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Abstract: Contact tracing is one of the critical tools for fighting against pandemic disease outbreaks,
such as the fast-growing SARS-CoV-2 virus and its different variants. At present, automated contact
tracing systems face two main challenges: (1) requiring application installation on smart devices and
(2) protecting the users’ privacy. This study introduces a conceptual passive contact tracing system
using indoor WiFi positioning to address these challenges and investigate the role of such a system in
commercial buildings. In this regard, this study uses a simulated small-office layout in a case study to
demonstrate the applicability of the proposed system. The special use of the proposed contact tracing
system could be academic facilities and office buildings, where (1) the WiFi infrastructure already
exists and therefore implementing such a system could be cost-effective, and (2) the same users use
the facility regularly, enabling the system to notify the users upon a confirmed case once they are
back in the building and connected to the WiFi system. Such technology can not only enhance the
current automated contact tracing system in commercial buildings by illuminating the need to use
smartphone applications while protecting users’ privacy, but could also reduce the risk of infection in
indoor environments. The developed system can benefit facility managers, business owners, policy
makers, and authorities in assisting to find occupants’ high-risk contacts and control the spread of
SARS-CoV-2 or similar infectious diseases in commercial buildings, particularly university campuses
and office buildings.

Keywords: contact tracing; COVID-19; commercial buildings; WiFi positioning

1. Introduction

The COVID-19 outbreak has changed different aspects of the routine lives of individu-
als during the last two years. COVID-19 is a rapidly spreading infectious disease caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A total of 4.0 mil-
lion cases and 143,000 COVID-19-associated fatalities have been reported in the United
States as of 25 July 2020 [1]. Beyond the health and human tragedy of the coronavirus,
it is now widely recognized that the outbreak triggered the most severe economic crisis
since World War II. To prevent the spread of SARS-CoV-2, many cities, states, and countries
“locked down”, restricting economic activities in non-essential sectors, such as schools and
office workplaces [2]. Closing workplaces significantly shrinks the economic output of
locked-down regions [2]. In order to safely reopen workplaces in such a condition, it is
necessary to implement precautionary actions to avoid the transmission of the virus and
track potential transmissions.

It has been proven that person-to-person contacts are the main source of SARS-CoV-2
transmission, especially between people who are physically close to each other (within
about six feet) [3]. In addition, according to the Centers for Disease Control and Prevention
(CDC) [4], people who are infected but do not show symptoms can also spread the virus
to others. Therefore, recent studies assert that contact tracing and quarantining contacted
people can be as effective as vaccination in controlling the COVID-19 pandemic and helping
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other people to be protected [5]. In this situation, a reliable contact tracing system (CTS)
could allow individuals to keep track of people’s contacts and notify people at risk in social
environments. Such a system can detect and inform potentially infected individuals who
have made close contact with confirmed cases; therefore, they can start a self-quarantine
procedure. The contact tracing system is not only a crucial approach to the COVID-19
outbreak, but it can also be an important system used in similar future pandemics.

In recent years, many studies have utilized new forms of technology for medical
purposes in indoor environments. For instance, Sodhro and Zahid proposed a cost-effective
framework based on 6G technology and fuzzy-based algorithms in order to provide an
e-healthcare system. Since 6G technology allowed artificial intelligence (AI) to be used for
intelligent healthcare, the current study uses this technology to monitor the health condi-
tion of users [6]. The majority of workplaces (e.g., offices) are located inside commercial
buildings. Developing an automated contact tracing system in an indoor space can cause
many challenges since GPS technology might not operate efficiently in an indoor environ-
ment. At present, the developed automatic contact tracing systems use proximity-based
technologies, such as Bluetooth. However, such technologies have limitations, making
them unsuitable for constructing a desirable and sustainable contact tracing system. For
instance, the users may not always want to turn on their smart devices’ Bluetooth because
of battery drainage. Moreover, such systems need an additional application to be installed
on all users’ smart devices (i.e., smartphones). Many users may not be willing to install the
application on their smart devices because of privacy issues. In such a situation, indoor
positioning technologies can be a valuable tool for the purpose of contact tracing. Indoor
localization techniques have been used in buildings for various purposes. In this regard,
Filippoupolitis et al. [7] used Bluetooth low energy (BLE), a smartphone application, and
BLE beacons along with applying three machine learning algorithms (k-nearest neigh-
bors, logistic regression, and support vector machines) for detecting occupants in order
to employ the emergency management of buildings. Therefore, the main purpose of this
system is related to building emergency management. In a similar study, Tekler et al. [8]
used BLE technology and BLE beacons to monitor and track the occupants in office spaces.
Thus, this study highlights tracking occupants in office spaces as one of the main goals
of indoor localization systems. The main difference between this study’s approach and
the previous study is that in this study, the authors do not use smartphone applications
for data gathering and their system works based on collecting devices’ MAC addresses
directly, without interrupting the occupants. Natarajan et al. [9] investigated different
occupancy detection and localization strategies that used the Internet of Things for home-
energy-management systems. Accordingly, wireless detection systems, such as Bluetooth
and WiFi, were the main technologies that were used for this purpose. In another study,
Abolhassani et al. [10] introduced a WiFi-based occupancy system to improve residential
building energy simulation. In this research, the authors used WiFi data to investigate
occupants’ behaviors in buildings. They simulated building energy consumption based on
the occupants’ behavior patterns using different machine learning algorithms and Energy-
Plus software, highlighting occupant behavior as another application of indoor localization
technologies. Similarly, Zhou et al. [11] introduced LT-WiOB, which is a cost-effective
WiFi-based occupant behavior system that investigates the occupants’ behavioral patterns
in indoor environments. This system was tested to estimate the rate of energy consumption
in buildings. According to the results, the best overall accuracy of this system was 96.1%.
Therefore, WiFi indoor positioning is one of the most used indoor positioning technologies
to accurately detect users’ positions. In addition, commercial buildings (such as univer-
sity campuses, office buildings, and hospitals) usually have central WiFi infrastructures.
A WiFi position system can be set up to track WiFi-enabled smart devices without any
additional application. Therefore, the application of indoor WiFi positioning could be
efficient and preserve privacy in developing automated contact tracing systems in such
commercial buildings.
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The WiFi positioning technique has been used for tracking occupants and goods in
indoor environments for several years. Thus, previous studies applied this technique to track
occupants and goods for various reasons, such as controlling HVAC and lighting [12,13] in
buildings. However, none of these studies used this WPS for finding occupants’ contacts
in order to control infectious diseases. This paper introduces a conceptual, passive, contact
tracing system for commercial buildings using indoor WiFi positioning technology. This
study contributes to the body of knowledge by (1) introducing a privacy-preserving contact
tracing system based on indoor WiFi positioning to enhance automated contact tracing in the
built environment, and (2) investigating the role of such a system in reducing the number of
infected cases in shared public environments, such as office spaces. In other words, this study
suggests a contact tracing framework based on WPS, which does not need any additional
application to be installed on users’ smart devices. Therefore, it is able to track users’ contacts
in a non-intrusive way. Additionally, this study provides a case study to show how a reliable
contact tracing system can prevent occupants in small offices from being infected and its effects
in a public indoor environment. This system can be implemented in commercial buildings,
especially university campuses and office buildings, to help authorities find occupants’ high-
risk contacts and control the spread of SARS-CoV-2 or similar infectious diseases.

The remainder of this article is structured as follows: first, a comprehensive literature
review is conducted on the existing contact tracing systems, their features, and their
limitations. In addition, different WiFi positioning techniques are investigated to evaluate
their applications and limitations in the built environment. Then, a passive contact tracing
framework is proposed based on a selected indoor WiFi positioning technology to improve
the current contact tracing system in commercial buildings by illuminating the need to use
smartphone applications while protecting users’ privacy. Then, the introduced framework
is applied to a simulated small office for validation. Finally, the results are summarized,
and the limitations of this study and future research directions are described.

2. Related Works

This section further discusses the contact tracing application and current contact
tracing systems related to the COVID-19 disease. In addition, it investigates previous
studies on WiFi positioning systems regarding the techniques, accuracies, and applications.

2.1. Contact Tracing Systems

Contact tracing has been crucial in controlling several disease outbreaks, notably SARS,
MERS, and Ebola [14]. A contact tracing system is a tool to assist in determining if a person
has been in contact with another infected person. Many studies have considered contact
tracing technologies in recent years. However, this topic came to view last year, mainly
because of the COVID-19 pandemic. It was indicated that close contact is one of the primary
sources of SARS-CoV-2 transmission [3]. Thus, contact tracing can help break the chain of
virus transmission. The success of contact tracing for interrupting chains of transmission of
SARS-CoV-2 and reducing COVID-19-associated mortality relies on the effective quarantine
and isolation of contacted individuals. Quarantine refers to the separation of individuals
who may have been exposed to the virus but are currently pre-symptomatic, and is distinct
from the isolation of symptomatic or confirmed cases [14].

Contact tracing systems aim to warn people who have been in contact with an infected
individual to break transmission chains through quarantining [15]. Contact tracing sys-
tems have been applied to create a social network that includes individuals’ contacts [16].
Generally, a contact tracing system has three steps: (i) identifying the contacts, (ii) listing
the contacts, and (iii) contact follow-up. The first step identifies those with whom a person
has been in close contact. The second step identifies a list of possible in-danger individuals
who have been in close contact with a confirmed, infected case. The last step informs
the in-danger individuals for quarantining purposes and performs a follow-up procedure.
There are two main practices for contact tracing: manual and automated (the latter is also
called digital). Manual contact racing is a slow and inefficient process. In such a system,
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when a person is diagnosed with the virus, a health inspector interviews him to track
his recent contacts. Those people are then notified to stay in quarantine and take tests.
Conversely, digital contact tracing uses different technologies to track the contacts and send
notifications to potentially infected people by automating the contact tracing procedure.

Many technologies have been used to create an automated contact tracing framework.
The new generation of mobile networks, such as 5G, allows mobile operators to track users’
movements and find their contacts. In this regard, contact tracing can be implemented
using mobile network data [17]. The accuracy of this technology is about 140 m, making
it a good solution for large-scale contact tracing. Location-based technologies can also be
used for contact tracing. In outdoor environments, global positioning system (GPS) can
be a reliable tool for contact tracing [18]; however, this technology has several limitations
in indoor environments due to the presence of walls and furniture, which do not allow
this system to accurately transmit and receive data. Bluetooth-based proximity tracking
technology has been mainly used for indoor contact tracing [19]. Bluetooth-based contact
tracing systems use the received signal power from nearby devices. Since this technology
does not need to disclose a person’s absolute location, it can provide desirable privacy.
However, this technology requires additional applications to be installed on smart devices
of all individuals to be effective. On the other hand, it may result in the rapid depletion of
the smart device’s battery, making it a challenging tool to be used by users voluntarily [19].

Different technologies have been utilized by various countries and Big Tech compa-
nies to develop their contact tracing framework during the COVID-19 pandemic. Israel
considers mobile phone location data in order to track people suspected to be infected with
COVID-19. It is a reliable governmental contact tracing system. However, it might create
privacy issues for the users because the government can access users’ private information,
such as the record of places they have visited [20]. The first country that used a smartphone
application based on Bluetooth technology for contact tracing was Singapore. In such a
system, devices that had been in close contact are detected. If a user tests positive for
the coronavirus, the application enables potentially infected individuals to be informed
about further instructions [20]. In addition, “CA NOTIFY” is a Bluetooth-based contact
tracing smartphone application that was developed in California, United States. Although
CA NOTIFY claims that it will not share any information about individuals, this system
still needs an application to be installed on smart devices and Bluetooth to be turned
on [21]. The other countries that developed Bluetooth-based contact tracing applications
are Austria and Australia [20]. Furthermore, Altuwaiyan et al. [16] introduced an efficient
privacy-preserving contact tracing system to detect infection, which is based on short-range
wireless proximity technology and performs contact tracing to provide fine-grained in-
formation about human-to-human interaction information. This system uses both WiFi
and Bluetooth to receive signals and convert them into distance, which allows the system
to detect the users’ contacts. Despite the system’s accuracy, this framework needs to use
WiFi and Bluetooth data simultaneously, which might not be cost-effective and can deplete
batteries. More information about the application of COVID-19 contact tracing in different
countries can be obtained from the study of Ahmed et al. [22].

Despite the significance of the developed, automated, contact tracing systems, two
main challenges have not yet been addressed: preserving privacy and the need for in-
stalling applications on smart devices. As it was previously mentioned, most of the current
contact tracing systems work based on smartphone applications, which require installa-
tion on users’ smartphones and need further information from users [23]. Under such a
circumstance, these systems cannot completely protect users’ privacy [24]. Additionally,
the need for interactions between smartphone applications in different contact tracing
systems (e.g., Bluetooth-based contact tracing systems) may deplete the smart device’s
battery. Therefore, this study aims to address these challenges by introducing a passive
contact tracing system based on WiFi indoor positioning. Applying a WiFi positioning
approach to developing a contact tracing system would eliminate the need for required
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smartphone applications in contact tracing and protect users’ privacy, as it does not require
the users’ identification information.

2.2. WiFi Positioning Systems

In recent years, the WiFi positioning system (WPS) has found more and more applica-
tions in many spheres, including the built environment. It is used not only outside, but
also inside buildings where GPS navigation cannot work effectively due to signal blocking.
The WiFi-based indoor positioning system defines coordinates using WiFi access points
(APs) to transmit certain data. Using the received signal strength (RSS) and media access
control (MAC) address of WiFi-enabled devices, the system can precisely define the current
location of the user’s device. At present, almost all people carry smart devices, especially
smartphones, which can easily connect to WiFi systems, making WPS a reliable method for
finding and tracking indoor positions in the built environment. Indoor WiFi positioning is
becoming more popular nowadays because of its cost-effectiveness [25].

2.2.1. WPS Techniques

Several techniques have been used to develop WPS to estimate indoor positions. There
are two categories of WPS techniques, active and passive, according to whether the user
carries specific smart devices. The active positioning system, which is the most commonly
used WPS, refers to when the user needs to carry mobile devices to actively search and
collect nearby APs signals. Accordingly, the signals obtained from APs can be collected
and directly transmitted to a server, which can find the users’ positions using different
positioning algorithms. In contrast, the passive positioning system refers to when the user
does not need to carry any equipment, but the signal transmitter and receiver need to be
deployed. In this case, there is a positioning area, and if the user enters this area, he/she
will affect the propagation of the signal. Consequently, the receiver receives different signals
when the user moves from one point to another, and it can find the user’s positions based
on the signal fluctuation [26]. Although the passive positioning system can be effectively
used on many, specific occasions, such as the real-time positioning of criminal individuals,
this study only focused on the active positioning system because of its application in indoor
positioning and its potential for developing a contact tracing system.

There are two types of active positioning systems: (1) range-based localization tech-
nique and (2) fingerprinting technique. The range-based localization technique utilizes RSS
data between a smart device and an AP to estimate the position based on lateration and
angulation methods [26]. The main idea of lateration estimation is to calculate the distance
between the smartphone and AP using geometry and signal measurement information,
such as the time of arrival (TOA), time difference of arrival (TDOA), and angle of arrival
(AOA), of the incoming signals from Aps [27]. To calculate users’ positions via this tech-
nique, three distance measurements are required. However, this technique suffers from
non-line-of-sight (NLOS) multipath signals because of the presence of walls and furniture,
and also the movements of people.

The fingerprinting technique uses RSS data obtained from multiple APs in two phases:
offline and online. In the offline phase, a rectangular set of grid points is assigned to the
entire area of interest, and a site survey is conducted by recording the RSS from at least three
APs at each point, which is then stored in a database named the radio map. Subsequently, in
the online phase, the smart device gathers the RSS from the APs and sends it to the server to
compare the predefined fingerprint of the offline phase with the RSS data in the online phase
in order to estimate the location on the grid map [27]. Different machine learning algorithms
are suggested and used in order to compare offline and online data, such as k-nearest
neighbors (KNNs) [28], weighted KNN [29], neural network [30], recurrent neural network
(RNN) [31], and Naïve Bayes [32], among others. The positioning algorithm and the quality
of observations can impact the performance of these positioning techniques. Because of the
limitation of single WiFi methods and to enhance the accuracy of positioning estimations,
many hybrid methods have been introduced in fingerprinting techniques. In hybrid
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methods, the fingerprinting technique is combined with proximity-based technologies, such
as Bluetooth, to improve the accuracy. For example, Xiang et al. [33] used different sensors
and combined WiFi with temperature, humidity, and light data to enhance positioning
accuracy. Moreover, Antevski et al. [34] combined WiFi with Bluetooth to estimate the
positions of study groups in smart libraries. In addition, Zirari et al. [35] proposed a
combined positioning algorithm that works based on WiFi and GPS. The major advantage
of the fingerprinting technique is its resistance to multipath signals compared to lateration
and angulation. Conversely, the major disadvantage is the time required to set up and
maintain the training fingerprint database [36].

2.2.2. The Accuracy of Indoor Positioning Technologies

Despite the advantages and disadvantages of each WPS technique, the application
of each system significantly depends on the accuracy of estimating positions. Several
studies have compared and enhanced current WPS technologies’ accuracy in recent years.
Table 1 summarizes the measured accuracy of different WPS techniques highlighted in
the recent literature. It has to be mentioned that studies use two main ways to report
the accuracy results: (1) indicating the average distance that their system can work with
negligible errors, and (2) indicating the percentage of correct predictions. As Table 1 illus-
trates, fingerprinting-based WPS presents more accurate results than other WPS techniques
because they can reduce the errors of signal disruption due to the walls and furniture in an
indoor environment. Furthermore, WiFi technology takes advantage of other technologies
because it not only does not need any additional application on smart devices (such as
Bluetooth technology) or hardware (such as RFID tags in RFID technology), but it also
does not consume too much battery life of smart devices (such as Bluetooth technology). In
addition, the accuracy of each fingerprinting-based WPS depends on the machine learning
algorithm that they used. Therefore, different fingerprinting-based studies obtain results
with different accuracies based on the calculation algorithm used. As Table 1 illustrates,
the fingerprinting technique could reach a positioning accuracy of 1–2 m in indoor envi-
ronments. According to the European Centre for Disease Prevention and Control [20], the
distance accuracy of 2 to 3 m could be an appropriate measure for developing a reliable
contact tracing system in the case of COVID-19, making the fingerprinting technique a
candidate tool.

2.2.3. Application of WPS in the Built Environment

The WiFi positioning system has been used in the built environment for several
purposes, including counting the number of occupants, energy efficiency, tracking an asset,
measuring the occupants’ stay times, and emergency evacuation.

Counting the number of occupants is essential for building monitoring and manage-
ment. The use of WPS for counting the number of occupants can help control people in
specific places and monitor their entry and exit [30,50–53]. In addition, WPS can be a good
alternative for counting people inside the building, such as shopping centers, airports, and
hospitals [54]. In this case, previous studies used different sensors, such as cameras, to
accurately validate and develop their WiFi-based occupant-counting systems in indoor en-
vironments [55]. Increasing the enrollment of students in schools and universities requires
an accurate monitoring of the presence of students in classrooms, which cannot be effective
using traditional methods, such as manual counting. Therefore, another application of
WPS is to detect and monitor the presence of students in classrooms [56].

Moreover, detecting occupants in buildings can help to monitor building energy con-
sumption with more ingenious methods. In this regard, WPS can help reduce building energy
consumption based on occupants’ locations by providing a smart HVAC control [12,57] or
smart lighting control [13]. Tracking an asset is another goal of WPS in an indoor environment,
where GPS cannot work efficiently. Therefore, WPS can be an efficient substitute for GPS in
tracking objects [36] or humans [34] in indoor environments [30]. Furthermore, labor tracking
is one of the critical parts of construction sites. In this case, WPS can help track laborers
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and even assets in construction sites [58]. Tracking old adults who have health problems
and need help is another use of WPS, which allows people to monitor them and track their
movements [59]. Once the location of an asset is detected, the stay time duration can also be
measured. Stay time duration can not only be useful in monitoring crowds in public places
(such as libraries), but can also help to enhance the efficiency of employees in their office.
Another application of WPS is in smart building control. As many buildings have experienced
a transition to smart control from traditional monitoring based on the improvement of the IoT,
WPS can help such buildings to be monitored in this new way. For instance, WPS can be used
to smartly monitor HVAC systems to minimize the energy consumption of buildings [60].

Table 1. Summary of accuracy reports on different positioning technologies.

Technique Type Reference Algorithm Accuracy (m) * Accuracy (%) **

Fingerprinting

WiFi Only

[29] WKNN 4.805 m -

[37] WDCI-KNN less than 2 m -

[28] KNN 6.4 m -

[30] Neural Network 1.385 m -

[27] kJBD 0.865 m -

[27] KLMvG 0.99 m -

[31] RNN - 82.47%

[38] GA/KTCC/CNN 1.42 m 79.5%

[39] M-FRNN - 80%

[40] Decision Tree 1.60 m -

Hybrid (WiFi + Sensors) [41] - 2.3 m -

Hybrid (WiFi + Bluetooth) [34] K-Means/PCA - 94%

Hybrid (WiFi + Environmental Sensors) [33] Naïve Bayesian 1.19 m -

Range-based

TOA
[42] Trilateration 1–6 m -

[43] Lateration 3–6 m -

AOA
[44] Angulation 3.7 m -

[45] Angulation 2.54–4.00 m -

- Bluetooth Low Energy (BLE)
[46] SVM - 64–89%

[47] K-Means - 60–91%

- RFID
[48] Trilateration/Proximity

Analysis 0.2–10.7 m -

[49] Monte Carlo 2–10 m -

* Accuracy based on distance (m). ** Accuracy based on correct prediction (%).

In addition, WPS can also provide a valuable system to enhance evacuation man-
agement in buildings by detecting the occupants’ positions in the case of an emergency
evacuation [61,62]. Additionally, other studies showed that the combination of smart
systems, such as WPS, with traditional systems, such as pedestrian dead reckoning (PDR),
would be more effective during severe disasters when only a few APs are available [63].
Using WPS without knowing the exact location of APs is another application of WPS in the
evacuation that was investigated by Ohta et al. [64].

University campuses and large office buildings widely use the application of WPS.
Such buildings usually contain facilities with central WiFi infrastructures and a high number
of APs distributed in the buildings. Therefore, WPS has been widely used in university
campuses and office buildings for different purposes. Table 2 summarizes the recent studies
that used WPS in a university campus.
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Table 2. Summary of the use of WPS in university campuses.

Reference University Country WPS Technique Purpose

[28] Koya University Iraq Fingerprinting Locate smartphones

[50] University of Manitoba Canada Hybrid (WiFi + Sensors) Enhance building energy
efficiency

[65] University of New South Wales Australia Fingerprinting Estimate the number of
occupants

[34] Politecnico di Milano Italy Hybrid (WiFi + Bluetooth) Create study groups in
smart libraries

[36] Vienna University of
Technology Austria Fingerprinting

Develop smartphone-based
university library

navigation and information

[51] Florida International
University USA Fingerprinting

Detect occupants and
real-time occupancy

monitoring

[66] Delft University The
Netherlands Fingerprinting Estimate different positions

3. A Conceptual Framework for Contact Tracing

Although proximity-based technologies have displayed promise in developing contact
tracing systems in an indoor environment, they include their limitations (e.g., preserving
privacy and the need for installing applications on smart devices). The development of
WiFi infrastructures in commercial buildings allows WPS to be used in fighting against
contagious diseases by developing a contact tracing system that addresses such limitations.
The particular use of such a tracing system is in academic facilities and office workplaces,
where the same users use the building regularly. In the proposed contact tracing system,
WPS is used to measure occupants’ locations and stay time durations passively using their
WiFi-enabled smart devices and without using any application. The system only needs the
user to be connected to the WiFi system, which is common in such commercial buildings.
It should be noted that this study focused on active WiFi positioning techniques, and
the term passive, used to describe the contact tracing system, is not related to any WiFi
positioning technique.

This section describes the proposed conceptual framework to use indoor WiFi posi-
tioning in developing a passive contact tracing system for commercial buildings, which is
based on an initial model presented in [67]. Figure 1 illustrates the three main phases of
establishing such a system: phase 1 to set up and configure WPS for the purpose of contact
tracing; phase 2 to design an algorithm for storing data and tracing dangerous contacts
using WPS output; and phase 3 to develop a notification system to send the required
instructions to potentially infected users without identifying them. In this section, phases
and related steps to achieve the goal of each phase are provided.

3.1. Phase 1: WPS Setup and Configuration

The first phase of the framework was to set up an indoor WiFi positioning system in the
building. The fingerprinting technique, one of the most advanced WPS technologies, can
measure the user’s position with just the presence of several APs and a reliable calculating
algorithm. In order to make sure that APs cover all the effective areas of the building,
various techniques can be used to find the optimal number of APs and their correct places.
For example, the genetic algorithm-based model developed by He et al. [68] was used to
estimate the optimal number of APs in an indoor space according to the genetic algorithm.
They indicated that when the size of the target area increased, the number of APs had to
be increased (as an example, if 3 APs provide enough accuracy in an 8 m × 16 m area,
a 32 m × 32 m area requires at least 8 APs to obtain targeted accuracy). In addition, the
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optimization model developed by Zhao et al. [69] was also applied to estimate the optimum
position of the APs for accurate WiFi-based positioning. They indicated that APs had to
be placed around the site in a “zigzag” pattern rather than a straight line, if researchers
needed to obtain the best performance from such a system. Moreover, Farkas et al. [70]
introduced a simulated annealing-based method to achieve a good approximation of the
optimal solution for obtaining APs’ locations. This algorithm assisted in placing the APs to
perceive the signal of at least three reference APs everywhere in the given indoor territory.
In the case of retrofitting a building with an existing WiFi infrastructure to implement the
proposed framework, close attention should be paid to the APs and their positions in order
to optimize the accuracy of the results. The optimum number and location of APs can be
observed in [69,70].
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After the optimal number of APs and their optimal locations are determined on
the building for WiFi positioning, a fingerprinting-based positioning technique can be
implemented to record the position of WiFi-enabled devices in the area. In the offline phase,
some reference points (RPs) should be defined in the area. As Figure 2 shows, the position
of each RP has to be defined (on the x–y axes), and the intensity of RSS data between each
RP and AP should be measured. The RPs’ positions and RSS data intensity are used to
develop a radio map (dataset) at the end of the offline phase, which is used in the online
phase to measure the users’ positions. The radio map is an essential part of this system
that needs to be implemented before the system is online. This is an essential part since,
without a radio map, the accuracy of the system in determining the real-time positions
will be questioned. Such a requirement may significantly impact the scalability of the
proposed framework. However, creating a radio map is a one-time process for each indoor
environment, making this system preferable in smaller-scale environments. When RSS data
are received from an unknown user in the online phase, the system can use an appropriate
algorithm to compare the radio map data with the unknown user data to estimate the best
match position. As previously mentioned, algorithms, such as WDCI-KNN [37], neural
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network [30], kJBD, and KLMvG [27], can provide enough accuracy to be used in contact
tracing systems. The system can accurately estimate the users’ positions, based on the
smart device’s unique MAC address in the online phase.
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Figure 2. A schematic view of the fingerprinting technique (The dots show the reference points).

The use of unique MAC addresses to highlight the users can protect their privacy due
to the fact that no identifying information is gathered. These MAC addresses are used later
to inform the users about their dangerous contacts. If implemented correctly, such a system
can estimate the position of each smart device within the building with an accuracy of less
than 1 m.

After successfully installing the WiFi positioning system setup and implementing the
radio map, the radio map dataset (which consists of RSS data of each reference point) and
real-time RSS data of each MAC address (which belongs to each smart device) are used
as inputs for this phase. Then the system applies the chosen algorithm and provides the
real-time position of each MAC address. Thus, the output of this phase is the real-time
position of each MAC address.

The main limitation of this system is a new technology called MAC randomization.
MAC randomization is a process that hides the MAC address of a device by generating
and assigning an artificial random MAC address in its place whenever the device tries
to connect to an AP. MAC randomization helps to ensure the privacy of mobile devices
by concealing the original MAC address, making it significantly harder to track a device
based on its MAC address. This feature has been implemented on iPhones with iOS 14 or
later, and may also be implemented in Android devices soon. However, this feature can be
manually disabled by users on any device. In this regard, Figure 3 indicates the process of
detecting the real-time positions.
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3.2. Phase 2: Data Storage and Contact Tracing

In the second phase, the positioning data are stored, and the users’ contacts are
extracted. In this regard, to define a reliable contact tracing process, it is essential to
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systematically collect and store the required data. High-risk contact with a confirmed
infected individual, which can cause another person to become a suspected COVID-19 case,
is considered to take at least 15 min to detect in a specific zone [20]. Moreover, a confirmed,
infected individual has the potential to infect other individuals approximately five days
before the symptoms have emerged, which makes a five-day quarantine necessary [4].
In order to locate the suspected COVID-19 cases, different space zones can be defined in
the building layout. A zone is an indoor space where confirmed, infected users have the
potential to contact other users and make them suspected COVID-19 cases (e.g., classrooms,
offices, and libraries). Once the zones are defined in the buildings, users’ high-risk contacts
can be collected based on the positions and duration of the contacts. These data can
be stored by users’ unique MAC addresses in a real-time dataset and can be eliminated
after every five days for privacy issues and to avoid creating large datasets. It should be
mentioned that some users may have more than one WiFi-enabled device, which can create
some limitations for such a system [30], because the system considers these additional
devices as unique users and register their data to the system. However, in the proposed
contact tracing system, a user’s multiple smart devices would not impact the outcome
since each device can be assumed to be a separate user who regularly contacts others. The
system tries to send notifications to all devices in a positive-COVID-19 case.

A search algorithm was developed to convert the positioning information into a
contact tracing dataset. The algorithm, presented in Figure 4, is able to find high-risk
contacts to generate a network of MAC addresses. First, it takes advantage of positioning
data to locate all the high-risk contacts. Subsequently, if any user is diagnosed or shows any
symptoms of COVID-19 on a specific date (i.e., tested positive for COVID-19), the system
is able to detect every high-risk contact in the past five days. The system can provide
high-risk contacts of a specific MAC address, the location of contacts, and the date and time
of contact. The suspected COVID-19 cases are to be identified by the end of this procedure.
In other words, the system receives each MAC address position (based on its date and time)
and also the updated list of confirmed COVID-19 cases (based on the MAC addresses) as
inputs. Subsequently, it applies the 15 min constraint to the contacts. Therefore, the outputs
of the system at the end of this phase are the high-risk contacts of a specific MAC address,
the location of contacts, and the date and time of contact.
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3.3. Phase 3: Users Notifications and Instructions

In the third phase, a process was developed to notify suspected COVID-19 cases
when they reconnected to the WiFi system. The proposed contact tracing system identifies
each user by his unique MAC address. The system is also able to let the users take the
COVID-19 test voluntarily, using only their MAC addresses as their identification code
instead of their name or other information. According to the second phase, whenever a
user’s COVID-19 test is positive, their device’s unique MAC address can be determined.
Then, using the created contacts network, their high-risk contacts in the past five days
can be obtained and marked as suspected COVID-19 cases. Finally, since it is possible to
send messages to WiFi clients who are connected to a specific WiFi network [71], once the
suspected COVID-19 cases are reconnected to the WiFi system, notifications can be sent
to their devices using their MAC addresses to inform them about the risk involved and
provide them with guidelines for starting the self-quarantine procedure without identifying
them. This process can be performed using emergency alert systems, such as wireless
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emergency alerts (WEAs) [72], which governments have used during special disasters (such
as floods or storms) to send notifications to people. Therefore, high-risk MAC addresses
can be targeted, and emergency notifications can be sent to them by such an alert system.
Thus, the final output of the system is notifying the suspected COVID-19 cases and sending
them the required procedures for self-quarantine. In this regard, Figure 5 presents the
process of sending notifications.
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It should be noted that the entire procedure, from locating occupants’ positions to
notifying the individuals exposed to COVID-19, is based on smart devices’ unique MAC
addresses to preserve the users’ privacy. The system’s privacy rules ensure that the users
would neither be subjected to further investigations related to COVID-19, nor would they
be forced to endure mandatory self-quarantine by the system. The designed procedure can
not only prevent the spread of the COVID-19 disease, but can also inform the users in a
timely manner to take appropriate actions individually and collectively.

4. Case Study

A simulated small-office layout was used in a case study to demonstrate the appli-
cability of the proposed framework and investigate the role of such a system in reducing
the number of infected cases in shared office spaces. The current case study focused on
phase 2 of the proposed framework to illustrate how data storage and contact tracing can
be applied in an office environment.

An agent-based occupancy simulator was used to model the occupancy schedule
and location of occupants for the office layout, similar to a WiFi positioning system. The
simulator determined the location of each occupant in each time period using a Markov
chain model [73]. This occupancy simulator tool is a Web application, sponsored by the
Department of Energy, available for public use on the Lawrence Berkeley National Labo-
ratory website. The simulator obtains high-level inputs of occupants, spaces, and events
and then simulates occupant movement and generates occupant schedules for each area.
The generated schedules capture the diversity and stochastic nature of occupant activities.
These schedules (that are very similar to the output of a WPS) can be downloaded and used
for different purposes. The detailed algorithms used in this simulator are introduced in [74],
and a performance evaluation of the model is presented in [75]. In order to simulate the
location of each occupant in the example of a small-office layout, the number of occupants,
spaces (zones), and events were defined in the simulator to model the presence of occupants
in the building.

The example of a small-office case is a 960 square meter (≈10,000 square foot) building,
including twenty private offices (700 m2), two meeting rooms (100 m2), two auxiliary rooms
(60 m2), one lobby (50 m2), and one corridor (50 m2). Twenty people were assumed to
occupy this office building, including one manager (5%), seven administrators (35%), and
twelve regular staff (60%). A schematic view of the office layout is presented in Figure 6.
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The average working period for office workers is 9 h per day, including 1 h for a lunch
break [76]. Following the assumption of the case study presented in [77], we assumed the
work hours of 8:30 a.m. to 5:30 p.m. during weekdays (with a variation of 30 min) for each
occupant. Moreover, we assumed a 60 min lunch break (with a variation of 15 min) starting
at around noon.

The only event defined in the case study is the meeting events occurring in two
different meeting rooms. In the first meeting room, the meetings will be held on three days
of the week (i.e., Monday, Wednesday, and Friday), with the probability of 1 to 4 meetings
per day, with 3 to 8 people randomly participating in each meeting. The durations of the
meetings are modeled probabilistically: 20% of meetings are 30 min long, 60% of meetings
are 60 min long, 15% of meetings are 90 min long, and 5% of meetings are 120 min long. In
the second meeting room, the meetings will be held on two days of the week (i.e., Monday
and Thursday), with the probability of 1 to 3 meetings per day, with 3 to 5 people randomly
participating in each meeting. The durations of the meetings are modeled probabilistically:
40% of meetings are 30 min long, 40% of meetings are 60 min long, and 20% of meetings
are 90 min long.

In addition, each occupant spends some time in different locations based on a proba-
bilistic Markov matrix as follows: 60% of the time in his/her own office, 20% of the time
in other offices, 10% of the time in meeting rooms, 5% of the time in auxiliary rooms, and
5% of the time in other places (e.g., corridor). In total, 26 zones are defined in the office
building (i.e., private offices, meeting rooms, auxiliary rooms, lobby, and corridor) as well
as the outside of the building.

5. Results and Discussion

After defining all the inputs, the simulator was used to model a sample location of
occupants in 3 whole weeks (from 1 to 22 November 2021), including 15 working days and
6 weekends. The simulation was set to time intervals of 5 min, so that the location of each
occupant in the building could be simulated every 5 min. Such a simulation is very similar
to the outcome of an indoor positioning system, where the location of occupants can be
stored in a specific time-step (assuming there is one and only one smart device associated
with each occupant). The simulated occupancy schedule of the building for a specific day
is presented in Figure 7.
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Figure 7. Sample of simulated occupancy of the example office on 7 November 2022.

We used the example office layout to implement the developed WiFi-based passive
contact tracing system in the case of SARS-CoV-2 transmission. It was assumed that a WPS
was already implemented in the office and working correctly by collecting the position
of each occupant in time intervals of 5 min. It was also assumed that each occupant
carried only one WiFi-enabled device (although such an assumption might not have been
accurate, it had no impact on the final outcome). The identity of the occupants was not
collected, but the smart device’s MAC address was used to identify each individual in
the office (each occupant was assigned an ID that could represent the MAC address of
his/her smart device). These data were collected upon their entrance into the building,
and it were collected every 5 min until they left the office. To illustrate the application of
the proposed contact tracing system, we used the simulator results as the WPS output.
Therefore, the model implementation only focused on the validation of phase 2 of the
proposed framework.

For the example office case, it was assumed that each of the 26 zones in the office
layout were high-risk zones. In this regard, we considered four scenarios (with random
occupants) for testing the contact tracing model in the example office case as follows:

• Scenario 1: one occupant (with the ID of 06) tested positive for coronavirus at the end
of 7 November 2022.

• Scenario 2: two occupants (with IDs of 11 and 17) tested positive for coronavirus at
the end of 15 November 2022.

• Scenario 3: three occupants (with the IDs of 01, 14, and 16) tested positive for coron-
avirus at the end of 18 November 2022.

• Scenario 4: four occupants (with the IDs of 03, 08, 09, and 18) tested positive for
coronavirus at the end of 9 November 2022.

In each scenario, the confirmed, infected individual ID was acquired, and then the
proposed model was implemented on the simulated WPS data to identify the high-risk
contacts (i.e., the ID of potentially infected individuals as well as the time and location of
dangerous contacts) for further instruction.

Figures 8–11 present the results of the proposed framework in each scenario. The
results show that all high-risk contacts occurred in the meeting rooms. This was because the
meeting rooms were active on four days of the week, and at least one meeting occurred each
day with the participation of at least three occupants. Moreover, the minimum duration
of each meeting was 30 min, which meant that occupants who were in each meeting were
involved in high-risk contact. Furthermore, the occupants rarely met each other for 15 min
or more in their private offices.
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As the results show, in scenario 1, the occupant with ID 06 has the potential to infect
eight other individuals with nine high-risk contacts. On the other hand, in scenario 2, the
two confirmed infected occupants have five high-risk contacts, and they could infect four
individuals. The first two scenarios contain two messages. First, the potential to infect other
individuals varies based on the confirmed case behaviors. For example, an occupant with
ID 06 could infect eight other individuals during five days, while an occupant with ID 17
could only infect one person. This could have been because of the different responsibilities
of the occupants in an office. For example, it is possible that the occupant with ID 06 needed
to participate in more meetings and visit more people based on his or her responsibilities,
and therefore this occupant could infect more individuals. Second, all confirmed infected
occupants in these two scenarios could infect at least one individual. Thus, if potentially
infected occupants are not detected, and this chain continues, many occupants can be in
danger of infection in the future. In scenario 3, the three confirmed infected occupants were
involved in 20 high-risk-contact cases, and they could infect 13 individuals. In scenario
4, the four confirmed cases had a total number of 33 high-risk contacts, and they could
infect 13 individuals. Considering the four scenarios’ results, it can be determined that
all of the confirmed infected occupants have the potential to infect at least one individual,
and it can be extended to more than 12 people based on the occupants’ responsibilities and
the rate of their contact with others. In this case, the best scenario occurred in scenario 2,
where a confirmed infected case could infect just one person. However, even if this scenario
occurred for all of the other potentially infected occupants in all of the four scenarios, the
majority of occupants could become infected in less than one week. Thus, a reliable contact
tracing system can prevent the transmission of the disease by accurately detecting the
potentially infected occupants. Moreover, based on the results, the occupants who were in
meetings more frequently than others during weekdays were not only in greater danger of
infection, but they also had the potential to infect more occupants if they were infected. The
results also show that if the number of confirmed infected COVID-19 cases increases from
one to three, these confirmed cases have the potential to infect the majority of occupants in
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a small office. It can be observed that a reliable contact tracing system can play a crucial
role in notifying suspected COVID-19 individuals and breaking the chain of coronavirus
transmission in such an environment.

6. Conclusions

The current study aimed to introduce a conceptual, passive, contact tracing system for
commercial buildings using indoor WiFi positioning, and investigate its role in reducing
the number of infected cases in shared public environments. The proposed system can
address the current challenges of developed, automated, contact tracing systems by (1) re-
placing Bluetooth-proximity technology that can deplete smart device batteries by indoor
WiFi positioning, (2) eliminating the need for installing applications on smart devices by
passively tracking the location of users’ WiFi-enabled smart devices, and (3) preserving the
users’ privacy by working with the devices’ unique MAC addresses instead of the users’
identities. The main limitations of the proposed system were as follows: (1) it required the
new iOS devices to manually turn off MAC randomization features, and (2) it considered
a user’s multiple smart devices as multiple users, which may result in not estimating the
correct number of high-risk contacts. The system’s accuracy also depended on the accuracy
of the implemented WiFi positioning system in place. One potential advantage of the
proposed system was that it could identify users with a high number of high-risk contacts
each day and encourage them to take precautionary actions, such as testing.

Because of the lack of case studies, only phase 2 of the framework was tested in
this study. The proposed model was implemented on a simulated small-office layout to
demonstrate its applicability. The occupancy of the office was simulated using an agent-
based occupancy simulator to model the occupancy schedule and location of occupants for
the office layout, similar to a WiFi positioning system. Different scenarios were considered
for testing the search algorithm to identify the high-risk contacts. The results show that
the system can identify suspected individuals and break the chain of virus transmission in
office workplaces.

Such tracing systems can be used in academic facilities and office workplaces, where
(1) the WiFi infrastructure already exists and therefore implementing such a system could be
cost-effective, and (2) the same users regularly use the facility, enabling the system to notify
the users upon a confirmed case once they are back in the building and connected to the
WiFi system. The developed system can benefit facility managers, business owners, policy
makers, and authorities in assisting to find occupants’ high-risk contacts and control the
spread of SARS-CoV-2 or similar infectious diseases in commercial buildings, particularly
university campuses and office buildings.

As a future research direction, the authors aim to perform a real case study by im-
plementing the proposed system in a real-world office building. Such a real case study
can help validate the model and investigate its feasibility in terms of costs and accuracy.
Since such a system can detect the occupants’ real-time contacts, it can also be used in
several applications for building a smart office environment, such as smart occupant-centric
building energy system control, emergency evacuation, and productivity tracking. There-
fore, implementing such a system can be part of a whole package of building smart user
management toward improving health, wellbeing, and productivity while reducing energy
consumption. Furthermore, the improvements of the IoT has allowed for different parame-
ters of buildings to be connected and monitored by simple applications. On the other hand,
COVID-19 outbreaks highlighted the phrase “social distancing” and made it many people’s
primary concern, particularly in public places. In other words, people preferred to follow
social distancing rules and not be in crowded places to avoid catching contagious diseases.
Therefore, the results of such a contact tracing system can be developed further in smart
devices applications to anonymously present the number of people in close contact in a
public, indoor area. Accordingly, other people can check these data and choose to be in
that place or not, based on their concerns about close contact.
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