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Abstract: Financial institutions face challenges of fraud due to an increased number of online
transactions and sophisticated fraud techniques. Although fraud detection systems have been
implemented to detect fraudulent transactions in online banking, many systems just use conventional
rule-based approaches. Rule-based detection systems have a difficulty in updating and managing
their rules and conditions manually. Additionally, generated from the few fraud cases, the rules are
general rather than specific to each user. In this paper, we propose a personalized alarm model to
detect frauds in online banking transactions using sequence pattern mining on each user’s normal
transaction log. We assumed that a personalized fraud detection model is more effective in responding
to the rapid increase in online banking users and diversified fraud patterns. Moreover, we focused
on the fact that fraudulent transactions are very different from each user’s usual transactions. Our
proposed model divides each user’s log into transactions, extracts a set of sequence patterns, and
uses it to determine whether a new incoming transaction is fraudulent. The incoming transaction is
divided into multiple windows, and if the normal patterns are not found in the consecutive windows,
an alarm is sounded. We applied the model to a real-world dataset and showed that our model
outperforms the rule-based model and the Markov chain model. Although more experiments on
additional datasets are needed, our personalized alarm model can be applied to real-world systems.

Keywords: online banking; fraudulent transaction detection; sequence pattern mining; machine
learning

1. Introduction

Online banking services are becoming more and more common, especially in Korea.
The advantage of online banking is that it increases user convenience by simplifying
transaction procedures. However, accessibility and simplicity have created an environment
prone to fraudulent transactions. The financial loss of users has been increasing due to a
variety of fraud techniques [1,2]. These techniques include illegal activities such as phishing
(sending a fraudulent message to trick a person), smishing (phishing using social network
services), and using fraudulent accounts. The victims knowingly or unknowingly transfer
lots of money, usually resulting in huge financial losses.

A fraud detection system (FDS) for online banking services collects and analyzes
transactions, trying to detect suspicious transactions and block them before execution.
One of the widely used approaches is a rule-based model. A rule-based FDS has a set
of detection rules generated by analyzing the actual accident cases and uses it to predict
fraudulent transactions. Recently, more complex types of fraud using advanced techniques
have made it difficult for FDSs to detect fraud with a rule-based approach [3]. That is, more
and more fraudulent transactions will pass through predefined rules as they seem normal.

Another problem with rule-based FDSs is the burden of detection rule writers. As a
binary classification problem, false positives that judge normal transactions as frauds occur,
while false negatives that judge fraudulent transactions as normal ones do, depending on
the predefined detection rules or conditions. In both false cases, a new detection rule should
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be generated and registered to the FDS manually, and this process is repeated whenever
the FDS fails to catch fraud. In addition, as the types of online banking have diversified,
the number of rules to be prepared has relatively increased.

On the other hand, as the gender and age of users of online banking services have
become very diverse, the types of fraud have also become more personalized, greatly
increasing the need for personalized detection. In each user’s transaction log, a clue that
can be used to detect fraud might be the fact that the transactions are quite different than
usual. However, the conventional FDS takes a general view rather than a personalized
one; its common rules may misjudge a particular user’s normal transaction as fraud and
determine another user’s fraudulent transaction as normal.

In summary, there are two major problems with the existing FDS. The first problem is
the difficulty of updating and managing its detection rules; newly introduced fraud types
cannot be covered by existing rules, and rule generation becomes increasingly difficult. The
other problem is that general rules do not guarantee the best detection performance on
each user’s transaction logs.

In this study, we proposed a personalized alarm model that detects frauds using each
user’s individual patterns, instead of applying general rules or conditions. We extracted
frequent patterns in an individual’s online banking transaction log, which is a series of
changing states, and defined them as normal patterns. Then, when new transactions are
incoming, our model observes them in real time and gives an alert if they do not match
the normal patterns. We tested the performance of the proposed model on actual online
banking transaction data and showed that our method performed better than the rule-based
model which is currently in use and the Markov chain model.

Our research contributions are as follows:

• Solving the rule management problem of existing FDSs using sequential patterns
extracted from normal transaction data;

• High performance of our personalized detection model on each user’s actual transac-
tion data.

The rest of this paper is organized as follows. Section 2 presents some related works on
fraud detection algorithms for FDSs, and Section 3 describes our personalized pattern-based
detection method in detail. We discuss the experimental results to verify the performance
of our method in Section 4. Finally, Section 5 draws the conclusion of our study.

2. Related Works
2.1. Existing Works on the FDS

An FDS is a system that detects anomalies in financial transactions based on big data.
The structure of the FDS may differ in composition method depending on financial regions
such as banks and credit cards, but it is largely composed of four areas as shown in Figure 1.
It consists of data processing responsible for collecting and processing information, fraud
detection processing for fraud detection through analysis, response to further authentication
or blocking depending on detection results, and monitoring and auditing of the entire
process. The data processing part profiles customer characteristic information secured by
financial institutions through customer transaction information analysis, and rule-based
misuse detection methods are widely used in the fraud detection processing part, but deep-
learning-based abnormality detection or hybrid (abuse + abnormal) detection methods are
being introduced.
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Many existing systems are based on the method of registering rule-based scenarios for
each type of fraud and detecting fraud based on the registered scenarios. However, it is
considerably difficult to operate the system based on a blacklist (i.e., to perform advance
detection based on fraud types). Therefore, through the analysis of historical records
of fraudulent transactions, the transaction types were identified, and profiles of media
information used for access and transaction information were extracted. Then, profiling
groups were categorized into white (normal transaction customers) group, gray (customers
with a high probability of fraud) group, and black (customers with a history of fraud)
group. Based on the classification, detailed rules were set, which enabled the detection of
fraudulent transactions that could not be previously detected based on a blacklist, with an
application of state transition technology and deep learning (DL) techniques based on the
autoencoder neural network [4]. However, this method was limited by a low detection rate
in situations where real-world data on fraudulent transactions are lacking.

In another study, real-world fraud cases and fraud cases detected by an FDS were com-
paratively analyzed, and a composition of user profiles and detection rules was presented
to reduce false negatives and false positives during detection [5]. In this method, attribute
information, such as IP, MAC, and account number used in fraudulent transactions, was
established as rules and was used to detect fraud. However, not all transactions using
attribute information utilized in past fraudulent transactions were frauds. That is, research
that analyses existing fraud cases uses a limited number of fraud cases as samples. Owing
to the limited availability of data on fraudulent transactions, the method may lead to many
cases of false positives, causing customer dissatisfaction and complaints.

Another method related to fraud detection in an FDS was to register customer seg-
mentation and state transition rules based on profiling variables and use these rules for
detection. That is, various types of information were modeled and used for detection, such
as the following:

• Whether the device used for the transaction matched the rule;
• Information on the terminal that was used in previous transactions;
• History of fraudulent transactions;
• Type of media with the login history within the last 3 months (e.g., a type of terminal,

including web, client program, or mobile applications);
• Country of access;
• IP used in previous access;
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• MAC information used in previous transactions.

The profiling model is used as reference data for determining fraud, and when a
new transaction is entered, the fraud status is determined by comparing the values of the
variables in the transaction and those of variables set in existing profiles. In a detection
system with statistical technology, a method that compares the number of known activities
that occurred in transaction logs of normal activities and that of activities generated in
present transactions is available [6]. There are also studies that utilize profiling data such
as page travel time and page stay time and profiling of clickstream data [7].

The characteristic of online financial transactions is that the order of achieving the
desired transaction is different for each individual, and there are transactions that must
occur in advance. However, the above methods are not analysis methods that include
information on relationships between actions in order, which are characteristics of an
individual’s financial transaction, and it is not possible to know how they are different from
their usual actions. For example, suppose a user usually performs a withdrawal transaction
after checking the balance without reissuing a public certificate. It is difficult to determine
whether a transaction in which a public certificate is reissued and withdrawn to Bank B
within 30 min after receiving a deposit from Bank A after frequent balance inquiries is
the user’s usual pattern of transaction. It was difficult to find a study on the detection of
fraudulent transactions reflecting these characteristics.

In addition, Quah and Sriganesh [8] focused on real-time fraud detection and presented
a method for filtering and analyzing customer transaction behavior for fraud detection.
However, it is difficult to detect new fraud patterns because normal transactions and
abnormal transactions are defined and detected in advance.

2.2. Existing Research on Fraud Detection Technology

As most financial institutions perform monitoring by applying detection rules for
existing techniques of fraud, fraud methods that attempt to evade these rule-based detection
systems have become increasingly sophisticated. Thus, there has been continuous research
on fraud detection technology.

Fraud detection technologies include not only those based on statistical techniques and
rule-based detection technologies, but there are also approaches that use frequent patterns
wherein the characteristics of customer transactions are modeled and grouped through
segmentation processes. When a transaction activity that deviates from the characteristics
of the group is entered, it is detected as fraud based on the extent of deviation [6]. Other
studies on frequent patterns are based on activity pattern analysis with the application of
artificial intelligence (AI), such as machine learning (ML) and data mining [3,9–14].

Detection technology based on statistics can be categorized into data processing
techniques under the environment of large databases [15,16] and techniques for calculation
and comparison of various statistical parameters, such as hidden Markov alignment [17].
Depending on the characteristics of the respective fields of applications, such as credit
card, money laundering, computer intrusion detection, and medical and scientific fraud,
different methodologies for statistical fraud detection may be proposed [15].

A study by Bolton RJ, David [6] suggested an unsupervised profile methodology
that detects abnormal transactions by grouping fraud and non-fraud transactions through
customer transaction (transaction) data and statistical methods for fraud detection. Fur-
thermore, we present a methodology to investigate in detail the target accounts that exhibit
the most different behaviors from the previous peer group summary behaviors through
peer group analysis. However, although detection by peer group analysis can suggest that
there is a possibility of fraud, there is a limit to the detection of fraud due to changes in
individual behavior patterns.

Detection technologies using AI can be categorized into those that use data mining,
pattern recognition, and ML. Among these, the data-mining-based detection technology
is a technique of automatically classifying abnormal and normal transactions through
data classification or clustering [3,18]. Major machine learning algorithms include random



Sustainability 2022, 14, 9791 5 of 18

forest, support vector machine, hidden Markov model, deep learning, etc. Detection
methodologies include pattern detection, misuse detection method through state transition
analysis model, anomaly detection through supervised and unsupervised analysis models,
etc. Fraud or non-fraud is tagged on the collected financial transaction information, and
it is determined whether a newly entered transaction is fraudulent or non-fraudulent.
However, there is not much information corresponding to fraud among the collected
financial transactions, and it is difficult to make it with tagged information. Rule-based
fraud detection technology falls under this and is operated by many financial institutions,
and the false positive rate is very high, and therefore, it takes a lot of time and effort to deal
with it [19]. In the field of data-mining-based fraud detection, representative techniques
investigated in previous studies include sequential patterns [20–22], techniques using
artificial neural networks, and techniques using Bayesian modeling.

Patel and Ouazane [7] studied the framework using LSTM and RNN algorithms for
detecting normal and malware sequences for sequential customer transactions in online
banking. It is a study of sequential state transition. The limitation of this study is that
there is no consideration for personalization. In other words, false positive errors still
exist for customers with different behavioral patterns because the time of staying on the
page and the sequence of page movement are not applied to each individual. Meanwhile,
various DL and ML algorithms have been used for credit card fraud detection using neural
networks [3,23]. Li Z et al. [24] introduced a new loss function to obtain deep feature
representations from credit card transactions. Liu G et al. [25] proposed a method using
a graph structure called transaction graph and graph neural network to train a detection
model with various transaction features comprehensively.

The Markov chain model is a model used to predict the state transformation of
sequential transactions. Srivastava and Kundu [26] proposed the HMM (hidden Markov
model) methodology to detect fraudulent transactions by profiling and analyzing the
general patterns of the past transaction sequences of all cardholders to identify credit card
fraud. Even if Markov chain models are widely used to represent transaction patterns of
users, they do not work well when user behavior is varied [27]. Therefore, in the online
banking situation where the state change is not stable, the fraud detection performance is
relatively poor.

According to a review article [28], most research papers and journals on data mining
related to bank fraud have investigated the use of classification and clustering methods,
and only a few studies that used frequent patterns in financial transaction activities have
been conducted.

In this paper, we present a methodology to detect fraudulent transactions with per-
sonalized transaction patterns by applying sequence pattern mining technology. Among
the sequence pattern mining techniques, a comparative experiment was conducted by
applying the Markov chain technique and the frequent pattern mining technique. The
Markov chain technique is a model that probabilistically predicts the next action (=state),
and the frequent pattern mining technique is a model that extracts sequential and frequent
transaction patterns. The proposed method is a frequent-pattern-mining-based detection
model, and it verifies the performance advantage compared to the Markov chain method.

3. Personalized Fraud Detection Model Based on Sequential Patterns
3.1. Characteristics of Online Banking Transactions and Data Modeling

There are two fundamental characteristics of online banking transactions. First, there
is an order in transactions. All transactions occur sequentially, and some transactions must
be performed before their next one. For example, in order to withdraw money through a
website, the user must log in, check the balance, and go through the verification process.

Second, different users have different ways of conducting online transactions. That is,
each user’s activity has a different sequence, time, location of access, duration, medium,
etc. An example is presented in Figure 2. The ovals represent events or status, and the
attributes of events are attached below. User A (Figure 2a) uses a smartphone to check
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the balance and transaction details for withdrawal, whereas user B (Figure 2b) accesses
through the website, checks the balance, and just withdraws after verification.
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In most cases of fraudulent transactions, the events before withdrawal are very differ-
ent from the usual pattern. Figure 2c shows an actual fraud example of user A. The access
was from an IP that had never been used before, and the sequence of events (login–check
balance–logout) repeated. Then, a large amount of money came in, and withdrawals oc-
curred several times. Assuming that the pattern in Figure 2a is a typical pattern of user A,
we can expect the sequence in Figure 2c to be abnormal.

Now, we define an event, transaction, and user log as follows:

Definition 1. Event.

A unit activity of a user that can be recognized by the system. It can be represented as
a set of attribute values. An event e can be defined as follows:

e = {(a1, . . . , an) | ai ∈ Ai} (1)

where Ai is the set of all possible values of the attribute i and n is the number of attributes
that need to be considered.

The main attributes of an event used here include activity type (a1), user IP (a2), and
media type (a3). The activity type refers to the code of a log event, such as login, certificate
verification, check balance, logout, etc.

Definition 2. Transaction.

A transaction is a sequence of events from login to logout.

t = (e1, . . . , en) (2)

The size of transaction |s| is equal to the number of events that make up the transac-
tion sequence.
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Figure 3 shows how a user log can be divided into multiple transactions; twelve
activities are grouped into three transactions. Each transaction gets a unique transaction ID
(TID), and each event within the same transaction gets an event ID (EID). The IDs are given
by the order of occurrence. The final form of the processed user log is shown in Table 1.
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Table 1. Transaction sequences.

TID EID Attribute 1 Attribute 2 Attribute 3

1 1 Login Seoul, KR MTS
1 2 Check Balance Seoul, KR MTS
1 3 Check Transaction History Seoul, KR MTS
1 4 Verify Banking Certificate Seoul, KR MTS
1 5 Withdrawal Seoul, KR MTS
1 6 Logout Seoul, KR MTS
2 1 Login Seoul, KR WTS
2 2 Check Balance Seoul, KR WTS
2 3 Logout Seoul, KR WTS
3 1 Login Seoul, KR WTS
3 2 Check Balance Seoul, KR WTS
3 3 Logout Seoul, KR WTS

Definition 3. User Log.

Records left in the system during the past online banking transactions of an individual
user. A user log consists of multiple transactions.

3.2. Extraction of Frequent Patterns

We extract sequence patterns using Zaki’s spade algorithm [29,30]. A frequent pattern
occurs in more transactions than the threshold called minimum support. It is defined as
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an individual’s normal activity pattern. For example, suppose that a frequent pattern is
extracted with minimum support of 0.6. This means that the probability of the pattern that
exists in the user log is more than 60%. Therefore, the number of patterns depends on the
threshold value.

Another concept is the candidate pattern, which is likely to be a frequent pattern. After
the algorithm finds the candidate patterns, only the ones having support higher than the
minimum support become frequent patterns. Candidate patterns can be easily generated
using the fact that if a pattern is frequent, all subsets of the pattern are also frequent. For
example, if {(A), (C), (B)} is frequent, its subsets {(A)}, {(C)}, {(B)}, {(A), (C)}, {(A), (B)}, {(C),
(B)}, and {(A), (C), (B)} are all frequent.

Candidate patterns are identified starting from a candidate set with an item size of
1. If smaller patterns are not frequent, pruning is conducted to remove its descendants
including them. This process is iteratively performed until no frequent set can be identified
and every candidate set is checked.

Frequent patterns are a collection of events that are accepted as normal. Frequent
patterns can be defined as follows:

Definition 4. Frequent Pattern.

Sequence pattern extracted from the user log. Transaction sequence s(m) with a
maximum size of m cannot be greater than a frequent pattern item set p(k) with a maximum
size of k.

The frequent pattern set P is a set of association rules with support above the threshold,
which is the criterion to determine a frequent pattern, and is defined as follows:

P = {pi|sup(pi) > threshold}, pi = {e1, e2, . . . , ek} (3)

where denotes i-th set of frequent activity items extracted by frequent pattern mining.
The frequent pattern size |pi| is equal to the number of transactions that make up the
frequent pattern.

If a frequent pattern is detected in a transaction, the transaction can be considered
normal; otherwise, there is a possibility that the transaction is abnormal.

3.3. Fraud Alarm Model

Finally, our alarm model evaluates a metric called an alarm ratio by the weight of the
frequent patterns. The proposed model is shown in Figure 4.

The real-time user logs are converted into a transaction sequence and then configured
into a sliding window. First, the patterns are examined in the window list. Then, the weight
of the found pattern is calculated to evaluate the alarm ratio. Finally, detection is performed
whether it is a fraud or not based on the alarm ratio. In the following section, the processing
procedure for each step is described in detail.

3.3.1. Conversion to Sliding Window Object

To determine whether a frequent pattern is included in a transaction, the sliding
window technique is applied.

Definition 5. Sliding Window W.

When the window size w is given as a parameter, the window set W(s) for the
transaction s is expressed as follows:

W(s) =
(

w1, w2, . . . , w|s|−w+1

)
=

((
e1, . . . , e1+(w−1)

)
,
(

e2, . . . , e2+(w−1)

)
, . . . ,

(
e|s|−(w−1), . . . , e|s|

))
(4)
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After the user log is changed into a set of transactions, a window with the size w
slides over each transaction to generate sliding window objects. Figure 5 represents the
application of a sliding window to the user log when the window size is 3.
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Figure 5. Examples of sliding window conversion (window size = 3).

Window ID (WID) is given to all window objects. Each window is a unit of occurrence.
That is, whether normal patterns are included or not is checked on each window level, not
the transaction.

When window size w is smaller than min(|pi|), the checking of the presence of a
frequent pattern could not be conducted. If a transaction has smaller size than w, the
sequence is excluded from the test. Window size w should be adequately set according to
the characteristics of the user log dataset.

3.3.2. Alarm Ratio Evaluation Process

This is a process of inspecting whether frequent patterns are found in the sliding
windows and evaluating the alarm ratio to determine whether it is fraudulent. A detailed
description of each step is provided as follows:
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Step 1. Calculate the normal ratio
The normal ratio measures the likelihood of a transaction being normal. It can also

be called a pattern detection rate. After applying the sliding window technique, we count
windows that include at least one pattern. The more patterns found in a window, the
more likely that the window is normal. Moreover, the higher the number of “colored”
windows, the more likely that the transaction is normal. A normal ratio is calculated for
each transaction. The normal ratio of a transaction s is calculated as follows:

normal ratio(s) =
# o f window with f requent pattern

|W(s)| (5)

where |w(s)| is the size of the window set for transaction s. (|w(s)| = |s| − w + 1)
Step 2. Calculate the weight of the detected pattern
Using the vanilla normal ratio might lead to overestimation. The level of contribution

to pattern detection (=weight) is calculated by the support of each pattern.
The level of contribution to pattern detection was calculated as the average of the

weights of the found patterns, and the pattern weight was calculated by multiplying the
number of cases of pattern detection against the number of windows of the sequence by
the pattern support for each identified frequent pattern.

Among the frequent patterns, a set of patterns appearing in the window set is denoted
as Pdetected(⊂ P), and the number of times its element pi appears in the window set is
denoted as n(pi). The support of the found pattern is denoted as sup(pi). Then, the weight
is calculated as follows:

weight(Pdetected) = ∑i

(
n(pi)× sup(pi)

∑i(n(pi)) )

)
(6)

Step 3. Calculate the weighted normal ratio
The weighted normal ratio is the product of the normal ratio and the contribution to

pattern detection. We calculate the modified normal ratio value as follows:

modi f ied normal ratio(W(s)) = normal ratio(W(s))× weight(Pdetected) (7)

Step 4. Calculate the alarm ratio
Up to Step 3, the probability of a normal transaction is measured. In this step, the

probability of a fraudulent transaction, the alarm ratio, is calculated as follows:

alarm ratio = 1−modi f ied normal ratio(W(s)) (8)

Since the criteria for determining fraud may vary depending on the operating stan-
dards of financial institutions, we separate determining logic in the next section.

3.3.3. Detecting Fraudulent Transaction

A high alarm ratio of a single transaction does not immediately judge it as a fraud.
Because in the case of real fraud, different transactions are found several times. Therefore,
we focus on when the alarm ratio of two consecutive transactions is high. The moving
average of two consecutive transactions’ alarm ratios is compared to the threshold. The
threshold we specified in the experiment is 0.5.

If the threshold is less than 0.5, there is a risk of over-detection, while a threshold
greater than 0.5 has a risk of under-detection. Since the purpose of fraud detection is
to focus more on reducing the false negative, the threshold was set at 0.5 by taking a
conservative approach. In real applications, the value of the threshold is adjusted according
to the detection performance. An alarm is issued as follows:



Sustainability 2022, 14, 9791 11 of 18

alarm
{

1 (i f moving average o f consecutive sequence′s alarm ratio ≥ 0.5)
0 (i f moving average o f consecutive sequence′s alarm ratio < 0.5)

, where # o f seq >= 2

alarm
{

1 (i f alarm ratio ≥ 0.7)
0 (i f alarm ratio < 0.7)

, where # o f seq = 1
(9)

The proposed frequent-pattern-based fraudulent transaction detection algorithm is
shown in Figure 6 as a flow chart.
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4. Experiment and Evaluation

We applied and evaluated our model to a real-world dataset collected from a financial
institution. Although the number of fraudulent events differs depending on the kind of
financial institution (insurance company, card company, bank, etc.), financial fraud cases are
very rare. That is, the amount of fraudulent transaction data is very unbalanced. In order to
solve this problem, there is a study that generates normal and fraudulent transaction data
through random sampling based on the Gaussian mixture model [31]. However, random
generation of transaction data is not included in this paper because we tried to find out the
usefulness of our model on the user’s actual transaction data.
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4.1. Data Collection and Conversion

We extracted online banking transactions from user logs of multiple users over a one-
year period and all transaction logs identified as financial fraud among them. In addition,
transaction logs including withdrawal transactions were collected by randomly sampling
normal users at the same rate as fraudulent users. As shown in Table 2, 7592 transaction
logs were extracted; 4591 transactions were used for training and 3001 transactions for
testing. The testing data contain fraudulent transactions but do not contain any financial
fraud labels, and therefore it is unknown which transactions are frauds.

Table 2. Collected transaction logs.

Fraudulent Transactions Number of Transactions

Training set Not included 4591
Test set Included 3001

The performance was compared with the Markov chain model and the actual rule-
based FDS using scenarios, currently operated by a financial institution.

4.2. Markov Chain Based Detection Model

A Markov chain is a stochastic model used to describe how a previous state affects the
next state and to predict a future state from a past state. A Markov chain model [8,17,32]
consists of a set of states, initial probability, and a matrix of transition probability. For
comparison of the alarm performance, personalization and generalization experiments
were performed simultaneously.

4.2.1. Data Modeling and Experimental Design

We defined each state as a combination of two selected attributes, an access type and
an activity type. There are 8 different access types and 134 activity types, creating a total of
1072 states. Table 3 shows some states and their attributes.

Table 3. Some examples of states.

Media Type Media Description Activity Type Activity
Description States

wts Website
(Web trading) logon log on → wts_logon

hts Program
(Home trading) checkbalance balance query → hts_checkbalance

mts Smartphone
(Mobile trading) verificationcert verification of cert → mts_verificationcert

branch Bank teller
(Visiting branch) withdrawal withdrawal → branch_withdrawal

callcenter Phone
(Calling) logout log off → callcenter_logout

The state transition probability matrix was calculated by applying a sliding window
to the state set S = {s1, s2, . . . , sn}, and the window size w was set to 10 considering that
the number of transactions per minute is generally around 10. For comparison between the
personalization and generalization performance, the state transition matrix was calculated
by dividing it into an individual state transition matrix and a generalization state transition
matrix in which the activities of all users are analyzed. The threshold value was defined
as the minimum value (min) of the occurrence probability P = {p1, p2, . . . , pi} for each
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training data window. The Markov chain alarm model predicted whether the state at time
n, Sn is normal or abnormal. An alarm is issued as follows:

alarm
{

1 (i f p < threshold )
0 (i f p ≥ threshold)

where p is test window state transition probability (10)

In Figure 7, the threshold value was set to 2.07% which was the minimum value of
transition probability calculated in the training phase. Since the probability of the transition
from w1 to w2 is 0%, an alarm rings, while the probability from w2 to w3 (5.4% > 2.07%) is
considered normal.
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Figure 7. Markov chain alarm model. (a) window objects of states; (b) an example of window-level
alarm.

The performance of the experiment is measured by the alarm rate. The alarm ratio
is the ratio of the window in which the alarm was issued in the total transaction window
per user, and the detection of the fraudulent transaction threshold is 0.6. The alarm ratio is
calculated as follows:

alarm ratio = # o f window issued alarm
# o f total windows

f raud
{

1 (i f alarm ratio ≥ threshold)
0 (i f alarm ratio < threshold)

, where threshold = 0.6
(11)

The status of the window created after modeling the test data is shown in Table 4.

Table 4. Number of windows of test data.

Class Number of Windows

Fraud 2060
Normal 887

4.2.2. Experimental Results

Experiments were conducted in two ways: a general approach and a personalized
approach. In the general approach, the transition probability matrix was calculated con-
sidering all users, and the threshold was set as the minimum value of the matrix. In the
personalized setting, the probabilities were calculated at each user level, and the minimum
value was set as the threshold. The results are shown in Table 5.

In the general experiment, the fraud detection performance was not good with an
alarm ratio of 16.60% in fraud cases, but the alarm ratio of 6.8% for normal cases was
judged to be normal in most cases. The results of the personalized experiment show a fraud
detection performance of 84.36% in cases of fraud compared to the generalized experiment,
and in the cases of normal transactions, the alarm ratio was 28.07%, which was judged to
be mostly normal. The performance of personalized detection is better.
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Table 5. Experimental results of the Markov chain alarm model.

Personalized General

Normal Fraud Normal Fraud

TotalWindows 887 2,060 887 2060
Alarmed
Windows 249 1738 61 342

Alarm Ratio 28.07% 84.36% 6.8% 16.60%

4.3. Personalized-Pattern-Based Detection Model
4.3.1. Data Modeling

The elements of the data model include log recording time, IP, access media, and
activity type. Training data are converted into a transaction sequence and used to extract
usual sequential frequent patterns through frequent pattern mining. Training data are
converted into a transaction sequence and used to extract usual sequential frequent patterns
through frequent pattern mining, and test data are converted into a transaction sequence
and then converted into a sliding window to check whether frequent patterns are included.
The process of converting to a transaction sequence was described in Section 3.1, and the
process of converting to a sliding window was described in Section 3.3.1. As a result of
testing data modeling, the transaction sequences and the number of windows are shown in
Table 6.

Table 6. Number of transaction sequences and windows of test data.

Transaction Sequences Windows

Total Number 42 917
Number of Fraud 35 504

Number of Non-Fraud 17 413

4.3.2. Experimental Design

The experimental conditions are as follows:
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Minimum support for personal frequent pattern mining through training data: 0.6.
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Frequent pattern filtering: the patterns composed of the media alone are removed.
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Limitations for sliding window frequent pattern detection: stop when the IP of the
financial institution is found (recognized as fraud event, report).
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the above conditions. For example, to explain the “<{hts,verificationcert}, 

{hts,verificationcert}>” pattern of sampled customer A, it means that executing the activity 

called “veriticationcert” twice in succession using hts (home trading) access media is the 

customer’s usual frequent transaction pattern. 

Table 7. Examples of the results of frequent pattern extraction of each user’s usual transaction. 

Sampled 

User 

Number of Frequent 

Patterns 
Frequent Pattern Examples 

A 64 < {hts, verificationcert}, {hts, verificationcert} >, < {hts}, {hts, checkbalance} > 

B 73 < {verificationcert} >, < {withdrawal}, {checkbalance} > 

  

Window size w: 10.
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{hts,verificationcert}>” pattern of sampled customer A, it means that executing the activity 

called “veriticationcert” twice in succession using hts (home trading) access media is the 

customer’s usual frequent transaction pattern. 

Table 7. Examples of the results of frequent pattern extraction of each user’s usual transaction. 

Sampled 

User 

Number of Frequent 

Patterns 
Frequent Pattern Examples 

A 64 < {hts, verificationcert}, {hts, verificationcert} >, < {hts}, {hts, checkbalance} > 

B 73 < {verificationcert} >, < {withdrawal}, {checkbalance} > 

  

Exclude transaction sequences smaller than the window size.

Table 7 shows some of the frequent patterns extracted from the training data under the
above conditions. For example, to explain the “<{hts,verificationcert}, {hts,verificationcert}>”
pattern of sampled customer A, it means that executing the activity called “veriticationcert”
twice in succession using hts (home trading) access media is the customer’s usual frequent
transaction pattern.

Table 7. Examples of the results of frequent pattern extraction of each user’s usual transaction.

Sampled User Number of Frequent Patterns Frequent Pattern Examples

A 64 < {hts, verificationcert}, {hts, verificationcert} >, < {hts}, {hts, checkbalance} >
B 73 < {verificationcert} >, < {withdrawal}, {checkbalance} >

4.3.3. Experimental Results

The proposed model was implemented using Python with R library and Splunk
BigData Platform library and the search for frequent patterns using regular expression
pattern matching techniques. Fraud is judged as a moving average of two consecutive
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trading sequences’ alarm ratios, and the detailed experimental results of sampled users A
and B are shown in Table 8. As shown in Table 8, in the case of A, all 64 frequent patterns
were searched for in all windows constituting the transaction sequence, and as a result of
2 Seq’s Moving Average evaluation by applying the weights of the found patterns, it was
judged to be a normal transaction. In the case of B, it was judged to be fraudulent from the
second transaction sequence.

Table 8. Detailed experimental result of personalized fraud detection for sampled users A and B.

Sampled
User TID Real

Fraud
Number

of
Windows

Number
of

Windows
Detected

Number
of

Patterns
Detected

Normal
Ratio

Weight
(Pdetected)

Modified
Normal

Ratio
Alarm
Ratio

2 Seq’s
Moving
Average

Fraud
Detection

A

1 normal 43 43 64 100% 0.70 70.05% 29.95% - -
2 normal 56 56 64 100% 0.70 70.10% 29.90% 29.93% normal
3 normal 4 4 64 100% 0.70 70.06% 29.94% 29.92% normal
4 normal 162 110 64 68% 0.69 47.57% 52.43% 41.19% normal

B

1 normal 1 1 3 100% 0.71 71.8% 28.20% - -
2 fraud 1 0 0 0% 0.00 0% 100% 64.10% fraud
3 fraud 7 4 1 57.14% 0.76 43.59% 56.41% 78.20% fraud
4 fraud 24 13 4 54.16% 0.72 39.49% 60.51% 58.46% fraud
5 fraud 21 17 4 80.91% 0.72 58.95% 41.05% 50.78% fraud
6 fraud 87 22 1 25.28% 0.76 19.29% 80.71% 60.88% fraud
7 Stopped when the IP of the financial institution was found

The results of personalized fraud detection shown in Table 8 above are summarized in
Table 9. Fraud detection according to the window search result shows a detection success
rate of 95.83%, and fraud detection based on the transaction sequence shows a detection
success rate of 96.00%. Fraud judgment in this proposed methodology is based on the
transaction sequence.

Table 9. Experimental result of the proposed alarm model.

Transactions Windows

Non-Fraud Fraud Non-Fraud Fraud

Target Number of 17 25 413 504
Fraud Detection 2 24 169 483

Alarm Ratio 11.76% 96.00% 40.92% 95.83%

4.4. Performance Evaluation

We compared the performance of our method with the results of the Markov chain
model and the existing rule-based model. As shown in Table 10, the proposed model
showed a 96.00% detection rate. A generalized approach of the Markov chain model only
showed a 16.60% detection rate, and the rule-based model failed detection. However, the
Markov chain model’s personalization experiments showed an 84.36% detection ratio of
frauds. This means that personalization-based detection is better and is necessary.

Table 10. Detection rate comparison.

Our Model
Markov Chain Model

Rule-Based Model
Personalized General

96.0% 84.4% 16.6% 0.0%

To evaluate the performance of the proposed model, we measured recall, accuracy,
and F1-Score. Recall is more meaningful in FDSs because it is the ratio at which actual
fraud is detected as fraud. Recall must be high to lower the false negative occurrence rate,
and precision must be high to reduce the false positive occurrence rate. Increasing the recall
can reduce the risk of financial fraud caused by false negatives. Therefore, recall is more
important. The proposed alarm model applying sequence pattern mining outperforms
other models in terms of recall, accuracy, and F1-Score (see Table 11).
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Table 11. Result of the alarm model performance evaluation.

Types of Alarm Model Recall Accuracy F1-Score

Rule-based FDS (traditional FDS) 0 0.5 0
Generalized Markov Chain Model 0.166 0.396 0.277
Personalized Markov Chain Model 0.843 0.806 0.858

Frequent Pattern Mining Model 1.000 0.944 0.960

5. Conclusions

To overcome the limitations of the existing rule-based FDSs, we proposed a personal-
ized alarm model to detect frauds in online banking transactions using sequence pattern
mining. Conventional rule-based FDSs create rules or conditions by extracting the charac-
teristics of past fraudulent cases and applying them to every user universally. This method
not only does not take into account the characteristics of personal transaction style but also
causes difficulties in managing the rules.

We assumed that the personalized fraud detection model is more effective in respond-
ing to the rapid increase in users and diversified fraud patterns. Moreover, we supposed
that if a user’s behavior deviates from his or her normal patterns, the possibility of fraud
is high.

Therefore, our proposed model divides each user’s log into transactions, extracts a set
of sequence patterns, and uses it to determine whether a new incoming transaction is fraud-
ulent. Determination of fraud is judged by the alarm ratio calculated on the window level,
and an alarm is sounded in the case of continuous abnormality rather than a single abnor-
mality to prevent false positives. This window-level decision makes it easier to determine
fraudulent transactions in real time and is even more effective than the transaction-level
decision when normal transactions and fraud transactions occur alternately.

Through experiments, we showed that our model outperforms the rule-based model
and the Markov chain model. To validate the performance of our model more accurately,
we need a few more datasets to experiment with. However, fraud cases are very rare, and
financial institutions do not disclose user transaction data to protect personal information.
Therefore, we tried to evaluate our model as much as possible with the limited data
available in this paper. We will try to obtain other transaction datasets in the future to test
and extend the model.

For our model to be used in real-world applications, three problems need to be
addressed. First, because our model uses normal patterns to detect fraud, it can only
discover fraudulent transactions when users exhibit very different trading patterns than
usual. In real-world applications, additional contextual information such as user profiles
should be used for detection in order to complement the proposed model.

Another is the cold start problem. Targeting users with enough existing logs to
extract patterns, our model is difficult to apply to new users or users with few transactions.
Therefore, general rules of the conventional FDSs must be utilized initially for fraud
detection of new users. After the user’s data are collected for a certain period of time, our
model can be applied.

Lastly, significant computing power is required to convert the incoming user log into
a set of windows, compare it to frequent patterns of each user, calculate the alarm ratio,
and determine whether an alarm is necessary. Therefore, we will carry out studies on
application architecture and system infrastructure to apply our model.
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