As an important working condition parameter, the working head is also one of the
pivotal influencing factors of the hydraulic machinery transition process, which can be
roughly estimated by the water level difference between the upper reservoir and lower
reservoir. Here, the changes in water levels above and downstream represent the changes
in the working head of the pump turbine, and explore the influence of the working head on
BTBS. Therefore, based on the actual unit data of a large PSP in China and the refined model
of the PSU, the BTBS process under different working heads is simulated by numerical
simulation in this section. The actual data of the unit is as follows: the maximum working
head is 217 m, the rated working head is 195 m, and the minimum working head is 178.1 m.
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Figure 15 shows the dynamic process trajectory curve of unit flow and unit torque of the
tractor under the working head of 200 m, 195 m, 190 m, and 185 m during the BTBS process.
For the convenience of comparison, the critical multivalue points of each opening line on
the flow characteristic curve and torque characteristic curve are connected to obtain the
critical flow line and torque critical line dividing the S-shaped area, as shown in Figure 16.
The critical boundary divides the closed area consisting of 0 unit velocity line, 6.9% opening
line and 100% opening line into two parts. On the right is the S-shaped area and on the left
is the area that can work steadily.

As observed in Figure 15, with the decrease of the working head, the opening of the
no-load guide vane of the corresponding back-to-back starting tractor gradually increases.
At this time, the unit can easily fall into the S-shaped area at the working point of rated
speed. The strong nonlinearity of the pumped storage system in the S-shaped area and
the instability of the control system act upon each other, especially when the PSU operates
at 185 m head; the flow and torque in the S-shaped characteristic area fall into chaotic
operation. This dynamic characteristic will lead the unit speed to swing to and fro, leading
to a repeated adjustment of the guide vane opening. If there is no appropriate control
strategy, the BTBS process of the unit under a low water head will fail. In summary, under
the back-to-back starting condition, the lower the working head of the pump turbine, the
more unfavorable it is to the hydraulic mechanical transition process of the unit.
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3.5. Control Scheme of the Governor

The BTBS process consists of both open-loop and closed-loop control. The strategy
of slowly opening of the guide vane to a certain set point (related to the current water
head) is adopted before the rotor speed of the driving machine reaches a certain value ωs.
After accelerating to 0.9, the PID controller is put into operation in closed-loop regulation
according to the rated speed, as shown in Figure 17. The rotational speed transition curves
of BTBS are plotted at different points of starting time Ts in Figure 18. Generally, the faster
the guide vanes are opened, the faster the speeds of the units rise, but this is not absolute.
As shown in Figure 18, when the starting time Ts =15 s, the rising speed of the driven
machine is faster than the scheme with starting time Ts =10 s.
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4. Optimization of BTBS Strategy Based on Multi-Objective Control

It is evident from Section 3 that the excitation current, control way of the excitation
system, and control scheme of the governor have a marked impact on the BTBS process.
It may even be unsuccessful under the low water head combination of worse control
parameters, which is defined as the worst operating condition of BTBS. Therefore, this
paper selects the working condition under a low water head as the research object.

The MOPSO algorithm [31,32] is introduced to complete the multi-objective opti-
mization of the BTBS strategy. MOPSO is extensively used in many industries and has
outstanding performers in the control optimization of PSU due to its superiority of easy
implementation, high precision, and fast convergence [33,34].

4.1. Objective Function

In the BTBS process, the overshoot of rotational speed and the speed stable time can be
chosen to respectively represent the stationarity and the rapidity on which we focus. Thus,
the overshoot and stable time of rotational speed are included as the evaluation indexes to
optimize the BTBS strategy on the basis of multi-objective control. While both evaluation
indexes are substitutes, the velocity is more critical, so the speed overshoot of PSU-1 and
speed rise time of PSU-2 are chosen as two optimization indexes.

The two objectives are defined as follows:{
minF1 = ω1max − 1
minF2 = ts2

(10)

where ω1max is the relative value of the peak speed of driving machine PSU-1, and ts2 is
the speed stable time of driven machine PSU-2. The description of the objective function is
shown in Figure 19.
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4.2. Decision Variables

The decision variable is the parameter of the BTBS strategy. For convenience of
analysis, the speed regulation strategy adopts “one-stage guide vane direct opening + PID
control”, as shown in Figure 17. This paper studies two excitation strategies: constant
excitation current (CEC) and constant excitation voltage (CEV). Their decision variables are
summarized as follows:

• Scheme 1: The traditional CEC mode with one-stage DGVC+PID control. In one-stage
DGVC, the guide vane of the driving machine is first opened at the rate kc, and remains
unchanged when the guide vane opening reaches yc. When the speed reaches 90% of
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the rated speed, the PID controller will be put into operation. The excitation system of
the two units shall first operate with the given excitation current, and switch to the
constant terminal voltage mode when the speed reaches 90% of the rated speed. kc
generally takes the maximum rate, which is a known parameter. Therefore, the given
excitation current i∗g, i∗m, and given opening yc are selected as the decision variables in
the open-loop stage. Parameters of PID controller, Kp, Ki, and Kd, are adopted as the
decision variables in the closed-loop stage.

X1 =
[
i∗g, i∗m, yc, Kp, Ki, Kd

]
(11)

• Scheme 2: The proposed CEV mode with one-stage DGVC+PID control. Similarly,
the given excitation voltageV∗g , V∗m, given opening yc, and the three parameters of PID
controller, Kp, Ki, and Kd, are chosen as the decision variables.

X2 =
[
V∗g , V∗m, yc, Kp, Ki, Kd

]
(12)

4.3. Constraint Conditions

There are three types of constraints extracted from engineering limitations according
to our experiments in this study.

(1) Operation Time Constraint
0 < ts2 < tmax (13)

where ts2 is the stability time of PSU-2. tmax is the maximum operation time.
(2) The Boundary of Decision Variables

Xi ∈ [L, U] (14)

where Xi is the decision variables of i−th scheme; L and U indicate the lower limits
and the upper limits of the boundary.

(3) Rotor Speed Difference Between Two Machines According to the requirements of the
BTBS, the rotational speed difference between the two units shall not exceed a certain
limit value; otherwise, it is considered a startup failure:

|ω1 −ω2| ≤ ωd
max (15)

where ω1 is the rotor speed of the driving machine and ω2 is the rotor speed of the driven
machine. ωd

max is the maximum allowable rotor speed difference between the two units.

4.4. Optimization Procedures

Based on the nonlinear simulation platform of the PSP system, this study puts for-
ward two multi-objective optimization schemes of BTBS strategy, which are multi-objective
constant excitation current (MOCEC) and multi-objective constant excitation voltage (MO-
CEV). In this subsection, the MOPSO algorithm is introduced to optimize the proposed
optimization scheme under the low head condition of BTBS, because once the optimized
control schemes can be applied to poor conditions, it is able to adapt to those under normal
circumstances. Figure 20 shows the flowchart of the optimization for BTBS with main
optimized procedures.
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5. Case Study and Analysis

A real PSP in China is taken as the experimental object for the simulation analysis so
as to certify the efficacy of the proposed scheme. The layout of the power station is shown
in Figure 7. Both units participate in operation; that is, one pipe and two units operate
under BTBS conditions. Among them, 1# machine operates as a tractor under the power
generation condition of water turbine, and 2# unit operates as a driven machine under the
pumping condition of the motor.

5.1. Model Parameters Setting

As shown in Figure 7, the capacities of the two units are the same. The basic parame-
ters of the water diversion system, pump turbine, synchronous machine, governor, and
excitation system are the same as those in Section 2.3, as shown in Tables A1–A4. All
experiments in this section are carried out under the identical water head; that is, the
water level of the upstream reservoir is 291.45 m, and that of the downstream reservoir is
106.11 m. The parameters of the multi-objective optimization algorithm are set as follows:
the number of iterations is 200, the population size is 50, the initial value of the inertia
weight is 0.5, the size of the external archive is 25, the inertia weight damping is 0.99, and
the acceleration constants c1 and c2 are both 1.6. According to the analysis of experimental
experience and results, the value ranges of decision variables X1 and X2 are obtained, as
shown in Table 3.

Table 3. Boundaries of decision variables.

Decision Variables Boundaries Values

X1
L1 0.1 0.1 0.1 1 0.1 0
U1 2.0 2.0 0.4 6 1 6

X2
L2 0.1 0.1 0.1 1 0.1 0
U2 2.0 2.0 0.4 6 1 6

The multi-objective optimization results named Pareto Set need further ordering to
acquire the optimal solution that satisfies the needs of the decision-maker. Therefore, in
this section, the multi-objective decision-making method based on relative target prox-
imity is also used to sort the Pareto optimal solution set of MOCEC and MOCEV [35],
and the weight information consisting of subjective weight α, objective weight β, and
comprehensive weight γ required by the decision-making method are given in Table 4.

Table 4. The weight value of MOCEC and MOCEV schemes.

Schemes α β γ

MOCEC (0.90, 0.10) (0.53, 0.47) (0.91, 0.09)
MOCEV (0.90, 0.10) (0.63, 0.36) (0.94, 0.06)

5.2. Introduction to Comparative Experiments

In order to demonstrate the superiority of the schemes mentioned above, single-
objective optimization schemes based on the PSO algorithm are designed as comparative
experiments, which are abbreviated as single objective constant excitation current (SOCEC)
and single objective constant excitation voltage (SOCEV). The integrated time and absolute
error (ITAE) index can be obtained for each unit, as shown in Equations (15) and (16):

FITAE1 =
Ns

∑
k=1

t(k)|1−ω1(k)| (16)

FITAE2 =
Ns

∑
k=1

t(k)|1−ω2(k)| (17)
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where subscript 1 represents the variable of 1# unit, subscript 2 represents the variable of
2# unit. In order to consider the dynamic process performance indexes of the two units at
the same time, the ITAE indexes of the two units are integrated with certain weights w1
and w2 as an objective function, as shown in Equation (17):

FITAE = w1FITAE1 + w2FITAE2 (18)

where FITAE is the objective function of single objective scheme, and w1 and w2 are the
weight of ITAE index of 1# unit and 2# unit respectively.

5.3. Effectiveness Analysis

For the MOCEC and MOCEV, the optimization result is a set of Pareto optimal solution
sets. The particles in the Pareto optimal solution set are non-dominated solutions to each
other. The particles in the Pareto optimal solution set are listed in Tables A5 and A6. To
make the optimal solution satisfy the needs of the decision-maker, the decision-making
method based on relative target proximity is used to sort the particles in the Pareto optimal
solution set. The weight value of the decision-making method is shown in Table 4, so the
particle ranking is selected as the optimal solution for the multi-objective optimization
scheme. Table 5 shows the optimal solutions of the four schemes.

Table 5. Optimal decision variables of four schemes.

Variables
Schemes

SOCEC SOCEV MOCEC MOCEV

i∗g(V∗g ) 1.2331 0.6599 0.9881 0.6049
i∗m(V∗m) 0.7422 0.5413 0.6272 0.4437

yc 0.3985 0.3976 0.1924 0.1929
Kp 3.9083 4.6298 3.5060 3.5941
Ki 0.3630 0.3900 0.1000 0.1000
Kd 0.3190 0.7031 4.9311 5.0779

The optimal decision variables of the four schemes correspond to the four optimal
BTBS strategies. The transition process curves of 1# and 2# units under BTBS conditions can
be obtained by inputting the four optimal startup strategies into the nonlinear simulation
platform of the PSP, as shown in Figure 21. Due to the short adjustment time of field current
and rotor angle difference, these two parameters only show the transition process of the
first 10 s. The performance indexes of rotor speed are shown in Table 6; ∆ωmax represents
the speed overshoot, tr represents the speed rise time, and ts represents the stability time.

In Figure 21a, it can be found that the speed overshoot of single-objective schemes is
large, while the speed overshoot of multi-objective schemes is small; the speed fluctuation
of multi-objective schemes is also small and the curves are more stable. Figure 21b shows
the PSU-2′s speed transition processes of the four schemes. It can be observed that the
speed curves of single-objective schemes fluctuate more, and the speed curves of the
multi-objective schemes are more stable. Figure 21c–h shows the transition curves of other
physical quantities. In Figure 21c–d, the field current regulation processes of the four
schemes have a certain fluctuation, but the current transition process curve of the MOCEV
scheme can reach the steady state fastest and the fluctuation is the smallest. In Figure 21e,
the GVO adjustment process of the MOCEV scheme is faster and the oscillation times are
the shortest. As seen in Figure 21f, the peak value of rotor angle difference of the four
schemes is essentially the same, but the rotor angle fluctuation range of the MOCEV scheme
is the smallest. As observed in Figure 21g, the terminal voltage rise processes of the four
schemes are slightly different. The terminal voltage rise of the single-objective optimization
methods is faster than those of the multi-objective optimization methods, and the impulse
generated during voltage control switching of the CEC control scheme is smaller than that
of the CEV control scheme. By observing Figure 21h, it can be concluded that during the
BTBS under low water head conditions, the multi-objective optimization method can help
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the PSU avoid going deep into the S-shape zone, so as to avoid the repeated oscillation
of active power and falling into chaos. Therefore, from the analysis of other working
indexes of the two units, the multi-objective optimization schemes are better than the
single-objective optimization schemes.
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Table 6. Speed performance indexes of four schemes.

Indexes

Schemes SOCEC SOCEV MOCEC MOCEV

PSU-1 PSU-2 PSU-1 PSU-2 PSU-1 PSU-2 PSU-1 PSU-2

∆ωmax 0.0515 0.0518 0.0468 0.0472 2.7796 × 10−5 4.1466 × 10−5 8.7973 × 10−6 2.2633 × 10−5

tr (s) 28.20 28.18 26.84 26.82 50.74 50.74 48.86 48.84
ts (s) 90.68 90.68 99.30 99.30 60.98 60.94 59.00 58.98

For the single-objective schemes, the objective function is the weighted sum of the
ITAE indexes of two units. It can be obtained from Table 6 that the speed overshoot of 1#
unit is 4.98% and the speed rise time of 2# unit is 26.82 s for SOCEV, which is less than
the value of SOCEC, but the speed stable time of 1# and 2# unit of SOCEC are slightly
less than the value of SOCEV. For the multi-objective schemes, the objective function is
speed overshoot of PSU-1 and speed stable time of PSU-2. The speed overshoot of 1# unit
is 0.00088% and the speed stable time of 2# unit is 58.98 s for MOCEV, which is less than
the value of MOCEC. Furthermore, comparing different schemes, the speed overshoot
of multi-objective optimization schemes is much smaller than those of single-objective
optimization schemes, and the speed stable time of multi-objective optimization schemes
is also smaller. However, the speed rise time of multi-objective optimization schemes is
greater than those of single-objective optimization schemes. In addition, among the four
schemes, the speed overshoot of PSU-1 and speed stable time of PSU-2 for MOCEV are the
smallest, so it is considered that the optimization effect of the MOCEV scheme is better.

To further reflect the advantages of the multi-objective scheme MOCEV, Figure 22
shows the Pareto fronts of MOCEC and MOCEV schemes.

The Pareto front are even-distributed shown in Figure 22, and the first 25 particles
of the MOCEV scheme are non-dominated solutions. If one selects three particles from
the far left, middle, and far right for specific analysis, one could simulate their speed
transition process curve, as shown in Figure 23. In Figure 23, the speed overshoot of 1#
unit of three particles increases in turn, while the speed stable time of 2# unit decreases
in turn. Additionally, these three typical particles can help the unit avoid going deep
into the S-shaped zone, which ensures the safety and stability of the BTBS process of the
PSU under low head conditions. These three particles represent three kinds of particles.
Decision-makers may choose one of them as the optimal solution for power plant operation
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according to actual needs. There are also 25 particles in front of the MOCEC scheme, and
most of them are dominated by the particles at the front of the MOCEV. This phenomenon
also shows that the MOCEV scheme is better than the MOCEC.
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5.4. Validation of the Proposed Optimization Strategy

This section verifies the effectiveness of the multi-objective optimization method
MOCEV for BTBS conditions proposed in this paper under other conditions, and selects
different upstream and downstream water levels to form the verification conditions; the
corresponding data are listed in Table 7. The parameters of the optimization results
in Section 5.4 are respectively substituted into the refined mathematical model of the
regulation system of the PSU for the transition process simulation, and the key indicators
of the transition process are obtained, as shown in Figure 24.

Table 7. Parameters and MOCEV results under various working conditions of BTBS.

Working Conditions
Water Level

Water Head (m)
Upstream (m) Downstream (m)

N0 291 106 185
N1 295 105 190
N2 298 103 195
N3 303 103 200
N4 303 98 205
N5 308 98 210Sustainability 2022, 14, 10289 30 of 36 
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Figure 24a–c shows that, when the multi-objective optimization result is used as
the control parameter for BTBS, with the water head increases, the velocity overshoot
increases, the velocity stable time decreases first and then increases, and the speed rising
time decreases. This is because the no-load GVO under a low water head is larger. When
used for open-loop control under other water heads, the speed rise will be faster and the
overshoot will be increased. However, in order to ensure that the unit does not fall into the
S-shaped area, the integral parameter value under the low head is small, which will lead
to a longer time for the speed to reach the steady state under other conditions. Therefore,
with the increase of water head, the integral parameters can be appropriately increased to
improve the regulation quality under other working conditions. In addition, by observing
Figure 24d, it can be concluded that the control parameters optimized under a low water
head can prevent the BTBS process of the unit from falling into the S-shaped zone within
the full working condition.

6. Conclusions

A refined nonlinear model for BTBS of PSP is developed in this paper, the impacts
from the electrical and hydraulic-mechanical subsystem on the operation of PSP during
BTBS are investigated subsequently, and a novel MOCEV control strategy is proposed
accordingly. The following conclusions are drawn from the simulation results.

1. The given value and control way of excitation current, the control scheme of the gov-
ernor, and the water head have great influence on the transient process of BTBS. The
control scheme of excitation current and guide vane should be selected as the decision
variables in the BTBS optimization; the worst BTBS condition can be identified by the
lowest water head.

2. The overshoot and stable time of the speed are contradictory. The traditional single-
objective optimization scheme merely considers the single objective, which can very
easily cause the unit to fall into the S-shaped area, resulting in severe fluctuations in
speed and power.

3. Compared with the single-objective, the optimization strategy proposed can consider-
ably improve the speed overshoot and the speed stable time by at least 68.27% and
by 3.22% under the worst working condition. The optimization results show that the
multi-objective scheme is a better choice than the single-objective scheme.

4. Compared with the MOCEC scheme, when the MOCEV scheme is adopted, the
overshoot, rise time, and stable time are improved by 68.35%, 3.7%, and 3.2% in
PSU-1, and 45.4%, 3.7%, and 3.2% in PSU-2. Thus, the MOCEV scheme is superior.

5. The proposed MOCEV optimal control scheme can effectively keep away from the
S-shaped area and is verified by a real PSU.
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Nomenclature

Abbreviations
PSP pumped storage plant
BTBS back-to-back starting
PSU pump storage unit
CEV constant excitation voltage
CEC constant excitation current
LCP logarithmic curve projection
MOC method of characteristics
GVO gate valve opening
MOCEC multi-objective CEC
MOCEV multi-objective CEV
SOCEC single-objective CEC
SOCEV single-objective CEV
ITAE integrated time and absolute error
pu per-unit value
Symbols
Parameters
A cross sectional area of pipeline (m2)
a wave velocity (m/s)
bp permanent difference coefficient (pu)
D the diameter of the turbine runner (m)
d pipeline diameter (m)
f friction coefficient (pu)
g acceleration of gravity (m/s2)
Kd differential gain (pu)
Ke self-excitation coefficient of exciter (pu)
Kf damping coefficient (pu)
k0 forward amplification factor (pu)
Ki integral gain (pu)
Kp proportional gain (pu)
Ra resistance of stator winding (pu)
Se exciter saturation factor (pu)
Ta amplifier time constant (s)
Tb lead lag time constant (s)
Tc lead lag time constant (s)
x distance calculated from upstream (m)
Td differential time constant (s)
Te exciter time constant (s)
Tf damping time constant (s)
Tj mechanical time constant (s)
Ty main servomotor response time (s)
Ty1 assistant servomotor response time (s)
T′d0, T′′d0 transient and sub-transient time constants of open-circuit d-axis (s)
T′q0, T′′q0 transient and sub-transient time constants of open-circuit q-axis (s)
Xq, X′q, X′′q synchronous, transient and sub-transient reactance of q-axis (pu)
Xq, X′q, X′′q synchronous, transient and sub-transient reactance of q-axis (pu)
Variables
E′d, E′′d the transient and sub-transient internal EMF of d-axis (pu)
Efd excitation EMF (pu)
E′q, E′′q the transient and sub-transient internal EMF of q-axis (pu)
H piezometric head (m)
Ht the working head of pump turbine (m)
id, iq the current of d- and q-axis (pu)
ifd excitation current (pu)
i∗g, i∗m excitation current setting value of generator and motor (pu)
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Ka amplifier coefficient (pu)
Me electromagnetic torque (pu)
Mt the moment of pump turbine (pu)
M11 unit torque (N/m3)
N the rotational speed of the turbine (r/min)
N11 unit speed (m1/2/s)
N11r rated unit speed (m1/2/s)
Q the water flow rate (m3/s)
Qt the flow of pump turbine (m3/s)
Q11 unit flow (m1/2/s)
Q11r rated unit flow (m1/2/s)
u controller output signal (pu)
V∗g , V∗m excitation voltage setting value of generator and motor (pu)
vd, vq d- and q-axis component of the voltage (pu)
Y guide vane opening (deg)
y main servomotor output signal (pu)
ω, ω* relative and given value angular shaft velocity (m)
ϕd, ϕq the internal EMF of d- and q-axis (pu)
δ rotor angle (rad)

Appendix A

Table A1. PSP design parameters.

Parameters Values Parameters Values

Rated speed (r/min) 250 Rated capacity (MVA) 334
Rated water-head (m) 195 Rated voltage (kV) 15.75

Rated water flow (m3/s) 176.1 Rated current (A) 12,244
Power rating (MW) 306 Rated frequency (Hz) 50

Turbine runner diameter (m) 5.26 Power factor 0.90
100% guide-vane opening (◦) 43.01 Moment of inertia (ton/m2) 19,300

Table A2. Basic parameters of equivalent pipeline of diversion system.

Number Length (m) Diameter (m) Wave Velocity (m/s) Roughness

L1 1113.94 9.21 1100 0.014
L2 206.71 8.97 1120 0.014
L3 250.77 4.77 1204 0.011
L4 173.52 6.90 1161 0.010
L5 260.30 4.80 1204 0.011
L6 173.52 6.89 1160 0.012
L7 295.27 10.82 1050 0.014

Table A3. Basic parameters of surge chamber.

Sectional Area of the
Impedance Hole (m2)

Inflow Loss
Coefficient

Outflow Loss
Coefficient Sectional Area (m2) Altitude (m)

19.63 0.0009217 0.0006767
19.63 231.70~268.30

380.13 268.30~310.00
530.93 310.00~320.00



Sustainability 2022, 14, 10289 28 of 30

Table A4. Basic parameters of each module of the regulation system model of pumped storage unit.

Excitation System Synchronous Machine

Ta 0.001 Ra 0.00125 X”
d 0.2

Tb 0 Xd 1.015 X”
q 0.195

Tc 0 Xq 0.627 T’
d0 12.6

Te 0 X’
d 0.253 T”

d0 0.189
Tf 0.1 Tj 10.8 T”

q0 0.519

Ka 300 Speed Regulation System

Ke 1 bp 0.01 k0 1
Kf 0.001 Ty1 0.02 Ty 0.2

Table A5. The detailed parameters corresponding to the Pareto front solutions of constant
excitation current.

Solutions F1 F2(s) i*
g i*

m yc Kp Ki Kd

1 0.0000 61.1400 0.9805 0.6135 0.1923 3.4725 0.1000 5.1410
2 0.0000 60.9600 0.9881 0.6272 0.1924 3.5060 0.1000 4.9311
3 0.0001 60.8600 1.0098 0.6266 0.1932 3.4515 0.1000 5.0734
4 0.0002 60.3600 1.0188 0.5930 0.1938 3.6432 0.1000 5.2704
5 0.0003 60.2800 1.0329 0.6127 0.1942 3.5734 0.1000 5.1753
6 0.0003 60.2200 1.0125 0.6208 0.1945 3.5620 0.1000 5.3608
7 0.0003 60.0400 0.9989 0.6175 0.1944 3.5887 0.1000 5.1362
8 0.0004 59.8600 1.0071 0.5973 0.1949 3.5649 0.1000 5.1444
9 0.0005 59.7000 1.0080 0.6061 0.1954 3.3926 0.1000 4.9045

10 0.0006 59.3400 0.9943 0.6156 0.1964 3.5366 0.1000 5.3577
11 0.0007 59.2200 0.9977 0.6136 0.1962 3.4684 0.1000 4.9254
12 0.0007 59.1400 0.9970 0.6167 0.1970 3.4364 0.1000 5.1984
13 0.0008 59.0000 1.0160 0.6366 0.1971 3.5003 0.1000 5.0073
14 0.0009 58.8800 1.0035 0.6084 0.1968 3.3919 0.1000 4.6497
15 0.0010 58.6400 1.0143 0.6353 0.1984 3.3848 0.1000 5.1553
16 0.0010 58.5200 1.0118 0.6244 0.1980 3.3945 0.1000 4.7860
17 0.0011 58.4600 1.0115 0.6289 0.1988 3.3993 0.1000 5.1672
18 0.0012 58.1600 1.0112 0.6271 0.1997 3.3300 0.1000 5.1576
19 0.0012 57.8800 1.0027 0.6149 0.1999 3.4411 0.1000 5.2033
20 0.0015 57.7200 1.0255 0.6064 0.2001 3.2400 0.1000 4.5951
21 0.0016 57.2200 0.9945 0.6315 0.2014 3.3322 0.1000 4.9067
22 0.0018 57.0600 1.0057 0.6203 0.2022 3.2075 0.1000 4.8830
23 0.0018 56.8000 1.0073 0.6276 0.2028 3.3360 0.1000 5.0474
24 0.0020 56.7800 0.9945 0.6364 0.2038 3.3257 0.1000 5.1467
25 0.0020 56.7400 1.0045 0.6287 0.2029 3.1622 0.1000 4.6525
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Table A6. The detailed parameters corresponding to the Pareto front solutions of constant
excitation voltage.

Solutions F1 F2(s) V*
g V*

m yc Kp Ki Kd

1 0.0000 58.9400 0.6049 0.4437 0.1929 3.5941 0.1000 5.0779
2 0.0001 58.8800 0.5815 0.4172 0.1928 3.4206 0.1000 4.6254
3 0.0001 58.7200 0.5967 0.4302 0.1940 3.5515 0.1000 5.3448
4 0.0002 58.3600 0.6055 0.4150 0.1949 3.6035 0.1000 5.4766
5 0.0003 58.2200 0.5762 0.4380 0.1946 3.5755 0.1000 5.1809
6 0.0004 57.9400 0.5310 0.4862 0.1955 3.6367 0.1000 5.3869
7 0.0004 57.9200 0.5631 0.4490 0.1956 3.3992 0.1000 4.9775
8 0.0005 57.8800 0.5369 0.4775 0.1963 3.4578 0.1000 5.4568
9 0.0005 57.6000 0.5851 0.4409 0.1962 3.5772 0.1000 5.2510

10 0.0006 57.4600 0.5933 0.4596 0.1962 3.5212 0.1000 4.9430
11 0.0007 57.2600 0.6137 0.4421 0.1975 3.5201 0.1000 5.4057
12 0.0007 57.1400 0.5369 0.4708 0.1974 3.4673 0.1000 5.1295
13 0.0008 57.0000 0.5759 0.4408 0.1976 3.4549 0.1000 5.0178
14 0.0008 56.9400 0.5776 0.4511 0.1979 3.4562 0.1000 5.1085
15 0.0009 56.8600 0.5853 0.4415 0.1986 3.3694 0.1000 5.2359
16 0.0010 56.6200 0.5782 0.5092 0.1990 3.5058 0.1000 5.3278
17 0.0010 56.5000 0.5681 0.4310 0.1991 3.4715 0.1000 5.2946
18 0.0010 56.4200 0.5768 0.4593 0.1992 3.5151 0.1000 5.2587
19 0.0012 56.0000 0.5805 0.4346 0.2003 3.4980 0.1000 5.2770
20 0.0014 55.7800 0.5440 0.4646 0.2010 3.3650 0.1000 5.1138
21 0.0015 55.5800 0.5772 0.4403 0.2013 3.3715 0.1000 5.0147
22 0.0016 55.3200 0.5720 0.4422 0.2023 3.3496 0.1000 5.1389
23 0.0016 55.2200 0.5543 0.4567 0.2024 3.3941 0.1000 5.1392
24 0.0018 55.0600 0.5587 0.4434 0.2027 3.2578 0.1000 4.8341
25 0.0020 54.8600 0.5710 0.4508 0.2037 3.1818 0.1000 4.8972
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