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Abstract: The synergistic development of economic construction and low-carbon transformation of
energy systems must be promoted for building a green, low-carbon, and cyclic economic system
and achieving the “double carbon” goal in China. Based on the panel data of 30 provincial-level
administrative regions in China from 2015 to 2019, the global entropy method, coupling coordination
degree model, and spatial statistical analysis methods are applied to analyse the factors affecting
the coupling effect. The coordination degree increased in the study period, with Beijing, Shanghai,
Tianjin, Jiangsu, and Zhejiang being the regions with the highest values. The spatial distribution of
the coupling coordination degree is strongly positively correlated with the eastern provincial-level
administrative regions located in the high–high concentration area of the Moran scatterplot and
western provincial-level administrative regions concentrated in the low–low concentration area. The
spatial association pattern is stable in the study period, with only two provinces exhibiting a transition:
Shandong province made the transition to high–high agglomeration areas, and Liaoning province
made the transition to low–low agglomeration areas. The level of regional economy, urbanization
process, energy consumption structure, and level of investment in science and innovation enhance
the coupling coordination degree, whereas the industrial structure deteriorates this degree.

Keywords: regional economic development; low-carbonisation of energy consumption; global
entropy method; coupling coordination; Moran index; spatial agglomeration; spatial Durbin model

1. Introduction

In the new development stage, China is committed to building a green, low-carbon,
and circular economic system. Owing to environmental constraints, the energy use struc-
tures must be modified. To achieve the ‘double carbon’ goal, the relationship between
the double control of energy and economic development must be managed to promote
the synergistic development of economic construction and de-carbonisation of energy
use. In December 2021, the Ministry of Industry and Information Technology issued the
“14th Five-Year Plan for Green Development of Industry”, which recommended the accel-
eration of the transformation of de-carbonisation of energy use, increase in the energy use,
and increase in the proportion of clean energy consumption. Moreover, this plan reiterated
the specific goals of carbon emission reduction and energy intensity reduction. Notably,
changing the energy structure is a gradual process, and China has been actively promoting
the transformation of the energy strategy and green low-carbon economic development
in recent years. Since 2014, China’s energy strategy has entered a period of accelerated
transformation, and the economic development and low-carbonisation processes have
yielded promising results. However, considerable differences remain in the economic scale,
industrial structure, energy structure, and energy consumption in different regions, and
the imbalance between the regional economic development and low-carbon energy con-
sumption has emerged as a major problem. To study the level of coupled and coordinated
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development of regional economic development and low-carbonisation of energy con-
sumption in China, the period of 2015–2019 is considered in this study, as China’s energy
low-carbonisation transition entered a new phase of accelerated development after 2014.

Recently, considerable research has been conducted on the relationship between the
economy, energy, and environment. The key research issues include the dynamic rela-
tionship between the energy consumption and economic growth [1–5] and coupled and
coordinated development of energy, economy, and environment systems [6,7]. Research on
low-carbonisation of energy consumption has been focused on evaluating the development
of energy low-carbonisation and the development path [8–11]. However, research on eval-
uating the regional energy consumption differences from the perspective of low-carbon
development is limited, and only a few researchers have examined the evolution character-
istics of the coordinated development of the regional economy and low-carbonisation of
energy consumption from the spatial and temporal dimensions.

Considering China’s basic economic and energy conditions and goals of green and
low-carbon development of energy, in this study, the panel data of 30 provincial-level ad-
ministrative regions from 2015–2019 are selected. The global entropy value method is used
to construct a three-dimensional time-series evaluation data system of indicators for the
regional economic development and low-carbonisation of energy consumption in the spatial
and temporal domains. This system is used to objectively assign weights and scores to
the evaluation indicators. Moreover, the coupling coordination degree model and spatial
econometric analysis methods are applied to explore the coordination degree, spatial variabil-
ity characteristics, and driving factors of the coupling in 30 provincial-level administrative
regions in China from the spatial and temporal dimensions. Based on the research design, this
paper aims to measure and analyse the spatiotemporal difference and relevance between the
coordinated development of China’s regional economy and the de-carbonisation of energy
use over recent years, to identify the regions with low levels of coupling coordination and
with relatively unbalanced development that need to be given priority. On this basis, from
the perspective of the influencing factors, further study is conducted to analyse the driving
factors affecting the coupling coordination, aiming to propose targeted policies for improving
the level of coordinated development, and provide the theoretical and practical reference for
the construction of green, low carbon, and circular economic system in China.

2. Indicator System Construction

The connotations and coupling mechanisms of economic development and energy
consumption are considered along with China’s economic and energy situation. Moreover,
under the guiding principles of scientificity, systematisation, typicality, consistency, and
quantifiability, the existing research results [6–14] are examined and experts and scholars
in relevant fields are consulted to identify the key indicators that can reflect objective
reality, for which adequate data are available. Seven indicators are selected from the three
dimensions of economic aggregation and structure, economic efficiency, and economic
and social development to build a comprehensive evaluation index system of the regional
economic development level. Moreover, seven indicators are selected from the three
dimensions of energy consumption, energy structure, and carbon emission scale to build a
comprehensive evaluation index system of the regional low-carbonisation of the energy use
level, as indicated in Table 1. The data for the evaluation indicators are extracted from the
statistical data of the “China Statistical Yearbook”, “Statistical yearbook of China’s Fixed
Assets Investment (China’s investment field)”, “China Energy Statistical Yearbook”, “China
census yearbook”, and “Carbon Emission Account&Datasets” [15–19]. At present, with
increasingly comprehensive and profound data applications, more caution should be given
to data applications. Therefore, the pervasive discussion of data uncertainty is crucial in
academic study, especially in economics. With thorough discussion and analysis, the raw
data involved in this paper is relatively certain and stable. The main indicators involved
in the study of the spatiotemporal Coupling Effect in this paper are macro indicators of
regional economy and energy. Against the background of the stable macro-environment
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and the smooth national economic development trend, the raw data is characterized by
high stability, whose change trend is regular and predictable to a certain extent, with the
relatively controllable fluctuation range and the low risk of data uncertainty due to random
factors. In addition, sourced from national statistical departments and relevant official
institutions, raw data has a relatively high degree of reliability, accuracy and authority. It
is worth noting that there are inevitable statistical errors caused by human, technical, or
other factors in the process of official data. However, in recent years, with the continuous
improvement of the data accounting system and strengthening of data verification and
accounting by the statistical departments and relevant institutions, the error of index data
has been kept within the permissible range, capable of reflecting the economic situation
more objectively. Even more, these statistics are widely used in academic research, and
help to obtain a large number of research results.

Table 1. Evaluation indicators for the regional economic development and low-carbonisation of
energy consumption.

Coupled Evaluation
Systems Evaluation Dimensions Indicator Indicator

Direction Unit

Regional economic
development

Economic aggregation
and structure

GDP per capita Positive yuan

Proportion of added value of tertiary
industry in GDP Positive %

Economic efficiency
Financial revenue per capita Positive yuan

Disposable income of urban residents
per capita Positive yuan

Economic and social
development

Urbanisation rate Positive %

Total retail sales of social consumer goods
per capita Positive yuan

Total investment in fixed assets per capita Positive yuan

Regional
low-carbonisation of
energy consumption

Energy consumption

Increase or decrease in the energy
consumption per 10,000 yuan of GDP Negative (±%)

Growth rate of total energy consumption Negative %

Increase or decrease in the electricity
consumption per 10,000 yuan of GDP Negative (±%)

Energy structure

Proportion of coal consumption in energy
consumption Negative %

Proportion of electric energy in energy
consumption Positive %

Scale of carbon emissions

carbon emissions per capita Negative tons

Carbon emissions per 10,000 yuan of GDP Negative tons/10,000
yuan

3. Research Methodology
3.1. Global Entropy Method

The global entropy method is an improved weighting method for the traditional entropy
method, which is used to solve the objective weighting problem of three-dimensional time-
series data by introducing the global concept to analyse each evaluation index horizontally
and vertically in the evaluation system. Scholars in China have applied the global entropy
method in different research fields to conduct multidimensional dynamic comparative anal-
yses. Ruifen et al. [20] applied the global entropy method to conduct a dynamic comparative
analysis of the regional innovation capacity of Beijing, Tianjin, and Hebei. Yusen et al. [21]
applied the global entropy method to conduct a dynamic analysis and evaluation of the
level of intellectual property resources in 31 provincial-level administrative regions in China.
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Yangjie et al. [22] applied the global entropy method to dynamically measure and analyse
the industrial ecological level in the upper reaches of the Yangtze River in China.

This study is aimed at performing a dynamic evaluation of China’s regional economic
development level and low-carbonisation of energy consumption level from the time and
space dimensions. A three-dimensional time-series data table of time–space indices is con-
structed, and the global entropy method is used to objectively assign weights to the evaluation
indicators. The global entropy weighting method involves the following steps [20,21]:

1. Construct the initial global evaluation matrix. Considering m provincial-level admin-
istrative regions, n evaluation indicators, and T years, the global idea is introduced to
arrange the data in chronological order to form a global evaluation matrix A.

A =
(

X1, X2, · · ·Xt
)′

m × n
= (xt

ij)m × n
, (1)

where xt
ij denotes the j-th index data of the ith province in the t-th year.

2. Standardise the indicator data. To eliminate the influence of inconsistencies in the
evaluation indexes in terms of scale, order of magnitude, and units, the difference
(Min-max) standardisation method is used to process the original data. The direction
of positive indicators is consistent with the level of regional economic development
and low-carbonisation of energy consumption in China evaluated in this study. That
is, the larger the value, the better, while the direction of negative indicators is the
opposite, and the smaller the value, the better.

Positive indicators : xt
ij
′
=

xt
ij − xjmin

xjmax − xjmin
, (2)

Negative indicators : xt
ij
′
=

xt
ij − xjmin

xjmax − xjmin
, (3)

where i = 1, 2, · · · , m; j = 1, 2, · · · , n; t = 1, 2, · · · , T.
3. Calculate the characteristic proportion of the i-th evaluation object under the j-th

evaluation indicator in the t-th year for evaluation indicator pt
ij:

pt
ij =

xt
ij
′

∑T
t = 1 ∑m

i = 1 xt
ij
′ . (4)

4. Calculate the information entropy value of each indicator ej:

ej = − 1
lnmT

T

∑
t = 1

n

∑
j = 1

pt
ijlnpt

ij,
(
0 ≤ ej ≤ 1

)
. (5)

5. Calculate the coefficient of variation of each evaluation indicator gj. A lower entropy
of an evaluation indicator corresponds to a higher coefficient of variation and higher
weight of that indicator. Define the variability factor vector G = (g1, g2, · · · gn).

gj = 1 − ej. (6)

6. Calculate the evaluation indicator weights ωj:

ωj =
gj

∑n
j = 1 gj

. (7)

7. Calculate the overall evaluation score Ft
i :
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Ft
i =

n

∑
j = 1

ωjxt
ij
′. (8)

3.2. Coupling Coordination Model

The term ‘coupling’ refers to a physics concept indicating the close correlation be-
tween the input and output of circuit elements and is widely used at present in various
research fields to reflect the interrelationship between systems or between elements in
systems. With the development of multidisciplinary integration, the coupling research
theory has yielded notable results in regional development. Xin et al. [23] applied the
coupling coordination degree model to study the spatiotemporal coupling relationship
between new urbanisation and low-carbonisation of development in 30 provincial-level
administrative regions in China. Long et al. [24] applied coupling coordination and spatial
autocorrelation concepts to systematically study the spatiotemporal characteristics and
evolution pattern of the coupling coordination degree between local financial education and
economic development level in China. Furthermore, relevant scholars apply the coupling
coordination model to study the coupling relationship between population modernization
and eco-environment [25]; the coupling coordination development based on population,
industry, and built-up land spatial agglomeration [26]; spatiotemporal coupling effect of
economy, society, science and technology, and resources [27].

In this study, the coupling theory is used to examine the coupling relationship between
two systems. The coupling degree C indicates the magnitude of the relationship between
the system and its elements. The coupling coordination degree D indicates the magnitude
of the benign coupling between the system or the elements of the system, reflecting the
quality of the coordination status. Here, C and D can be calculated as follows [20]:

C =

√
F1·F2

(F1 + F2)
2 , (9)

where F1 and F2 are the results of the combined evaluation score of the two systems.

T = αF1 + βF2, (10)

where T is the comprehensive coordination index of the contribution of the regional eco-
nomic development and low-carbonisation of energy consumption to the coordination
degree; α and β are the coefficients to be determined. Considering the two systems to be
equally important, α = β = 0.5 in this study.

D =
√

C·T. (11)

To accurately evaluate the coupling and coordination degrees, with reference to the
existing literature [23–25], the coupling coordination degree evaluation criteria are divided
into 10 levels, as indicated in Table 2.

Table 2. Classification of coupling coordination levels.

Serial Number Coupling Coordination Coupling Coordination Level

1 (0.9, 1.0] Extremely coupling coordination
2 (0.8, 0.9] Highly coupling coordination
3 (0.7, 0.8] Moderate coupling coordination
4 (0.6, 0.7] Low coupling coordination
5 (0.5, 0.6] Barely coupling coordination
6 (0.4, 0.5] On the verge of coupling dissonance
7 (0.3, 0.4] Low coupling disorder
8 (0.2, 0.3] Moderate coupling disorder
9 (0.1, 0.2] Highly coupling disorders

10 (0.0, 0.1] Extreme coupling disorders
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3.3. Spatial Correlation Analysis

The spatial autocorrelation analysis method is applied to test the spatial correlation of
the coupling coordination degree at the regional level through the global and local Moran’s
I indices to reflect the spatial agglomeration characteristics and variability [13,24,28]. The
Moran’s I index takes values in the range of [–1, 1]. When Moran’s I > 0, the spatial
distribution of the coupling coordination degree of regions is positively correlated, that is,
high (low) values are adjacent to high (low) values. Moreover, a larger index corresponds
to a higher degree of spatial agglomeration and greater spatial variability between regions.
When Moran’s I < 0, the spatial distribution of the coupling coordination degree of regions is
negatively correlated, that is, high (low) values are adjacent to low (high) values. Moreover,
a smaller index corresponds to a stronger degree of spatial agglomeration and greater
spatial difference between regions. When Moran’s I = 0, the spatial distribution of the
coupling coordination degree of regions is not correlated and exists in a random state. Here,
Moran’s I and Moran’s Ii can be calculated as follows [21,29,30]:

The spatial clustering of the spatial sequence {xi}n
i = 1 is examined through the global

Moran’s I index:

I =
∑n

i = 1 ∑n
j = 1 wij(xi − x)

(
xj − x

)
S2 ∑n

i = 1 ∑n
j = 1 wij

, (12)

where n = 30 is the number of provincial-level administrative regions considered in this
study, and xi is the coupling coordination degree between the regional economic devel-
opment and low-carbonisation of energy consumption of each province. x is the mean of

the coupling coordination degree of the 30 provinces. S2 =
∑n

i = 1(xj − x)
2

n is the sample
variance. wij(W1) is the (i, j) element of the standardised spatial adjacency matrix, obtained
using the first-order Queen matrix with a common boundary:

wij (W1) =

{
1, a common boundary exists between regions i and j
0, no common boundary exists between regions i and j

(13)

The spatial agglomeration around each region i is examined through the local Moran’s
I index, the meaning of which is similar to that of the global Moran’s I index and represents
a decomposition of global Moran’s I:

Ii =
(xi − x)

S2

n

∑
j = 1

wij
(
xj − x

)
. (14)

The significance of Moran’s I index is tested using the Z statistic:

Z =
1 − E(I)√

Var(I)
, (15)

where E(I) and Var(I) are the expectation index and variance, respectively.

3.4. Spatial Durbin Model (SDM)

Based on the spatial model setting method proposed by Anselit et al. [31], an SDM is
established to analyse the factors influencing the coupling effect:

yit = µi + γt + ρw′iyt + X′itβ + w′iXtδ + εit, (16)

where yit is the explained variable (here, the coupling and coordination degrees). Xt is the
explanatory variable (here, the indicator of each factor influencing the coupling degree).
Subscripts i and t denote the province and year, respectively. µi represents the spatial
effects; γt represents the timepoint effect; ρ is the regression coefficient of the spatial lag
term of the explained variable; δ is the regression coefficient of the spatial lag term of the ex-
planatory variable; β is the n-dimensional column vector; and εit is the random disturbance
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term. wij is the normalised spatial adjacency matrix defined in the previous section, and
w′i corresponds to the i − th row of the spatial weight matrix wij . w′iyt and w′iXt represent
the spatial lag terms of the explained and explanatory variable, respectively.

4. Empirical Analysis
4.1. Determination of Weights

The global evaluation matrices of the regional economic development evaluation
and regional low-carbonisation of energy consumption evaluation index systems are con-
structed using the index data of 30 provincial-level administrative regions in China from
2015 to 2019. The global entropy value method is used to calculate the information entropy
e, redundancy g, and weights ω of each indicator in the two evaluation systems using
Equations (1)–(7). The calculation results are summarised in Table 3. The top three indi-
cators with the highest weights in the regional economic development evaluation index
system are the financial revenue per capita (X3), total retail sales of consumer goods per
capita (X6), and GDP per capita (X1), corresponding to the economic and social devel-
opment, economic aggregation and structure, and economic efficiency, respectively. The
top three indicators with the highest weights in the regional low-carbonisation of energy
consumption evaluation index system are the proportion of coal consumption in energy
consumption (Y4), increase or decrease in the electricity consumption pertaining to 10,000
yuan of GDP (Y3), and carbon emissions per capita (Y6), corresponding to the energy
structure, energy consumption, and scale of carbon emissions, respectively. The impact of
the energy structure is the most prominent.

Table 3. Weights of indicators in the regional economic development and low-carbonisation of energy
consumption evaluation index systems.

Regional Economic Development

Evaluation Dimensions Indicator Name Entropy Value Redundancy Weighting

Economic Aggregation
and Structure

GDP per capita (X1) 0.9426 0.0574 0.1460

Proportion of added value of tertiary industry
in GDP (X2) 0.9643 0.0357 0.0908

Economic Efficiency
Financial revenue per capita (X3) 0.8886 0.1114 0.2833

Disposable income of urban residents per capita (X4) 0.9427 0.0573 0.1458

Economic and Social
Development

Urbanisation rate (X5) 0.9634 0.0366 0.0931

Total retail sales of consumer goods per capita (X6) 0.9306 0.0694 0.1765

Total investment in fixed assets per capita (X7) 0.9746 0.0254 0.0645

Regional Low-Carbonisation of Energy Consumption

Evaluation Dimensions Indicator Name Entropy Value Redundancy Weighting

Energy Consumption

Increase or decrease in the energy consumption
per 10,000 yuan of GDP (Y1) 0.9957 0.0043 0.0616

Growth rate of total energy consumption (%) (Y2) 0.9939 0.0061 0.0877

Increase or decrease in the electricity consumption
per 10,000 yuan of GDP (Y3) 0.9874 0.0126 0.1800

Energy Structure

Proportion of coal consumption in energy
consumption (Y4) 0.9707 0.0293 0.4191

Electricity as a share of energy consumption (Y5) 0.9978 0.0022 0.0309

Scale of Carbon
Emissions

Carbon emissions per capita (Y6) 0.9911 0.0089 0.1267

Carbon emissions per 10,000 Yuan of GDP (Y7) 0.9934 0.0066 0.0940
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4.2. Calculation of the Coupling Coordination Degree

The comprehensive scores of the levels of economic development and low-carbonisation
of energy consumption for each of the 30 provincial-level administrative regions in China
from 2015–2019 are calculated using Equation (8). The coordination degrees of the regions
in 2015–2019 are calculated using Equations (9)–(11), and the results are presented in Table 4.
The coupling coordination degree of each provincial-level administrative regions increased
in the study period, with the values for the two systems ranging from 0.3887 to 0.8799 in
2015 and from 0.4751 to 0.9464 in 2019 for the 30 provincial-level administrative regions.
In 2015 and 2019, the provincial-level administrative regions with the top five coupling
coordination degrees were Beijing, Shanghai, Tianjin, Zhejiang, and Jiangsu. The regions
with a high coupling coordination degree in 2015–2019 were the economically developed
provincial-level administrative regions in China. These regions have a more advantageous
economic base, stronger ability to gather capital and talent, higher degree of industrial
intensification, lower energy consumption per unit of output value, and a higher level of
benign coupling and coordination.

Table 4. Coupling coordination degree of regions (2015–2019).

Province 2015 2016 2017 2018 2019

Beijing Municipality 0.8799 0.8872 0.9117 0.9265 0.9464
Tianjin Municipality 0.7637 0.7858 0.7699 0.7606 0.7866

Hebei Province 0.4483 0.4652 0.4928 0.5172 0.5376
Shanxi Province 0.4408 0.4293 0.4217 0.4550 0.4751

Inner Mongolia Autonomous Region 0.5353 0.5564 0.5382 0.4825 0.5324
Liaoning Province 0.5702 0.5582 0.5754 0.5854 0.5953

Jilin Province 0.5278 0.5417 0.5521 0.5661 0.5666
Heilongjiang Province 0.4634 0.4793 0.5008 0.5199 0.5381
Shanghai Municipality 0.8409 0.8635 0.8915 0.9077 0.9180

Jiangsu Province 0.6861 0.6920 0.7136 0.7381 0.7500
Zhejiang Province 0.6940 0.7081 0.7349 0.7584 0.7806

Anhui Province 0.4937 0.5187 0.5557 0.5845 0.6043
Fujian Province 0.6480 0.6582 0.6717 0.6965 0.7207
Jiangxi Province 0.4670 0.4983 0.5277 0.5607 0.5833

Shandong Province 0.5710 0.6006 0.6314 0.6353 0.6512
Henan Province 0.4548 0.4911 0.5253 0.5552 0.5963
Hubei Province 0.5714 0.5794 0.6044 0.6276 0.6497
Hunan Province 0.5002 0.5233 0.5393 0.5665 0.5884

Guangdong Province 0.6628 0.6592 0.6997 0.7173 0.7324
Guangxi Zhuang Autonomous Region 0.4313 0.4591 0.4850 0.4928 0.5182

Hainan Province 0.5836 0.6081 0.6250 0.6373 0.6463
Chongqing Municipality 0.5946 0.6333 0.6453 0.6529 0.6786

Sichuan Province 0.4943 0.5229 0.5601 0.5759 0.5941
Guizhou Province 0.3887 0.4232 0.4579 0.5103 0.5262
Yunnan Province 0.4439 0.4703 0.4913 0.5173 0.5338
Shaanxi Province 0.5220 0.5208 0.5507 0.5887 0.5959
Gansu Province 0.3991 0.4481 0.4280 0.4599 0.4975

Qinghai Province 0.5337 0.5471 0.5569 0.5769 0.6148
Ningxia Hui Autonomous Region 0.4712 0.5085 0.4501 0.4774 0.5028

Xinjiang Uyghur Autonomous Region 0.4964 0.5037 0.5225 0.5407 0.5508

According to the criteria for classifying the degree of coupling coordination (Table 2),
the coupling coordination degrees of each provincial-level administrative regions in 2015
and 2019 are classified, and the results are shown in Figure 1. In 2015, the distribution of
the coupling coordination degree in the 30 provincial-level administrative regions involved
six levels: low coupling disorder, on the verge of coupling dissonance, barely coupled
coordination, low coupling coordination, moderate coupling coordination, and highly
coupling coordination, accounting for 6.67%, 36.67%, 33.33%, 13.33%, 3.33%, and 6.67% of
the provinces, respectively. In 2019, the distribution of the coupling coordination degree
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involved five levels: on the verge of coupling dissonance, barely coupled coordination, low
coupling coordination, moderate coupling coordination, and extremely coupling coordina-
tion, accounting for 6.67%, 50%, 20%, 16.67%, and 6.67% of the provinces, respectively. In
2015, two provinces were low coupling disorder: Gansu and Guizhou, eleven provinces
were on the verge of coupling dissonance: Xinjiang, Sichuan, Anhui, Ningxia, Jiangxi,
Heilongjjiang, Henan, Hebei, Yunnan, Shanxi, and Guangxi. In 2019, no provincial-level
administrative region exhibited a low coupling disorder, and the number of provinces
on the verge of coupling dissonance decreased to two: Gansu and Shanxi. In 2015, no
provincial-level administrative region exhibited an extreme coupling coordination. In 2019,
two provincial-level administrative regions upgraded to an extreme coupling coordination
level: Beijing and Shanghai. The regional coupling coordination level increased in the study
period, indicating that the coupling coordination degree gradually increased over time.

Figure 1. Regional coupling coordination degrees in 2015 and 2019.

Moreover, in 2019, only 23.33% of the regions were at or above moderate coupling
coordination levels. This proportion was higher than that in 2015, but fewer provinces
exhibited higher coupling coordination degrees. In 2019, the seven provincial-level admin-
istrative regions that exhibited at or above moderate coupling coordination degrees, such as
Beijing and Shanghai, corresponded to regions with high levels of economic development
with multiple advantages in terms of the concentration of core elements such as talent,
technology, and capital; mature foundation for economic development; concentration of
highly sophisticated industries; high energy consumption efficiency per unit of output
value; and rapid transformation of low-carbonisation of energy consumption. Regions
with low coupling coordination included the seven provincial-level administrative regions,
such as Chongqing and Shandong provinces. These regions exhibit a reasonable level
of economic development but have a general degree of low-carbon coupling and coordi-
nation with low-carbonisation of energy consumption. The barely coupled coordinated
regions include Henan, Shannxi, and other provinces. These regions have a low economic
development rate, high proportion of energy-intensive industries, and high proportion of
coal consumption in the energy consumption structure. Moreover, the extensive economic
development mode has not been effectively improved yet, and a virtuous cycle of mutual
promotion between economic development and low-carbonisation of energy consumption
has not yet been induced. The provinces on the verge of coupling dissonance include
Gansu and Shanxi. These regions have a weak economic foundation, unbalanced industrial
layout, and slow process of low-carbonisation of energy consumption, and the coupling
coordination between the economic development and low-carbon energy consumption
is low. Shanxi Province is the main coal resource producing area in China. This region
has a high proportion of coal-related industries, and the contradiction between economic
development and high energy consumption and pollution levels is prominent.
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4.3. Spatial Correlation Analysis of Coupling Coordination
4.3.1. Global Spatial Correlation

Based on the spatial adjacency matrix, the spatial correlations of the coupling coordi-
nation degree of 30 provincial-level administrative regions in China from 2015 to 2019 are
calculated and analysed, and the statistical test results of the global Moran’s I index values
and Z values are obtained (Table 5). The results show that the global Moran’s I index of the
coupling coordination degree in each year of the study period is significantly correlated
within the 95% confidence interval, and the Moran’s I index values are greater than zero.
These findings indicate that the coupling coordination degree of the regions is positively
correlated in terms of the spatial distribution and significant spatial clustering characteris-
tics that exist: Regions with high (low) coupling coordination degrees are surrounded by
neighbouring regions with high (low) coupling coordination degrees. The global Moran’s
I index value was 0. 252 in 2015, and then increased yearly, reached a maximum value
of 0. 329 in 2018. This value slightly decreased to 0. 315 in 2019, although a predomi-
nantly increasing trend was observed in the study period. In practice, the spatially positive
correlation characteristics of the coupling coordination degree became more significant
owing to the increasing spillover effects of the spatial flow of production factors, synergistic
development of economic industries, cross-regional transfer of energy supply and demand,
and public environmental policies between regions.

Table 5. Test results of the global Moran’s I index (2015–2019).

Year I Z p-Value

2015 0.252 2.647 0.004
2016 0.254 2.673 0.004
2017 0.281 2.919 0.002
2018 0.329 3.373 0.000
2019 0.315 3.246 0.001

4.3.2. Local Spatial Correlation

The global spatial autocorrelation can reflect only the overall existence of a positive
spatial correlation in the coupling coordination of regions. Therefore, in this study, the
local spatial agglomeration characteristics of each provincial-level administrative region
are examined using the local autocorrelation method. The local spatial agglomeration char-
acteristics are classified into four correlation patterns according to the local Moran’s I index:
H–H (high–high), L–H (low–high), L–L (low–low), and H–L (high–low) agglomeration [32].
The local Moran’s I index scatterplot is derived, and the first and last years of the study
period (2015 and 2019) are selected to visualise the spatial agglomeration characteristics of
the coupling coordination degree for each spatial unit, as shown in Figure 2. The names
of provincial-level administrative region in the Figure 2 are abbreviations, for example,
BeiJing is abbreviated as BJ. The local Moran’s I indices of the 30 regions in the study period
are mainly distributed in the first and third quadrants, indicating that most provincial-level
administrative regions exhibited a strong positive spatial correlation with their neighbour-
ing provinces. The eastern and western provinces are mainly distributed in the H–H and
L–L agglomeration area of the Moran’s scatterplot, respectively. The spatiotemporal leap
method proposed by Rey [33] was used to analyse the changes in the spatial correlation
pattern of the coupling coordination within the study area. The spatiotemporal leap paths
of the observed regions mainly include leap, leap to the adjacent quadrant, or leap to the
interphase quadrant. In addition, no leap, but positive or negative correlation with the sur-
rounding regions is also observed. A comparison of the 2015 and 2019 Moran scatterplots
shows that the spatial correlation pattern of the regional coupling coordination was highly
stable within the study period, most provinces experienced no leap changes, and two of
the 30 provincial-level administrative regions leaped to the first and third quadrants. This
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finding indicates that the positive spatial correlation effect of the coupling coordination is
significant. That is, areas with a similar coupling coordination degree tend to cluster [34].

Figure 2. Moran scatterplots of the coupled coordination in 2015 and 2019.

Table 6 summarisesthe spatial distributions corresponding to the local Moran scatter-
plot for 2015–2019. The different spatial correlation patterns are analysed.

Table 6. Regional distribution of the local Moran’s I index (2015–2019).

Year H–H (High–High) L–H (Low–High) L–L (Low–Low) H–L (High–Low)

2015
Shanghai, Jiangsu,

Zhejiang, Beijing, Tianjin,
Fujian, Hainan

Anhui, Hebei,
Jiangxi

Guizhou, Shanxi, Ningxia, Qinghai, Gansu,
Jilin, Shaanxi, Yunnan, Heilongjiang, Inner

Mongolia, Xinjiang, Guangxi, Henan,
Sichuan, Hunan

Guangdong,
Shandong, Hubei,

Liaoning, Chongqing

2016
Shanghai, Jiangsu,

Zhejiang, Beijing, Tianjin,
Fujian, Hainan

Anhui, Hebei,
Jiangxi

Guizhou, Shanxi, Ningxia, Qinghai, Gansu,
Jilin, Shaanxi, Yunnan, Heilongjiang, Inner

Mongolia, Xinjiang, Guangxi, Henan,
Sichuan, Hunan, Liaoning

Guangdong,
Shandong, Hubei,

Chongqing

2017
Shanghai, Jiangsu,

Zhejiang, Beijing, Tianjin,
Fujian, Hainan

Anhui, Hebei,
Jiangxi

Guizhou, Shanxi, Ningxia, Qinghai, Gansu,
Jilin, Shaanxi, Yunnan, Heilongjiang, Inner

Mongolia, Xinjiang, Guangxi, Henan,
Sichuan, Hunan, Liaoning

Guangdong,
Shandong, Hubei,

Chongqing

2018

Shanghai, Jiangsu,
Zhejiang, Beijing, Tianjin,

Fujian, Hainan,
Shandong

Anhui, Hebei,
Jiangxi, Hunan

Guizhou, Shanxi, Ningxia, Qinghai, Gansu,
Jilin, Shaanxi, Yunnan, Heilongjiang, Inner

Mongolia, Xinjiang, Guangxi, Henan,
Sichuan, Liaoning

Guangdong, Hubei,
Chongqing

2019

Shanghai, Jiangsu,
Zhejiang, Beijing, Tianjin,

Fujian, Hainan,
Shandong

Anhui, Hebei,
Jiangxi

Guizhou, Shanxi, Ningxia, Qinghai, Gansu,
Jilin, Shaanxi, Yunnan, Heilongjiang, Inner

Mongolia, Xinjiang, Guangxi, Henan,
Sichuan, Hunan, Liaoning, Hunan

Guangdong, Hubei,
Chongqing

• H–H agglomeration: The H–H agglomeration area included economically developed
regions such as Beijing, Shanghai, Jiangsu, and Zhejiang. The coupling coordination
degrees of these provinces and neighbouring provinces were high, exhibiting a signifi-
cant positive correlation, and the spatial association manifested as a diffusion effect
that catalyses the economic development and low-carbonisation of energy consump-
tion of the neighbouring regions. The number of H–H agglomeration provincial-level
administrative regions increased from 7 in 2015 to 8 in 2019, and the newly added
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region was Shandong province. Under the background of the national maritime power
strategy, Shandong Province, as a key area at the intersection of the Maritime Silk
Road and the New Asia–Europe Continental Bridge Economic Corridor, is a critical
juncture linking domestic and international markets, as well as an important pivot
for major strategies such as the “Regional Comprehensive Economic Partnership”
and “One Belt, One Road”. In recent years, positive progress has been made in Shan-
dong Province regarding the upgrading of traditional industries, the development of
high-tech industries, and the green and low-carbon transformation of energy sources,
thereby contributing to the continuous enhancement of economic and sustainable
development. In addition, although Hainan embraces relatively backward economic
development, with the continuous promotion of policy strategies such as the strong
maritime nation, Pan-Pearl River Delta economic circle, free trade port, and clean
energy island construction, Hainan has made remarkable achievements in improving
infrastructure construction, promoting industrial upgrading and optimization, giving
full play to the advantages of marine resources, developing characteristic economy,
and utilizing clean energy in recent years, accompanied by the continuous improve-
ment in economic development and green and low-carbon level.

• L-H agglomeration: The L-H agglomeration area included three provinces: Anhui,
Hebei, and Jiangxi Provinces. The coupling coordination in these provinces was low,
whereas the coupling coordination in the neighbouring provinces was relatively high,
suggestive of a negative correlation. The spatial association manifested as a transi-
tional effect. In the context of the coordinated development of Beijing, the gradient
transfer of industries from Beijing to Tianjin has occurred. Moreover, the proportion of
energy-intensive production enterprises in the secondary industry in Hebei Province
is high, with most of them being labour-intensive industries, with significant nega-
tive environmental effects [35]. Consequently, the coupling coordination is low, and
Jiangxi Provinces’ relative backward regions in the Yangtze River Economic Zone and
China’s southern Pan-Pearl River Delta region in terms of economic development.
These regions must be integrated into the regional synergistic development strategy,
and their practical cooperation with neighbouring provinces must be strengthened in
domains such as infrastructure connectivity, industrial development layout planning,
and ecological environmental protection, to promote high-quality regional economic
and social development.

• L–L agglomeration: The L–L agglomeration area included western provinces such
as Qinghai and Gansu, main coal-producing provinces such as Inner Mongolia and
Shanxi, old industrial bases in northeast China such as Heilongjiang and Jilin, and
relatively underdeveloped and densely populated provinces such as Henan and
Sichuan. The degree of coordination in these provinces and neighbouring provinces
was low, suggestive of a positive correlation, and the spatial correlation exhibited
a trickle-down effect. China’s central and western regions are still dominated by
traditional energy-intensive industries, and the overall economic development and
technical levels are low. Although Inner Mongolia, Shanxi, and other provinces are
rich in energy and mineral resources, the unbalanced industrial layout of coal resource-
related industries and other heavy industries has led to critical problems associated
with high energy consumption, high pollution, and high emissions. Jilin and other
north-eastern provinces of China mainly use traditional heavy industries as the driver
of economic growth. Consequently, these regions have failed to incorporate high-end
manufacturing and high-tech industries, and are lagging in the process of economic
development and low-carbonisation of energy consumption. Nevertheless, the huge
population base of some provinces such as Henan has imposed relative difficulties on
these areas in economic development and low-carbon energy transformation at the
per capita level.

• H–L agglomeration: The H–L agglomeration area included Chongqing, Guangdong,
and Hubei provinces. These provinces exhibited a high degree of coordination, but a
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low degree of coordination with their neighbouring provinces, suggestive of a neg-
ative correlation and polarisation effect in spatial correlation. Guangdong Province
has undergone rapid economic development: In recent years, its high precision in-
dustries, advanced manufacturing industries, and high-end service industries have
been growing in synergy, and the energy consumption and carbon emissions per unit
of GDP have been decreasing. However, the spatial spillover effect has not been
fully exploited, and the driving effect of this region on the neighbouring provinces is
insufficient. Consequently, this region is considerably different from its neighbouring
regions. In recent years, Hubei Province has embraced the rapid development in
high-tech manufacturing and strategic emerging industries, with strong growth in
the investment of infrastructure and manufacturing greatly driving the economic
development to rank among the best. In addition, the process of low-carbonisation
of energy consumption has been accelerating, standing out among the neighbouring
provinces. In terms of the strategic promotion of the integrated economic development
of Chengdu and Chongqing, the economic development rate and low-carbonisation
level of energy use of Chongqing Municipality is high in the western region, leading
to a significant difference in the coupling coordination with neighbouring provinces.

4.4. Analysis of Driving Factors
4.4.1. Selection of Explanatory Variables

The coupling coordination between the economic development level and low-carbonisation
of energy consumption is affected by multiple factors. In this study, a spatial regression
model is used to identify and explore the driving factors in the coupling effect. The factors
that drive the coupling coordination are related to the regional economic level, urbanisa-
tion process, energy structure, industrial structure, and science and innovation capability.
The coupling level is considered as the explained variable, and five explanatory variables
that drive the coupling effect are selected with reference to the literature [6–8,10,11,36]
and consideration of the actual situation of regional economic development and energy
consumption in China. The regional economic level is measured by the regional real GDP
per capita indicator (Z1). To accurately reflect the actual economic level of each province in
recent years and eliminate the effect of inflation, the real GDP per capita of each province is
obtained by deflating the nominal data published by the National Bureau of Statistics for
2015. The level of regional urbanisation process is measured by the regional urbanisation
rate (Z2). The regional energy structure is measured by the proportion of non-coal energy
in the energy consumption (Z3). The regional industrial structure is measured by the index
of the advanced regional industrial structure [37], i.e., the ratio of tertiary industry value
added to the secondary industry value added (Z4). The regional science and technology
innovation capacity is measured by the index of R&D investment intensity (Z5). The data
pertaining to these indicators are obtained from the National Bureau of Statistics, Energy
Statistical Yearbook, and China Science and Technology Statistical Yearbook or calculated
from the abovementioned data sources. Table 7 summarises the descriptive statistics of the
explanatory variables. In the spatial regression analyses, the data are standardised using
Equations (2) and (3) to eliminate the effect of the magnitude.

Table 7. Descriptive statistics of indicators driving the coupling effect.

Driver Measurement Layer Indicator Name Variable
Name

Average
Value

Standard
Deviation

Minimum
Value

Maximum
Value

Level of Coupling between
the Two Systems

Degree of coupling between
the two systems Y 0.589 0.122 0.389 0.946

Regional Economic Level Real GDP per capita Z1 5.632 2.565 2.595 14.60

Regional Urbanisation Level Urbanisation rate Z2 0.598 0.111 0.42 0.883
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Table 7. Cont.

Driver Measurement Layer Indicator Name Variable
Name

Average
Value

Standard
Deviation

Minimum
Value

Maximum
Value

Regional Energy Consumption
Structure

Proportion of non-coal energy
in energy consumption Z3 0.634 0.143 0.363 0.984

Regional Industrial Structure Ratio of tertiary to secondary
value added Z4 1.452 0.749 0.801 5.234

Regional Level of Investment
in Science and Innovation R&D investment intensity Z5 1.776 1.126 0.454 6.315

4.4.2. Spatial Model Setting Tests

The commonly used econometric analysis models for spatial panels include the spatial
autoregressive model (SAR), SDM, and spatial error model (SEM). According to the model
selection principles presented by Elhorst [38], the Lagrange multiplier (LM) test, robust
(R)-LM test, Wald test, and Hausman test are applied to determine the preferred models
(Table 8). According to the LM test results, the LM lag and R-LM lag test statistics are
significant at the 1% level, and the LM error and R-LM error test statistic are significant
below the 5% level, favouring the SDM model. The likelihood ratio (LR) test results for
whether the SDM can be simplified to the SAR and SEM models are not significant. The
Wald test results reject the original hypothesis at the 5% level, indicating that the SDM is
preferred over the SEM and SAR models. The Hausman test results significantly reject
the original hypothesis at the 1% level, indicating that a fixed-effects model must be used.
The results of the LR test indicate that double fixed-effects are better than individual
fixed-effects and point-in-time fixed-effects. Considering the differences in the economic
meanings and regression results of the different fixed-effects SDM, three fixed-effects SDM
are established in this study to obtain satisfactory fit results.

Table 8. Results of spatial econometric model setting tests.

Test Test Index Statistic Df p-Value

LM Test

Spatial Error

Moran’s I 86.249 1.000 0.000
Lagrange multiplier 6.652 1.000 0.010

Robust Lagrange multiplier 4.402 1.000 0.036

Spatial Lag

Lagrange multiplier 10.848 1.000 0.001
Robust Lagrange multiplier 8.598 1.000 0.003

LR Test

Irtest SDM SAR

LR chi2 (5) 5.11 0.403

Irtest SDM SEM

LR chi2 (5) 6.73 0.242

Wald Test

Wald Test for SEM

Sem chi2 (5) 8.19 0.146

Wald test for SAR

Sar chi2 (5) 10.53 0.062

Hausman Test LR chi2 (5) 18.83 0.002

4.4.3. Analysis of Spatial Regression Results

Based on the spatial adjacency matrix (W1), the results of the SDM regressions for
the three fixed-effects of individual fixed, time fixed, and individual time double fixed
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configurations are presented in Table 9. Although the LR test results for the SDM indicate
that the double fixed effect outperforms individual fixed effect and time fixed effect, the
model regression results show that the time fixed effect has a better fit R2, and the spatial
spillover coefficient of the coupling level is positive. Moreover, the spatial rho passes the
10% significance level test. In contrast, the spatial rho results for the individual fixed effect
and double fixed effect are not significant. Therefore, the SDM with time fixed-effects
is selected to analyse the drivers of the coupling effect. According to the results of the
SDM regression with time fixed-effects (Table 10), the spatial spillover coefficient of the
coupling level is 0.176, indicating that the regional coupling level exhibits a significant
agglomeration effect. The coupling level of a certain province is expected to be influenced
by the superimposed economic activities of the surrounding provinces.

Table 9. Regression Results of SDM with Fixed-Effects.

SDM (Spatial Fixed-Effects) SDM (Time Fixed-Effects) SDM (Spatial and Time Fixed-Effects)

Z1 0.113 (0.95) 0.380 *** (7.71) 0.0954 (0.82)
Z2 0.664 *** (4.14) 0.233 *** (6.00) 0.746 *** (4.70)
Z3 0.296 *** (6.00) 0.282 *** (12.63) 0.310 *** (6.08)
Z4 0.540 *** (4.59) −0.0922 ** (−3.11) 0.601 *** (4.94)
Z5 0.251 *** (3.59) 0.195 *** (4.56) 0.234 *** (3.42)

W*Z1 0.139 (0.65) −0.213 * (−1.94) 0.350 (1.44)
W*Z2 0.00938 (0.04) −0.104 * (−1.72) 0.475 * (1.67)
W*Z3 −0.0988 (−1.33) 0.101 * (1.85) 0.0495 (0.53)
W*Z4 −0.535 ** (−2.07) −0.0829 (−1.41) −0.0897 (−0.29)
W*Z5 0.163 (1.15) 0.235 *** (2.75) 0.0215 (0.14)

rho 0.0949 (0.87) 0.176 * (1.66) −0.0119 (−0.10)
Variance sigma2_e 0.000365 *** (8.65) 0.00130 *** (9.06) 0.000345 *** (8.66)

R2 0.881 0.966 0.878
N 150 150 150

t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 10. Results of the decomposition of SDM with point-in-time fixed-effects (W1 matrix).

Driver Measurement Layer Explanatory Variables
SDM (Time Fixed-Effects) W1

LR Direct LR Indirect LR Total

Regional Economic Level Real GDP per capita (Z1) 0.375 *** −0.170 0.205
(7.15) (−1.45) (1.43)

Regional Urbanisation Level Urbanisation rate (Z2)
0.228 *** −0.0734 0.155 **

(5.93) (−1.06) (2.09)

Regional Energy Consumption
Structure

Proportion of non-coal energy
in energy consumption (Z3)

0.291 *** 0.174 *** 0.465 ***
(13.98) (2.79) (7.54)

Regional Industrial Structure Ratio of tertiary to secondary
value added (Z4)

−0.0977 *** −0.110 −0.208 **
(−3.42) (−1.56) (−2.45)

Regional Level of Investment in
Science and Innovation

R&D investment intensity (Z5) 0.205 *** 0.315 *** 0.520 ***
(5.03) (2.99) (4.21)

** p < 0.05, *** p < 0.01.

According to the existing research results, because the SDM spatial spillover coefficient
rho 6= 0 owing to the influence of the spatial lag term feedback effect and other factors,
the influence of the explanatory variables of the SDM on the explained variables is highly
complex. Moreover, the estimated coefficients of the explanatory variables are biased and
do not accurately reflect the true degree of influence among the explanatory variables.
Therefore, the regression coefficient of each explanatory variable cannot be directly used
to reflect the relationship between the spatial model variables and explain their economic
significance [39–43]. Lesage and Pace (2009) recommended the use of the partial differential
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method to decompose and calculate the coefficients for the direct, indirect, and total effects
of the explanatory variables of the regression model to explain and analyse the spatial
spillover effects more accurately and rigorously [42]. Therefore, in this study, the partial
differential method is used to decompose the direct and indirect effects of the explanatory
variables affecting the coupling degree, and the calculation results are presented in Table 10.

Table 10 indicates that the coefficients of the direct effects of the drivers pass the
1% significance test. The regional economic level, energy consumption structure, and in-
vestment level of scientific and technological innovations positively influence the coupling
degree. The level of regional urbanisation and industrial structure negatively influence
the coupling degree. Among the total effect coefficients, the regional energy consumption
structure and level of investment in science and innovation pass the 1% significance tests,
and the urbanisation level and industrial structure pass the 5% significance tests, respec-
tively. Among the indirect effect coefficients, the energy consumption structure and level
of investment in science and innovation pass the 1% significance tests, respectively. The
following conclusions can be derived:

1. The direct effect coefficient of the real GDP per capita is 0.375, indicating that increased
regional real GDP per capita promotes the coupling effect. If the other explanatory
variables remain unchanged and the regional per capita real GDP increases by 1%,
the coupling degree in the province can increase by 0.375 percentage points.

2. The direct effect coefficient and total effect coefficient of the urbanisation rate are
0.228 and 0.155, respectively, indicating that increased urbanisation rate promotes
the coupling effect. If the other explanatory variables remain unchanged and the
urbanisation rate increases by 1%, the coupling degree in the province will increase
by 0.228 percentage points under the direct effect. The impact of urbanization on the
development of the low-carbon economy is mainly reflected in two aspects: economic
development and carbon dioxide emissions. Based on empirical analysis, it has been
concluded in previous studies that urbanisation promotes economic development [44],
but there are divergences in the impact on carbon dioxide emissions [45,46], along
with a “U” curve relationship between urbanisation and the development efficiency of
the low-carbon economy [47]. Moreover, the implementation of urbanisation policies
plays a significant role in promoting low-carbon technological innovation [48].

3. The direct effect coefficient and total effect coefficient of the proportion of non-coal
energy in the energy consumption are 0.291 and 0.465, indicating that the low coal
consumption structure of the energy consumption promotes the coupling effect. If
the other explanatory variables remain unchanged and the proportion of non-coal
energy in the energy consumption increases by 1%, the coupling degree of economic
development and energy low-carbon in the province will be increased by 0.291 per-
centage points in the direct effect. The coefficient of the spatial spillover effect of
this explanatory variable is 0.174, indicating that an increase in the regional share of
non-coal energy in energy consumption has a significant positive spatial spillover
effect on the coupling degree in neighbouring provinces.

4. The direct effect coefficient of the ratio of tertiary to secondary industry value added
is −0.0977, and the total effect coefficient is −0.208, indicating that the advanced
industrial structure negatively influences the coupling degree. In other words, the
regional industrial structure and coupling effect present an unbalanced state of spatial
mismatch. This phenomenon likely occurs because, first, the advanced industrial
structure limits the economic growth, with this impediment being the weakest in
the eastern region, less weak in the western region, and strongest in the central and
western regions [49]. Second, there exist significant differences in the economic base,
industrial layout, and innovation capacity of different provincial-level administrative
regions in China, and the index of the advanced industrial structure does not reflect
the synergistic development capacity and industrial maturity of various industries
in the region. Third, an inverted-U type nonlinear relationship exists between the
industrial structure transformation and energy consumption, and the inflection points
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of different regions are not consistent, exhibiting the heterogeneity and unevenness
among regions [50,51].

5. The direct effect coefficient and total effect coefficient of the R&D investment inten-
sity are 0.205 and 0.520, indicating that the level of regional investment in science
and innovation promotes the coupling degree. If the other explanatory variables
remain unchanged and the intensity of R&D investment increases by 1%, the cou-
pling degree in the region will increase by 0.205 percentage points under the direct
effect. The coefficient of the spatial spillover effect of this explanatory variable is
0.315, indicating that an increase in the regional level of investment in science and
innovation has a significant positive spatial spillover effect on the coupling degree in
neighbouring provinces.

4.4.4. Robustness Tests

Two methods are applied for robustness testing: transforming the spatial weight
matrix and replacing the explanatory variables.

1. Transforming the spatial weight matrix. The reciprocal spatial weight matrix of the
geographical distance (W2) is used to construct the time fixed effect SDM of the to
verify the robustness of the findings. The elements on the nondiagonal of W2 are the
reciprocal of the geographic distance between the central locations of two provincial-
level administrative regions, with the diagonal elements being zero [40,52,53]:

Wij (W2) =

{
1

dij
, i 6= j

0, i = j
(17)

Table 11 presents the estimation results of the time fixed effect SDM constructed
using W2 and effect decomposition using the partial differential method. A comparison of
Tables 10 and 11 indicates that the coefficients of the explanatory variables in the model
regression results of the two spatial weight matrices have the same sign, and the significance
does not change significantly, indicating that the SDM for the coupling level is robust.

Table 11. Results of the decomposition of SDM effects with timepoint fixed-effects (W2 matrix).

Driver Measurement Layer Explanatory Variables
SDM (Time Fixed-Effects) W2

LR Direct LR Indirect LR Total

Regional Economic Level Real GDP per capita (Z1) 0.363 *** −0.578 −0.216
(6.86) (−1.19) (−0.43)

Regional Urbanisation Levels Urbanisation rate (Z2)
0.133 *** −1.024 −0.891

(2.95) (−1.60) (−1.34)

Regional Energy Consumption
Structure

Proportion of non-coal energy
in energy consumption (Z3)

0.381 *** 1.372 * 1.754 **
(10.14) (1.96) (2.40)

Regional Industrial Structure Ratio of tertiary to secondary
value added (Z4)

−0.107 *** −0.802 * −0.909 **
(−3.04) (−1.85) (−1.99)

Regional Level of Investment in
Science and Innovation

R&D investment intensity (Z5) 0.275 *** 1.738 * 2.013 *
(5.11) (1.67) (1.86)

* p < 0.1, ** p < 0.05, *** p < 0.01.

2. Replacing the explanatory variables: To verify the robustness and reliability of the
empirical results, the disposable income of urban residents per capita is used as a
substitute explanatory variable to replace GDP per capita. Table 12 presents the results
of the decomposition of the effects of the SDM with the replacement of the explained
variables. A comparison with Table 10 shows that the direction and significance of the
regression coefficients of the explanatory variables do not change significantly, which
verifies the robustness of the model and stability of the study results.
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Table 12. Results of the decomposition of the effects of the SDM with point-in-time fixed-effects
(explained variable: the disposable income of urban residents per capita, W1 matrix).

Driver Measurement Layer Explanatory Variables
SDM (Time Fixed-Effects) W1

LR Direct LR Indirect LR Total

Regional Economic Level Real GDP per capita (Z1) 0.266 *** −0.156 0.110
(3.60) (−0.99) (0.80)

Regional Urbanisation Level Urbanisation rate (Z2)
0.300 *** −0.185 ** 0.115

(6.66) (−2.06) (1.33)

Regional Energy Consumption
Structure

Proportion of non-coal energy
in energy consumption (Z3)

0.275 *** 0.252 *** 0.527 ***
(10.85) (4.15) (9.45)

Regional Industrial Structure Ratio of tertiary to secondary
value added (Z4)

−0.116 *** −0.205 *** −0.321 ***
(−3.07) (−3.35) (−4.90)

Regional Level of Investment in
Science and Innovation

R&D investment intensity (Z5) 0.290 *** 0.411 *** 0.701 ***
(6.94) (4.45) (7.56)

** p < 0.05, *** p < 0.01.

5. Conclusions and Suggestions

A comprehensive scoring index system for the levels of economic development and
low-carbonisation of energy consumption in 30 province-level administrative regions in
China from 2015 to 2019 is established using the global entropy method. The objective is
to explore the coupling and coordination degrees, spatial and temporal evolution charac-
teristics, and the main driving factors using the coupling coordination degree model and
spatial econometric analysis methods. The following conclusions are derived:

1. The coupling coordination degree in each provincial-level administrative region in-
creased in the period 2015–2019. The top five provinces in terms of the coupling
coordination degree are Beijing Municipality, Shanghai Municipality, Tianjin Munici-
pality, Jiangsu Province, and Zhejiang Province. In 2019, Guizhou, Guangxi, Ningxia,
Gansu, and Shanxi ranked the bottom five provinces in terms of low-carbon eco-
nomic development. Therefore, it is essential to strengthening policy formulation to
promote economic development, industrial structure optimisation, energy structure
adjustment, and low-carbon consumption reduction.

2. The coupling coordination levels of the 30 provinces in 2015 included low coupling
disorder, on the verge of coupling dissonance, barely coupled coordination, low
coupling coordination, moderate coupling coordination, and highly coupling coordi-
nation. In 2019, two provinces upgraded to extremely coupling coordination. During
the study period, the overall coupling coordination level increased, indicating that the
coupling coordination degree between regional economic development and energy
consumption low-carbonisation in China gradually increased over time. However,
in 2019, the proportion of provinces with coupling coordination below the moderate
coupling coordination level remains high at 76.56%. Therefore, in future policymaking,
policymakers should take the imbalance and inadequacy of development between
regions into account, giving more priority to enhancing the coordinated development
of economic and low-carbon energy consumption in these provinces with a lower
level of coupling.

3. The global SAR results indicate that the global Moran’s I indices of the coupled co-
ordination from 2015 to 2019 are significantly correlated within the 95% confidence
interval, and the I values are greater than zero, indicating that the coupled coordi-
nation is positively correlated in terms of the spatial distribution and has significant
spatial clustering characteristics. The global Moran’s I index value increased from
0.252 to 0.315 during the study period, indicating that the spatially positive correla-
tion between the regional economic development and low-carbonisation of energy
consumption became more significant. Therefore, in future policy formulation, the
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role of the spatial correlation effect of coupling coordination should be given full play
to strengthen the complementary links and positive influence between provinces and
neighbouring provinces in terms of economy, society, energy, industry, technology,
and talent.

4. The local SAR results show that the local Moran’s I indices of the 30 provincial-level
administrative regions in China are distributed in the first and third quadrants during
the study period, indicating that the coupling coordination of most provincial-level
administrative regions exhibits a strong positive spatial correlation with the neigh-
bouring provinces. The eastern and western provincial-level administrative regions
are mainly distributed in the H–H and L–L agglomeration areas of the Moran’s scat-
terplot, respectively. In the study period, the spatial correlation pattern of the regional
coupling coordination has a high stability, with most regions not leaping, and two of
the 30 provincial-level administrative regions leaping to the first and third quadrants
from 2015 to 2019. This finding indicates that the positive spatial correlation effect
of the coupling and coordination of the system is strengthened. There are significant
differences in the spatial distribution of the coupling coordination degree among
provinces, as shown by the clustering characteristics of provinces with higher and
lower levels of coupling, while the driving effects of some provinces with higher
coupling levels on neighbouring provinces are limited. In this sense, there is no doubt
that issues such as the uneven development of regional economies, societies, energy
consumption, and the environment have hindered the smooth development of China’s
low-carbon economy. Therefore, provincial districts should promote the process of
low-carbon economic development based on the status quo and difficulties of local de-
velopment, and strengthen inter-provincial policy interchange and mutual promotion,
dynamic flow of production factors, emission as well as carbon reduction in energy
consumption, industrial integration and development, and synergistic innovation
in science and technology, in order to narrow regional differences comprehensively,
and to advance the balanced development of China’s green, low carbon, and circular
economic system.

5. The results of the decomposition of the effects of the SDM show that the improve-
ment in the regional economic level, advancement of urbanisation process, low coal
consumption structure of energy, and increased level of investment in science and
technological innovations promote the increase in the coupling degree. As the core
of policy formulation and implementation, the factors elaborated above are critical
to promoting the development of a high-quality low-carbon economy. The low coal
consumption structure of regional energy and the investment level in science and
innovation impose a significant positive spatial spillover effect on the coupling degree
of neighbouring provinces. Therefore, it is crucial to step up in-depth cooperation
between local governments in the fields of energy supply and demand, clean energy
technologies, and scientific research and innovation, to give full play to synergy-
driven effect. The advanced industrial structure adversely influences the coupling
degree. This phenomenon occurs owing to the heterogeneity of regional industrial
development in terms of coordination, balance, and maturity, and interactive rela-
tionship between industrial structure transformation, economic growth, and energy
consumption in different regions. Given the differences in regional resource endow-
ments and disparate stages of economic development, on the one hand, it is essential
for provinces to implement the strategies of industrial structure transformation and
upgrading in accordance with local conditions, and the enhancement of local govern-
ment governance capacity and policy support are accelerated, to give full play to the
positive role of local governments in energy conservation and emission reduction dur-
ing industrial structure transformation [50]. On the one hand, in provinces dominated
by heavy industries, it is necessary to accelerate the promotion of energy conservation
and carbon reduction in traditional industries, contribute to technological innovation
and equipment upgrading of advanced production capacity, and eliminate outdated
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production capacity with high energy consumption as well as pollution. Regard-
ing the provinces with new technology-based industries as the primary driver of
development, it is necessary to further integrate high-quality elements, reinforce the
investment in scientific research, and step up the transformation efficiency of R&D and
capabilities and achievements to encourage the green, low-carbon and high-quality
development of technology-intensive industries.

Several limitations of this study can be addressed and deepened in future work. There
are several limitations in this study which should be addressed in future research. Firstly,
in this paper, the spatiotemporal coupling effect of regional economic development and
de-carbonisation of energy is investigated from the provincial perspective, which could be
extended to the urban discrepancy to analyse the spatiotemporal characteristics in more
detail. Second, the evaluation index system needs to be further improved. For example, the
dimensions of the regional ecological environment can be taken into further account, and
indicators for measuring the development of clean energy can be added to the impact of
energy structure. Third, several key factors related to the coupling coordination between
the economic development level and low-carbonisation of energy consumption have been
selected in this paper to identify its driving effect, but the government policy, environmental
regulation, and other factors should be further considered in future research.
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