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Abstract: Quantifying and spatial mapping the ecosystem services driven by land use change will
help better manage land and formulate relevant ecological protection policies. However, most studies
to date just focused on water supply services, and ignore water demand services and their supply–
demand coupling mechanisms. Ecosystem service flow could be used to evaluate the imbalance
between water supply and demand. Therefore, this study takes the Yellow River Basin as the research
object to quantify the supply, demand, and spatial flow of water provision services. The results
showed that land use and land cover (LULC) played a critical role in the spatial distributions of
water supply and demand in the Yellow River Basin. The total water supply was 3.03 × 1011 m3,
with a range of 3.29 × 108 m3 to 7.35 × 1010 m3 for different sub-watersheds. The spatial patterns
of water supply were strongly different from those in water demand, resulting in obvious spatial
mismatches. There was a higher water demand for constructional areas and agricultural lands,
which had relatively lower water supply. Most water areas and natural lands provide much more
water supply than demand. We used a water flow process to assess the water provision service
between water supply side and demand side. The water flow process suggested that the Yellow
River Basin had an obvious imbalance between water supply and demand depending on land use
and populations, which would help policy makers to manage water resources through optimizing
land management in different cities and finally achieving a balance between water supply side and
demand site.

Keywords: ecosystem services flow; water supply; water demand; InVEST model; the Yellow
River Basin

1. Introduction

Land use change is cumulatively considered the most important driving force in
global environmental change [1]. A central challenge for sustainability is how to preserve
water resources and the services that they provide us while enhancing food production
to meet the needs of the increasing population. With the rapid development of human
society, the imbalance between food supply and demand caused by population growth has
led to major changes in land use and land cover (LULC), especially for the expansion of
agricultural land and urbanization [1–3]. At the same time, urban expansion and economic
development have caused major changes in LULC [4,5]. Changes in land use lead to uneven
distribution of water resources, cause imbalances between water supply and demand, and
other problems, seriously restricting the sustainable development of mankind [6]. Water
shortage most severely restricts socio-economic development [7], especially in urban areas
and arid and semi-arid areas (i.e., northwest China).

Land management is a response to a series of environmental problems caused by
climate change [8] and anthropogenic activities, such as the imbalance of water supply and
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demand. By evaluating the ecosystem services driven by land use change, it is possible
to effectively optimize the allocation of limited land resources, improve the ecological
environment, and achieve the harmonious development of economy, society, and ecology.
Land use changes affect the imbalance between water supply and demand [9]. For example,
the expansion and high intensity use of agricultural land can lead to an increase in irrigation
water, especially in the dry season and arid areas; industrialization and urbanization can
also aggravate the increase in urban water use to achieve high income. Therefore, changes
in land use lead to serious conflicts between the supply and demand of water resources
in some areas. Reasonable land use could make full use of water resources and maintain
the balance between supply and demand. In addition, land use changes could be used to
effectively explore the driving mechanism of changes in ecosystem services.

To better characterize the relationship between supply and demand of ecosystem
services, we introduce ecosystem service flows to quantify the spatial flow of ecosystem
services. Ecosystem service flow characterization is the spatiotemporal relationship be-
tween ecosystem service in supply and demand. So far, most of the current studies are
based on the characteristics of temporal and spatial changes in the supply of ecosystem
services, ignoring the demand for ecosystem services. Compared with other ecosystem
service flows, relevant research has been gradually carried out on ecosystem water supply
service flows.

A previous study assessed the water supply service flow along the river basin [10],
and the results showed that land use change is the main driving factor resulting in the
imbalance of supply and demand. Li et al. (2017) used the InVEST model to link historical
water consumption statistic data to evaluate the balance between supply and demand of
freshwater resources from 2000 to 2010 in China [11]. However, most researchers ignored
the associations between water supply and demand and include the mismatch in the
scale of supply and demand [12]. In addition, few studies determined the relationships
between water supply and demand considering the impact of upstream water. Therefore,
Chen et al. (2020) proposed a framework to illustrate the flow of water supply services in
the Yanhe watershed [10], which is included in the Yellow River Basin. In order to quantify
the ecosystem service flow of the whole river, we evaluated water supply, demand, and spa-
tial flows of water supply services based on land use changes in the Yellow Basin according
to the framework developed by previous study [10], which would fill this research gap
about the decoupling relationships between water supply and demand. We aim to (1) assess
the spatial patterns of water supply and demand of the Yellow River Basin; (2) evaluate
the flow process between water supply and demand; (3) analyze the main drivers of
changes between water supply and demand, and provide some useful suggestions for the
government to manage the limited water resources in Yellow River Basin.

2. Materials and Methods
2.1. Studying Area

This study was conducted within the Yellow River Basin (31◦31′ N~43◦31′ N,
89◦19′ E~119◦39′ E), which is the fifth largest river in the world and the second largest river
in China. It occupies 19% (79,500,000 ha) of China’s land area and significantly affects local
ecological functions, ecosystem services, and human well-being. It spans eight provinces
(Figure 1), including Inner Mongolia, Shanxi, Qinghai, Gansu, Ningxia, Henan, and Shan-
dong. It contributes 14.7% of the whole population and 14.5% of GDP (Gross Domestic
Product) in China. It plays such critical important roles for mankind that the Chinese
government proposed a national strategy of ecological protection and high-quality develop-
ment in the Yellow River Basin in 2019. The Yellow River Basin is the most important water
pool in the North China, providing all kinds of ecosystem services, including provisioning,
regulating, cultural and supporting services. Therefore, the Yellow River Basin has become
a key zone for the development of ecological protection and sustainability in China.
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Figure 1. The location and the sub-watersheds of the Yellow River Basin. The number is the sub-
watershed in the whole river.

The Yellow River Basin spans 1900 km from east to west and 1100 km from north
to south. The annual average precipitation varies from 116 to 1038 mm, and the annual
temperature changes from −13 ◦C to 15 ◦C with an obvious spatial pattern. The southeast
areas show relatively higher temperature and precipitation, while the northeast areas show
relatively lower temperature and precipitation.

2.2. Data Collection

The datasets include a Digital Elevation Model (DEM), meteorological, land use
and land cover (LULC), and soil and water demand data, and the data resources are
listed in Table 1. The meteorological data used mainly include rainfall, temperature, and
other data from 752 meteorological stations, which were interpolated in ArcGIS 10.2 to
obtain the meteorological datasets of the Yellow River Basin (Figure 2). The meteorological
dataset was downloaded from the Meteorological data Service Centre (http://data.cma.cn/,
accessed on 10 May 2022), and the time was from January 1992 to December 2020. The
final meteorological data was the annual means to improve the accuracy. The LULC data
from 2010 was collected from the Resource and Environmental Science Data Center of
the Chinese Academy of Sciences (http://www.resdc.cn, accessed on 10 May 2022). In
this study, the LULC had a spatial resolution of 300 m × 300 m. The original LULC
datasets were reclassed into 6 categories, including farmland, forest, grassland, water area,
construction area, and bare land. The DEM data was collected from Geospatial Data Cloud
(http://www.gscloud.cn/, accessed on 10 May 2022). The original resources of basic data
were listed in Table 1. The sub-watersheds were generated from the Hydrology Analyst
Tools in ArcGIS 10.2. The Yellow River Basin was divided into 29 main sub-watersheds
(Figure 2).

Table 1. The sources of the required data.

Required Data Description Source

Topographical data Digital Elevation Model
(DEM)

Geospatial Data Cloud
(http://www.gscloud.cn/,
accessed on 10 May 2022)

Land use and Land cover
(LULC)

Agriculture, Forest, Grassland,
Water, Urban and Unused

land (2010)

Data Center for Resources and
Environmental Sciences, Chinese

Academy of Sciences
(http://www.resdc.cn/, accessed

on 10 May 2022)

http://data.cma.cn/
http://www.resdc.cn
http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.resdc.cn/


Sustainability 2022, 14, 10093 4 of 12

Table 1. Cont.

Required Data Description Source

Soil properties Soil clay, sand, silt, and soil
organic matter

Harmonized World Soil Database
version 1.1 (HWSD)

(http://westdc.westgis.ac.cn/,
accessed on 10 May 2022)

Meteorological data Temperature and Precipitation
(1992–2020)

Meteorological data Service
Centre (http://data.cma.cn/,

accessed on 10 May 2022)

Statistical data

Water use (Agricultural water,
Industrial water, Domestic

water, and Forest-herd-fishing
water), Population, GDP, etc.

Water Authority and Bureau of
Statistics
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Figure 2. The basic characteristics (sub-watersheds, land use and land cover (LULC), annual precipi-
tation, reference evapotranspiration (ETO), root depth, and the available volumetric water content
for the plant (PAWC) of water yield) for the Yellow River Basin. (The numbers from 1 to 29 mean
serial number of sub-watersheds).

2.3. Data Analysis

The InVEST model (https://naturalcapitalproject.stanford.edu/software/invest,
accessed on 10 May 2022) was used to calculate the water yield of the Yellow River Basin.
It was calculated using the following equations [13,14]:

Y(x) =
(

1− AET(x)
P(x)

)
× P(x) (1)

where AET(x) is the annual actual evapotranspiration for pixel x and P(x) is the annual
precipitation on pixel x.

In fact, it is difficult to obtain the actual annual evapotranspiration at a large scale. In
the InVEST model, potential evapotranspiration (PET) was used to calculate AET. AET was
easy to calculate based on PET [15], which was estimated as the product of the reference

http://westdc.westgis.ac.cn/
http://data.cma.cn/
https://naturalcapitalproject.stanford.edu/software/invest
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evapotranspiration and the crop coefficient for each grid square. The specific equation was
listed as follows [16]:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
− [1 + (

PET(x)
P(x)

)w]
1/w

(2)

w = Z
AWC(x)

P(x)
+ 1.25 (3)

where ω is calculated based on the approach thorough the plant available water content
(AWC), precipitation, and the empirical constant Z [17,18]. Z is an empirical constant, which
reflects local hydrogeological properties, with a range of 1–30. AWC represents vegetation
available water content, which can be calculated through soil texture and effective soil
depth. For more details, see the InVEST 3.2.0 Users Guide and previous studies [17,19,20].
In the InVEST model, biophysical parameters were needed, including root restricting
layer depth (mm), AWC, MAP, LULC, PET, and plant evapotranspiration coefficient (Kc).
Relevant basic parameter used in the model of water yield in InVEST are listed in Table 2.

Table 2. Model parameters required to calculate water yield according to the InVEST model.

Lucode LULC_Desc Kc Root_Depth LULC_Veg

1 Farmland 0.65 2100 1
2 Forest 1 5300 1
3 Grassland 0.65 2400 1
4 Water 1 100 0
5 Construction land 0.3 100 0
6 Unuse land 0.5 100 0

Lucode: land use number; LULC_desc: land use types; LULC_veg: 1 means vegetation area, and 0 means no
vegetation areas; Kc: plant evapotranspiration coefficient; Root_depth: the maximum root depth.

2.3.1. Water Demand

In this study, water demand was calculated by the water consumption of anthro-
pogenic activities, including four parts: livestock water (Wliv), domestic water (Wdom),
agricultural water (Wagr), and industrial water (Wind) [21]. The specific equation was listed
as follows:

Wux = Wagr + Wliv + Wdom + Wind = AgeaAgr×WaterAgr + Live× Livewater + Popu× Dom + GDP× Ind (4)

Wagr is the consumption of agricultural water, which was calculated by multiplying the
area of agricultural lands by the average irrigation water per hectare. Wliv refers to livestock
water use, which was calculated by multiplying the number of livestock by the annual
water consumption per head. Wdom refers to domestic water use, which was calculated by
multiplying the population by the annual water consumption per resident. Wind refers to
the consumption of in industrial water use, which was calculated by multiplying the gross
industrial production (GDP) by the annual industrial water per 10,000 GDP.

2.3.2. The Imbalance between Water Supply and Demand and Spatial Flow Process

Ecosystem service flow had been considered as a comprehensive method to reflect
actual water provision service [22]. We used the mismatches (WSI) between the supply
and demand of water resources, which could reflect conflicts between water supply and
demand, calculated by the ratio (S:D) of water supply (S) to water demand (D). In this
study, the logarithm transformation was used to improve the comparison of WSI among
different sub-watersheds. In this study, we calculated two kinds of WSI, static (WSIstatic)

and flow
(

WSI f low

)
conditions. The specific equation was listed as follows [23]:

WSIstatic,i = log10
(

Si
Di

)
(5)
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where i is the number of sub-watersheds; Si is the water supply on sub-watershed i; and Di
is the water demand on sub-watershed i. When WSI > 0, it indicates that water supply is
much more than water demand (water surplus); when WSI < 0, water supply is less than
water demand (water deficit). The static WSI ignored the inflow of upstream water.

The WSI with in flow condition was calculated as follows:

Flowi = Si − Di ×WC (6)

WSI f low,i = log10
(

WSi − Flow
WUi

)
(7)

where WC refers the regional water use and water consumption coefficient, collected from
the local water resources bulletin. WSI f low considered the water service flows upstream.

3. Results
3.1. Spatial Patterns of Water Supply in the Yellow River Basin

In 2010, the water supply in the Yellow River Basin showed an obvious spatial pattern,
and the variations depended on land use types (Figure 3). The total water supply was
3.03 × 1011 m3, with a range of 3.29× 108 m3 to 7.35× 1010 m3 for different sub-watersheds.
Different sub-watersheds had different water supply, with the highest supply in sub-
watershed 28. Sub-watershed 12 provided the lowest water resources (3.29 × 108 m3). A
high heterogeneity occurred in the whole watershed. Most sub-watersheds with higher
water supply were distributed in the middle and upper reached reaches of the Yellow River
Basin, such as sub-watershed 28, 29, 26, and 20. The sub-watersheds distributed in the
lower reaches (sub-watershed 4, 6, 11, and 12) showed lower water supply.
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Land use strongly affected the distribution of water supply in the Yellow River Basin.
For example, forests and grasslands showed a low potential water supply, while con-
structed areas had relatively high potential in water supply. The land use spatial patterns
suggested that constructed areas only accounted for 1%, which yielded relatively lower wa-
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ter resources. Therefore, when accounting for the land use areas, the absolute water supply
of grasslands was the most, followed by forests, agricultural lands, and unused lands.

3.2. Spatial Patterns of Water Demand in the Yellow River Basin

The Yellow River Basin supplied a total of 3.05 × 1011 m3 water resources, which was
much more than the total water demand (2.73 × 1011 m3). Although the water demand
was less than water supply in the whole basin, the spatial distributions of water demand
in sub-watersheds were not consistent with those in water supply (Figure 4). The higher
water demands occurred in areas with high intensity industrial and urban areas, which
were distributed in the upper reaches of the Yellow River Basin. The water demands were
much higher in the middle and lower reaches than the upper reaches. The water demand
exhibited a high spatial heterogeneity. For different sub-watersheds, watersheds 8, 6, 17, 18,
19, 20, 22, 23, and 26 showed relatively higher water demands, while watersheds 2, 3, 4, 5,
7, 9, and 28 had relatively lower water demands.
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When considering land use types, we found that Grasslands (404,071.8 km2) and
Unused land (19,845.9 km2) showed a relatively lower water demand (Figure 5). Although
the area of grassland was the most (49.7% of the total area), the water demand was the
least (3.21 × 108 m3, 0.1% of the total water demand). Farmland contributed the most to
the total water demand, accounting for 58.2% (1.59 × 1011 m3), followed by construction
area (7.15 × 1010 m3), forest (3.33 × 1010 m3), and water body (9.11 × 109 m3).
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The Pearson correlation analysis revealed that water supply was mainly associated
with farmland, grassland, and water areas, which significantly influenced water yields
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(Figure 6). The total area of a city was significant correlated with water demand, which
ignored the specific land types.
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3.3. Spatial Flow Process of Water Provision Service in the Yellow River Basin

We used WSI to clearly express the current situation of the conflicts between water
supply and demand in the Yellow River Basin. At the static condition, WSI in most areas
ranged from−1 to 0, and the values were different in the different sub-watersheds (Figure 7).
Sub-watersheds 6, 11, 12, 17, 18, 19, 22, and 23 were the areas with the most shortage of
water resources, and the scores of WSIstatic were <−1. Except for sub-watershed 9 and 28
with a higher WSIstatic (>1), WSIstatic in other sub-watersheds ranged from −1 to 1. The
areas with relatively high WSIstatic were mainly distributed in the lower and upper reaches
of the Yellow River Basin in sub-watersheds 28, 29, 2, and 9. When considering water flow
from upstream to downstream, there was a slight difference in WSI in comparison with the
static condition. For example, sub-watershed 29 changed from water surplus (WSIstatic > 0)
to water deficit (WSI f low < 0).
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4. Discussion

This study used the framework proposed by a previous study to assess the spatial
patterns of water supply and demand, and the effects of land use on water supply–demand
balance. The results showed obvious changes in water supply and demand among different
sub-watersheds, and these changes were strongly dependent on land use types. We
highlighted the roles of land use on spatial patterns of water supply and demand. We also
used WSI to determine the flow process of water resources using the ratio of water supply
to water demand, and the results suggested the water shortage areas were clustered in
the lower reaches of the Yellow River Basin. When combined with land use changes, we
found that urban construction, agricultural irrigation, population, and domestic life were
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the main drivers in regulating water resources and the causes of conflicts between water
supply and demand balance.

4.1. The Effects of Land Use on Water Supply and Demand Balance

A large body of studies has shown that land use is the most important factor in
regulating global environmental change, and mitigating global warming, extreme rainfall
and dry events, and water shortage [24–27]. In this study, we focused on the balance
between water supply and demand in Yellow River Basin. We found that land use was
the main driver in regulating water supply and demand. Differently, the contribution of
specific land use to water supply was not consistent with water demand. For example,
grassland contributed more to the total water supply of the Yellow River Basin, while
urban area and agricultural lands contributed more to the total water demand. A previous
study showed that grassland had the highest water supply because of the largest areas
in the Yanhe watershed [10]. In this study, the area of grassland was 405,296 × 104 km2,
accounting for 49.7% of the total area. Therefore, grassland contributed the most to the
water yield. Although the largest area of grassland, the water demand per ha was relatively
low, suggesting a water surplus. Previous studies reported that most water supply occurred
in urban areas [28], which was consistent in this study. The expansion of urban area would
alter the local climate process and the magnitude of precipitation [29].

The water demand mainly includes industrial water, agricultural water, domestic
water, and livestock water [30]. These activities mainly happen in urban and agricultural
areas, as well as some grasslands and forests. This was the main cause for the mismatches
between water supply and demand. Urban areas consume the most water, followed by
agricultural lands, while the total supply in urban and agricultural areas were relatively
low because of the lower areas. In the Yellow River Basin, most areas were grasslands
and forests, which consumed relatively low water resources. The differences of water
demand in different sub-watersheds were mainly caused by land use changes and human
social activities. For example, sub-watersheds 2, 4, 5, 9, and 28 were mainly located in
natural vegetation areas (grassland and forest) with less population, which need less water
resources. The water supply would therefore satisfy the demand.

4.2. The Spatial Flow Process of Water Resources in the Yellow Water Basin

The mismatches and the ratio of the supply to demand have been considered as
important indicators to evaluate the balance between water supply and demand [11,21,31].
A positive SD ratio means a water service surplus, a null SD ratio suggests a supply–
demand balance, and a negative SD ratio reveals a water deficit. The mismatch between
the supply and demand of water resources occurred in most areas as reported in previous
studies [32–34]. The mismatch reflects the results caused by the interaction of climate,
terrain, socio-economic characteristics, land uses, and human activities. For example, the
rapid urban expansion caused the shortage of water resources and imbalance of water
supply–demand [33,35,36]. Scientific assessment of the water provision service and the
supply–demand balance could help determine the development of urban construction and
population planning, as well as provide constructive suggestions for government officials
and urban landscape policy makers [36].

The spatial heterogeneity in the whole basin caused mismatches between water supply
and demand. The water supply exhibited a decreasing trend from west to east, and western
areas had high water supply, while areas with higher water demand were in the upper
and lower reaches of the whole basin. This mismatch was mainly associated with land
use. The flow process decoupling between water supply–demand balance and human
activities enhance the understanding of water flow process in different areas. Water service
flow reflects the processes between water supply and demand, including complex pro-
cesses [37]. This study focused on the water flow process in different sub-watersheds of the
Yellow River Basin and highlighted different spatial patterns in different sub-watersheds in
comparison with the whole watershed. These changes of the water flow process indicate
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the importance of sub-watersheds in assessing waster provision service. The imbalance
between water supply and demand based on a sub-watershed would provide more precise
details in regulating water resources. For example, a previous study focused on urban
areas showed water yield exhibited an excess of supply in Hangzhou city [38]. In addition,
the water flow process of different sub-watersheds could provide specific strategies to
manage the limited water resources. Therefore, this study provides more useful details in
assessing water provision service and exploring the underlying mechanisms, which pre-
cisely help policy makers to manage water resources and be references for other ecosystem
services evaluations.

5. Conclusions

This study used the InVEST model to evaluate spatial patterns of water supply and
demand in the Yellow River Basin and then calculated water spatial flow process depending
on land use. The S:D ratio (WSI) was used to assess the spatial patterns of the imbalance
between water supply and demand. Our results showed inconsistent changes for water
supply and demand resulting in spatial mismatches and an imbalance between water
supply side and demand side. The higher water supply potential was distributed in
the middle and upper reaches. These changes in water supply are mainly caused by
LULC changes caused by human activities; for example, unreasonable land use conversion,
industrialization, and urbanization. Our results also suggest that water demand and
water spatial flow process need to be considered in assessing water provision services. A
water flow process would help land policy makers and local government to optimize land
managements and reduce the deficit of water resources.
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