
Citation: Park, H.C.; Rachmawati,

T.S.N.; Kim, S. UAV-Based High-Rise

Buildings Earthwork Monitoring—A

Case Study. Sustainability 2022, 14,

10179. https://doi.org/10.3390/

su141610179

Academic Editors: Edmundas

Kazimieras Zavadskas, Amirhosein

Ghaffarianhoseini, M. Reza Hosseini

and Jurgita Antucheviciene

Received: 30 June 2022

Accepted: 15 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

UAV-Based High-Rise Buildings Earthwork
Monitoring—A Case Study
Hyung Cheol Park, Titi Sari Nurul Rachmawati and Sunkuk Kim *

Department of Architectural Engineering, Kyung Hee University, Yongin-si 17104, Korea
* Correspondence: kimskuk@khu.ac.kr; Tel.: +82-31-201-2922

Abstract: Unmanned aerial vehicle (UAV) is one of the most prominent technologies in the construc-
tion industry for data collection purposes. Compared with traditional methods, UAVs collect data
faster and more efficiently at a lower cost. One of the construction works that can be monitored using
UAV is earthwork. Earthwork monitoring is essential to complete the earthwork on time, according to
plan, and within budget. This paper presents an application study on the UAV-based earthwork mon-
itoring of a high-rise building project in the Republic of Korea. Earthwork of building projects have
distinct characteristics. The area is excavated downwards to tens of meters deep, thus contractors
deal with several types of soil. The building project is usually built in a densely built area. Therefore,
contractors must monitor the slope as it poses landslide risk to surrounding areas. UAV can calculate
the excavated volume, monitor the progress and the site, and document earthwork periodically and
strategically. Based on case study, this study compared estimated volume based on GPS and actual
excavated volume based on UAV survey and found 0.71% difference, indicating the reliability of
surveying using UAV. However, the volume per soil type was quite different between both methods,
resulting in 15.8% (USD 183,057) cost difference. This study shows that UAV technology is effective
in monitoring the actual excavated volume, thus supporting fair business practices and transparency
between stakeholders.

Keywords: unmanned aerial vehicle (UAV); earthwork management; quantity survey; site monitoring

1. Introduction

Earthwork is a fundamental process in the early stage of construction projects. Earth-
work consists of any construction work carried out on the Earth’s surface, including clearing,
grading, excavating, compacting, cutting, filling, and finishing [1]. During earthwork, the
topography of site changes rapidly. Contractors must monitor the continuous changes over
the construction period. Topographical change data are highly important as they serve as
the main data for earthwork design review, progress monitoring, estimating earthwork
volume, and documentation [2]. Moreover, contractors also must pay attention to the
earthwork safety and quality standards.

An accurate and quick method to survey the earthwork topography is required so
that analysis, prediction, monitoring, and documentation can be performed. Two types
of surveying methods can be used to acquire the topographic information at earthwork
sites [3]. The first type is a point-based method which consists of total station (TS) and
global positioning system (GPS) technology. The second type is an area-based method
which consists of unmanned aerial vehicle (UAV) photogrammetry and laser scanning.

Several studies compared these topographic surveying methods. Beretta et al. [4]
compared UAV with GPS survey and laser scanning. The UAV results were less erratic than
laser scanning and offer lower uncertainty than GPS survey. According to Akgul et al. [5],
UAV is more efficient than GPS for surveying larger areas while also producing accuracy
that complies with surveyor requirements. Additionally, UAV surveying produces both a
digital surface model (DSM) and georeferenced ortho-mosaic, which is an important added
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value for site documentation [6]. Overall, UAV has higher efficiency than conventional
surveying methods in terms of cost, data acquisition, and processing while also producing
equivalent accuracy [4]. UAV is one of the selected technologies included in the vision of
“Smart Construction 2025” of South Korea [2]. Accordingly, Korean National Geographic
Information Institute (NGII) published “Guidelines for the Public Survey using UAV” in
2018, which contains standard procedures for conducting UAV photogrammetry to public
surveys at construction sites [7]. It is expected that UAV usage will increase significantly in
the future.

Although there are several studies studying the use of UAVs for earthwork, the scope
of the project is limited to road construction [2,8] and stockpile volume calculations [9,10].
There are no studies investigating the use of UAVs for earthwork in high-rise building
projects. Building projects have different characteristics from other projects. Building
projects are usually built in densely built areas so that the earthwork process must pay
attention so as not to damage or cause landslides to surrounding buildings. In addition,
the area is excavated downwards to tens of meters deep, posing a risk of landslides. The
slope must be monitored to avoid landslides and accident to workers [11]. Moreover,
with a depth of tens of meters, contractors deal with several types of soil with different
characteristics. Earthwork also takes place over a long period of time, so the volume of
earthwork needs to be monitored regularly. Volume monitoring serves not only as data for
payment progress but also to avoid the risk of cost overruns.

UAV as a data collection technology of terrain model has a role in increasing the
efficiency of earthwork monitoring. Therefore, this study presents UAV-based earthwork
monitoring and digitization of a high-rise building project. This study incorporates an
actual apartment complex project in the Republic of Korea. UAV-based earthwork monitor-
ing mainly consists of data collection, data processing, and data analysis and visualization.
The framework is expected to digitize and assist earthwork volume calculation, progress
monitoring, site monitoring, and documentation.

2. Theoretical Framework
2.1. Overview of Earthwork and UAV Roles in Earthwork

Earthwork is one of the most crucial work packages in building projects. Earthwork
consists of soil surveying, measuring, and planning before the actual earthmoving. In the
construction stage, the subcontractors bring heavy equipment such as excavators, dozers,
rollers, graders, and dump trucks to the sites to perform earthwork clearing, excavating,
and compacting and ultimately finish the desired design specifications [12]. In general, in
order for excavation to be carried out, it is necessary to build a retaining wall with ground
anchors to retain the soil. Installation of retaining walls cannot be performed haphazardly,
especially if the project is carried out in a densely built area [13].

Despite the great scale of earthmoving, earthwork requires work precision, as any
misalignment of the earthwork can result in time-consuming correction [14]. Therefore,
earthwork progress monitoring, quality control, documentation, and site monitoring is
highly important. The verification and design checks of earthwork heavily rely on the
production of DSM [14]. Few surveying technologies to produce DSM have been estab-
lished, namely TS, laser scanning, GPS, and UAV. Although TS and GPS can generate
accurate global coordinates of measured points, generating a high-density 3D model of
large areas with them is challenging. This is because TS and GPS methods require workers
to actively move in the field, which is labor-intensive and time-consuming [5]. In addition,
changes in contours and depth of survey area adds difficulty and risk level for TS and GPS
surveyors [15]. Laser scanning can create high-density 3D point clouds but it takes plenty
of time to process the data. Laser scanning is also prone to occlusions due to slope crests or
other objects which can cause errors to the produced terrain surface [4].

In comparison with other previous technologies, UAV provides more comprehensive
functions related to 3D topographic models. UAVs serve many purposes following those
needed in earthwork, such as earthwork surveying [16], on-site management [17], progress
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monitoring [18], and safety inspections [19]. Harwin and Lucieer [20] compared UAV-based
volume calculations with conventional methods and showed that UAVs offer equivalent
accuracy. Another study by Hugenholtz et al. [21] concluded that UAV-based volume
calculations are more cost-effective and efficient than conventional methods. UAVs can
reach areas that are more expansive and inaccessible to human workers. Furthermore, the
data from UAVs are easily stored, documented, and can be used for Building Information
Modeling input, which can improve communication and evaluation of the construction
progress between stakeholders [22].

In general, the camera mounted in the UAV is used for taking images of construction
sites [23]. These images are processed using the photogrammetry technique which provides
a DSM of the area as one of the results. A comparison of the current 3D terrain model
with the planned 3D terrain model is performed periodically to monitor the progress
and review the design. Moreover, the excavation volume and height differences can be
calculated automatically and quickly [5]. By monitoring the DSM, the contractor can
determine whether the earthwork is progressing according to the design plan, and make
adjustments accordingly [24]. These data also act as the main reference for calculating
progress payments from the main contractor to the earthwork subcontractor.

2.2. Earthwork Life Cycle

As shown in Figure 1, the earthwork process was divided into design, procurement,
and construction phases. A specific bill of quantities (BQ) was produced in each phase. A
BQ is a document containing work items and their materials, equipment, and labor [25].
The material, equipment, and labor are measured by the corresponding number, area,
volume, weight, or time. Lastly, each work item is priced, and the cost of all work items is
summed as the total project cost. BQs are predominantly used as tender documents that
assist contractors in pricing construction projects and as contract documents that serve as
agreements between the involved parties [26].
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Figure 1. Earthwork process.

In the design phase, initial DSM was created based on the digital elevation map from
the NGII which is officially managing digital elevation models for public use [27]. The
volume calculation is roughly calculated by comparing the initial DSM with the planned
surface. As a result, the earthwork volume that needs to be excavated is written in a BQ at
the design phase.

The main contractor bids to select an earthwork subcontractor between the design and
procurement phases. It is common for the main contractor to open a bid on specialized work
such as earthwork in order to manage their schedules, quality, and budget to minimize
the project’s risk. Another reason for using a competitive process is to ensure that the
subcontractors are specialized entities that are experts in their work fields and can meet the
main contractor’s requirements [28].

The subcontractor candidates conduct their soil investigations and produce a BQ as
one of the tender documents. Subsequently, the chosen subcontractor produces the BQ at
the contracting phase. In this phase, the earthwork subcontractor conducts a GPS survey
and boring test. The GPS survey is performed to obtain the current DSM while boring test
is conducted to obtain the soil stratification per boring test location [29]. By interpolating
boring test data, model of surface layers per soil type is obtained [30]. By combining initial
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DSM, surface layers per soil type, and the planned surface, estimated volume per soil
type is obtained. This result is expected to be more precise than those in the BQ from the
design phase.

The subcontractor executes earthwork packages in the construction phase, including
supplying the workers, equipment, tools, designs, and other supplies following the contract
documents [31]. In this stage, an actual quantity survey of earthwork is conducted using
surveying methods such as UAV technology. Periodically, the subcontractor releases a
progress report called “claimed BQ” to the contractor to claim progress payments. Ad-
ditionally, when a modification to the earthwork’s design, quality, or quantity affects the
contracted sum, the subcontractor states this change in the progress report. The contrac-
tor then checks the “claimed BQ”, especially the volumetric calculations, to process the
progress payment. In this phase, there are sometimes disputes over volume calculations
being overclaimed by the subcontractor or underclaimed by the contractor. Thus, a reliable
volume calculation of the earthwork must be developed to ensure fair business dealings
between stakeholders.

Ultimately, the subcontractor releases the final BQ after completing construction,
resulting in all parties knowing the total earthwork cost. The final BQ contains finan-
cial components such as a statement of the final account, a final account summary, and
adjustments that have been made.

3. Study Area and Methodology
3.1. Study Area

In this research, we present a case study of a construction site. Figure 2 shows that the
construction project used for this case study was an apartment building complex in Seoul,
Republic of Korea. The total land, building area, and total floor area are 33,897, 7181 and
121,716 m2, respectively. The building-to-land ratio is 21%, and the floor area ratio is 227%.
The project consists of ten buildings, and each building consists of 5 floors below ground
and 18 floors above ground. The buildings comprise a residential area with 771 households
in total. A high-density residential area surrounds the construction site. In addition, there
is hilly terrain on one side of the site.
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The earthwork ran from 16 February to 23 December 2021, as shown in Figure 3. Here,
t0 represents the start of construction. There were three activities conducted between t0
and t1: scheduling of the work and engineers, quantitative surveying of the earthwork
measured by GPS, and open bidding to select the earthwork subcontractor. Subsequently,
the subcontractor was chosen, and earthwork started at t1. The quantity measured by GPS
refers to the quantitative estimation using the GPS method and boring test results. Based
on boring test, the soil at the construction site was composed of three types: (1) soil and
weathered soil, (2) weathered rock, and (3) soft and hard rock. The contract proceeded with
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the quantity measured by GPS but was finalized based on the quantity measured using
UAV after completion.
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Between t1 and t2, a temporary access road was opened, and earth surveying was
performed. The soil and weathered rock were excavated first to uncover the underground
soft and hard rock. Then, the soft and hard rock were blasted from the t2 phase. Between t2
and t3, the subcontractor continued the earth retaining work and excavated the rest of the
soil and weathered rock. From t2 to t3, the quantity of worked earthwork was periodically
measured using UAVs. Since the earthwork quantity measured by UAVs was the actual
excavation, it was used for the progress payment.

3.2. Methodology

This study proposes a framework for the earthwork monitoring and digitalization
of building construction sites based on UAVs, as shown in Figure 4. This framework
consists of three stages: (1) data collection, (2) data processing, and (3) data analysis and
visualization. In the first stage, the UAV is used to acquire aerial pictures of the site, which
is performed periodically. The images are processed using the Pix4Dmapper software in
the second stage, where an ortho-mosaic and 3D point cloud are generated. Finally, in the
third stage, the ortho-mosaic and 3D point cloud are used to generate cross-section views
and calculate the cut-and-fill volume. The cross-section views and cut-and-fill volume are
visualized in the UAV platform. The data and visualization stored in the UAV platform can
be used for progress monitoring and documentation. Lastly, 2D/3D visualization can be
used for site monitoring.

3.2.1. Data Collection

In this study, UAV is employed for earthwork data collection every 3–5 days. A
commercial quadcopter UAV DJI Phantom 4 Pro V2.0 with a 20-megapixel camera was
used [32]. The weight and size of the UAV were 1375 g and 289.5 × 289.5 × 196 mm3,
respectively. The UAV, internet, and system screen were prepared. The UAV condition,
including battery capacity, GPS reception, IMU, and calibration status, and connection
with the controls, was checked. In the Republic of Korea, UAV flight must obey the Act
on Promotion of Utilization of Drones and Creation of Infrastructure [33]. Therefore, we
consulted with the military regarding the no-fly zone to gain permission for the UAV flight.
We also ensured no risk of collision with high-rise buildings, high mountains, or nearby
forests. In addition, we also checked the weather where flight is aborted during windy and
rainy weather. Then, we set the flight settings. The UAV flight plan is shown in Figure 5.
The overlapped images were set to more than 80%. By collecting more overlapped images,
we gained higher accuracy. We also set the UAV’s speed to 8–10 m/s after considering the
flight route and the UAV’s maximum flight time. The UAV flew for approximately 30 min.
Finally, after the flight was completed, the images were taken from UAV’s SD card to be
processed in the data processing stage.
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Ten ground control points (GCPs) were installed for georeferencing purpose of the
UAV images. The installation of the GCPs was carried out according to a guideline [34].
GCPs were located outside the earthwork site and appropriately marked to be easily
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detected in the UAV images as shown in Figure 6. Real-time kinematic global positioning
system (RTK-GPS) was used to measure the latitude and longitude of GCPs. Meanwhile,
the altitude was directly measured using RTS. The coordinate as shown in Table 1 was
based on the GRS80 central origin (EPSG:5186). For the GCPs, it was confirmed that the
accuracy of the coordinates is less than 3 cm in x and y-direction, and 5 cm in z-direction.
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Table 1. Coordinates of the ground control points.

GCP x (m) y (m) z (m)

GCP1 194,565.142 544,356.834 41.643
GCP2 194,657.481 544,362.629 38.151
GCP3 194,667.442 544,348.826 38.775
GCP4 194,734.263 544,194.89 54.503
GCP5 194,693.649 544,142.25 59.505
GCP6 194,677.789 544,140.788 60.644
GCP7 194,582.005 544,092.945 75.396
GCP8 194,524.529 544,207.286 73.361
GCP9 194,451.559 544,296.509 64.822
GCP10 194,461.096 544,440.59 60.216

3.2.2. Data Processing

The data processing in this study followed a photogrammetry workflow. First, the UAV
images were imported from data storage into the photogrammetry software. In this study,
the Pix4Dmapper software was used [35]. Images with the same georeferenced points were
aligned, resulting in determination of the images’ relative locations. The aligned images,
which contained the GPS coordinates from the UAV, were then referenced to the GCPs.
Then, a dense point cloud was generated using the referenced images and information
about the optical system of the UAV (sensor size, focal length, angular resolution, and lens
distortion) [36]. The 3D point cloud is shown in Figure 7. The individual points from the
dense point cloud were then connected to form a mesh. From this mesh, an ortho-mosaic
was created. Finally, the processed data were sent back to data storage. The point cloud
was saved as an XYZ file, i.e., a list of each point with its X, Y, and Z coordinates and
other properties of the point. The ortho-mosaic was stored as an uncompressed TIFF file
to preserve all details. Although, the accuracy of UAV-based point cloud map was not
analyzed, a standard UAV flight procedure, as described earlier (e.g., number of GCPs,
location of GCPs, flight settings, etc.) was strictly followed [14].
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3.2.3. Data Analysis and Visualization

The 3D models resulting from the data processing stage were visualized using the UAV
platform which can be accessed remotely anytime [37]. There are four primary analysis
and visualization types that can be performed on this platform: (1) automatic volume
calculation with cut-and-fill volume data, (2) height difference review by comparing two
terrain models from different time stamps, (3) site monitoring through 2D/3D visualization,
and (4) documentation of the project from start to completion.
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4. Results and Discussion
4.1. Volume Assessment

In this study, the earthwork quantity was measured using GPS and UAV technology.
The GPS survey was performed in the planning stage to estimate the earthwork quantity.
Meanwhile, a UAV-based survey was conducted to obtain the actual excavation. The
measured quantity is shown in Table 2. The GPS’s computed volume was 354,399 m3, while
the calculated volume based on UAV data was 351,883 m3. There was a 2516 m3 (0.71%)
difference between the two surveying techniques, which is very small. The difference shows
the reliability of surveying using UAVs. This finding is similar to Raeva et al. [10] and
Mantey and Aduah [38] where UAV photogrammetry is an accurate method for calculating
earthwork volume and more efficient than GPS.

Table 2. Quantity comparison measured by GPS and UAVs.

Soil Layer
Quantity (m3)

Quantity Difference (m3)
GPS UAV

Soil and weathered soil 222,541 235,103 −12,562
Weathered rock 52,212 55,226 −3014

Soft and hard rock 79,646 61,554 18,092
Total 354,399 351,883 2516

As shown in Table 2, there was a difference in the quantity of each soil layer. In the case
of soil and weathered soil and weathered rock, we confirmed that the quantity measured
based on GPS was underestimated compared with the actual quantity calculated from UAV
photogrammetry. In the case of soft and hard rock, the quantity measured via GPS was
overestimated. The impossibility to accurately predict the quantity of soft and hard rock
located at the lowest point of the site in the design and procurement phase was shown. This
is because the estimated volume was based on surface layers per soil type resulting from
the interpolation of limited boring test results. This study provides new contextualization
by comparing earthwork volume per soil type as well as comparing estimated volume with
actual volume.

4.2. Cost Comparison of Computed Volume

Initially, BQ in the contract document used estimated volume based on GPS and the
boring test result. By multiplying the volume by the unit price per soil type, the total
estimated cost was USD 1,253,653. After the excavation, the actual volume was calculated
using two sequential DSMs resulted from UAV photogrammetry. The actual cost stated
in the final BQ was USD 1,070,595. There was a USD 183,057 (15.8%) cost difference, as
shown in Table 3. A significant difference in the quantity of soft and hard rock between
the two methods and the high unit price for vibration control blasting contributed to
the cost difference. This finding is in accordance with Akgul et al. [5] who said UAV
photogrammetry directly assists the success of earthwork estimation and construction
costs. This study provides further analysis as it calculated earthwork cost per soil type.
Accordingly, stakeholders can analyze the cost and develop countermeasure to avoid
cost overrun.

Table 3. Cost comparison of the volume computed using GPS and UAVs.

Soil Layer Unit Price
(USD/m3)

Quantity (m3) Cost (USD)
Cost Difference (USD) Remarks

GPS UAV GPS UAV

Soil and weathered soil 1.067 222,541 235,103 237,451 250,855 −13,404

Weathered rock 2.311 52,212 55,226 120,662 127,627 −6965

Soft and hard rock 11.244 79,646 61,554 895,540 692,113 203,426 Vibration control blasting

Total 354,399 351,883 1,253,653 1,070,595 183,057

Note: Exchange rate: 1125 Won/USD as of 16 February 2021.
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4.3. Height Difference and Slope Monitoring

Following Jiang et al. [11], height difference and slope monitoring was conducted to
monitor the progress and to analyze deformation of earthwork slope. During excavation,
slopes deform and even become unstable, posing a risk. Slope monitoring can be used to
assess slope stability and analyze its safety. For example, we chose a segment of interest for
slope monitoring as shown in Figure 8. This segment was chosen because this excavation
area required blasting equipment resulting in a high risk of slope deformation. On top
of that, this location was located under high terrain and there was dense high residential
area on top of the terrain. Results of this study show that from 24 September 2021 (green
line) to 21 October 2021 (orange line), the bottom of the surface descends 3.427 m, which
is consistent with the actual situation. Regarding slope displacement, there was a 12 cm
displacement on average.
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4.4. Site Monitoring

Many construction projects combine diverse processes and activities, resulting in great
dynamism and complexity. Stakeholders conduct meetings periodically to discuss work
order, construction methods, equipment, and human resources arrangements to perform
the construction work without defects or losses. Therefore, it is important to determine the
overall situation of the construction site as the main reference in the meeting, which can
be determined using UAV. UAV can provide high resolution and a real-time aerial view
of the construction site, allowing stakeholders to monitor the site efficiently. For example,
Figure 9a shows the UAV aerial photograph overlaid with foundation and ground anchor
design. Stakeholders used this photograph to analyze the situation. The position of the
foundation was moved to the side of the new excavation area as shown in Figure 9b. In this
way, stakeholders can discuss, develop countermeasures, and revise drawings to proceed
with construction dynamically.
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4.5. Documentation

Buildings are usually constructed over the course of years. On a daily basis, the
changes are not significant. However, the changes become significant when we observe
the construction progress over the span of months or years. It is important to archive this
progress for several reasons: (1) to monitor the progress, (2) to serve as foundational data
for the progress report, and (3) to prove the work that was performed in case there is a
claim by other stakeholders. In this case study, the 3D point cloud and ortho-mosaic from
the data processing stage were archived periodically (3–5 days). The 2D/3D models were
then visualized in the UAV platform. One can compare the 2D/3D models from different
times using the comparison function. A comparison of the construction site between two
different times was thus visualized, as shown in Figure 10. This comparison was possible
because of the site’s UAV-based documentation.
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5. Conclusions

This study presents a framework for the UAV-based earthwork management of build-
ing projects. The entire framework includes data collection, data processing, and data
analysis. This method produces a 3D terrain model, earthwork volume calculation, cross-
section view, and 2D/3D visualization. It serves many functions, including progress
monitoring by generating cut-and-fill volume and height difference reviews of two terrains
from different times, aerial site monitoring, and documentation.

This framework was validated using an existing construction project in Seoul, Re-
public of Korea. In the case project, a volume comparison based on GPS and UAVs was
conducted resulting in 2516 m3 (0.71%) difference. We confirmed that the volume of soil
and weathered soil and weathered rock, which have relatively low earthwork unit prices,
increased, while the quantity of soft and hard rock, which is 5 to 11 times more expensive
than the aforementioned types of rock, decreased, reducing the total construction cost by
USD 183,057. These findings show UAV as an effective tool to monitor the actual excavated
volume per soil type during construction stage. In this way, the potential conflict over
earthwork quantity can be clearly resolved. As the information in the BQ is up-to-date,
accurate, and transparent, UAV data can lead to fair deals between stakeholders.

The limitation of this study is that it only compared the final actual volume with the
estimated volume. In next study, we will develop an earthwork cost and time simulation
model based on UAV during the construction period to avoid risk of cost overrun and
time delays of the project. Despite this limitation, UAV technology also contributed to
continuous site monitoring to prevent risks that can occur during the earthwork process.
By automating the earthwork digitization process, we believe that the proposed framework
based on UAV will contribute to smart construction.
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