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Abstract: Automated fare collection (AFC) systems can provide tap-in and tap-out records of passen-
gers, allowing us to conduct a comprehensive analysis of spatiotemporal patterns for urban mobility.
These temporal and spatial patterns, especially those observed over long periods, provide a better
understanding of urban transportation planning and community historical development. In this
paper, we explored spatiotemporal evolution of travel patterns using the smart card data of subway
traveling from 2011 to 2017 in Shenzhen. To this end, a Gaussian mixture model with expectation–
maximization (EM) algorithm clusters the travel patterns according to the frequency characteristics of
passengers’ trips. In particular, we proposed the Pareto principle to negotiate diversified evaluation
criteria on model parameters. Seven typical travel patterns are obtained using the proposed algorithm.
Our findings highlighted that the proportion of each pattern remains relatively stable from 2011 to
2017, but the regular commuting passengers play an increasingly important position in the passenger
flow. Additionally, focusing on the busiest commuting passengers, we depicted the spatial variations
over years and identified the characters in different periods. Their cross-year usage of smart cards
was finally examined to understand the migration of travel patterns over years. With reference to
these methods and insights, transportation planners and policymakers can intuitively understand
the historical variations of passengers’ travel patterns, which lays the foundation for improving the
service of the subway system.

Keywords: passenger clustering; smart cards; spatiotemporal analysis; Pareto front

1. Introduction

These days, thousands of modern cities have built the subway system to improve
public transport efficiency and urban mobility. An in-depth understanding of urban mobil-
ity has a great contribution to the decision-making of transport management and urban
planning. In order to explore urban mobility in detail, it is necessary to analyze personal
travel behaviors from daily activities and monitor key indicators in future management.
Traditional questionnaire-based travel surveys have been a common method for collecting
information on individual travel behavior in previous studies, but this method is costly and
limited in spatial and temporal resolution. With the development of information and com-
munications technology (ICT) employed in the transport system, the availability of smart
card data enables us to carry out an in-depth investigation of individual travel behaviors.

The smart card is designed for simplifying boarding or alighting transactions when
passengers use the automated fare collection (AFC) systems in the public transport sys-
tem. Consequently, the transaction data include the information about boarding time and
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location, alighting time and location (depending on the charging system), and trip fee.
The spatiotemporal information embedded in smart card data helps us create the individual
trip trajectory. Compared to traditional survey data, smart card data has three advantages:
first, the high resolution of spatial and temporal information embedded in smart card data
makes it possible to identify personal travel behaviors on a finer scale; second, the large
amount of travel data allow us to investigate the travel behaviors of the vast majority
of passengers; and third, the convenience and low cost of data acquisition enable us to
investigate the usage of the system over years.

Smart card data have been widely employed in urban transport studies. In view
of previous works on exploring travel patterns, researchers primarily focused on either
investigating the spatial and temporal characteristics of system usage or identifying the
influential factors. There is an emerging body of research on investigating spatial and
temporal characteristics, and some studies contribute to understanding the spatial and tem-
poral variations of ridership [1–6], the evolution of urban spatial structure [7], jobs–housing
relationship [8,9], and the interaction with built environment [10,11]. Moreover, the influ-
ence factors under various circumstances bring new insights for classic issues, such as
route choice habit [12] and stickiness [13], public interest over new rail transportation [14],
built environment assessment [15], climatic impact on travel intention [16], passenger
flow under special events [17,18], congestion estimation [19] and migration of vulnerable
groups [20,21]. These studies present valuable outcomes for the comprehension of travel
patterns, however, they primarily focused on the short-term data of system usage, and only
a few studies paid attention to the yearly usage of the system [8,22]. Employing the long-
term smart card data is indispensable for drawing a complete picture of users and their
usage, which lays the foundation for planners and policymakers to improve the system
and further achieve sustainable urban mobility.

Various data mining techniques and algorithms have been developed to analyze the
spatial and temporal patterns of residential travel. The K-means algorithm, C4.5 algorithm,
Rough set-based algorithm, Naïve Bayes algorithm, K-NN algorithm, and Gaussian gen-
erative model have been applied for segmenting temporal characteristics [23–25]. Eigen
decomposition is proposed as a transfer method from signal processing to extract common
patterns, utilizing the principal component to compress the temporal feature appearance
is dependent station variables [26]. With respect to the spatial features, the density-based
spatial clustering of applications with noise (DBSCAN) algorithm is shown to be a feasi-
ble method to infer trip origins and destinations [27] and analyze the regularity of each
cardholder [28]. Additionally, Nonnegative Matrix Factorization (NMF) and Hierarchical
Ascendant Classification (HAC) have been used for identifying behavioral patterns [29]
and estimating trip familiarity [30]. The above-mentioned works mainly focus on the
classic clustering algorithms (such as K-means, DBSCAN, HAC, etc.) and matrix de-
composition algorithms (such as NMF, Eigen decomposition, etc.). However, two issues
still need to be considered in both two kinds of algorithms. First, data distribution and
distance measurement criteria will significantly affect the result validity in classic clus-
tering algorithms [31,32], while the influence grows in higher dimensional data. Second,
the information loss always remains in the dimension reduction for matrix decomposi-
tion algorithms, which is hard but essential to explain the influence on the final result.
Consequently, the algorithm for mining travel patterns should be less sensitive to data
distribution and distance measurement criteria with information lossless.

The Gaussian mixture model has been widely used in various pattern analysis [33]
and data aggregation scenarios [34–36]. As a statistical-based cluster method, the Gaussian
mixture model is not only applied in diversified data distribution [37,38], but also calcu-
lated by Gaussian function parameters rather than the mutual distance among datasets.
Furthermore, Eigen decomposition is not essential for input variables, indicating that the
algorithm adapts to original feature vectors without information losses. In addition, a key
parameter for unsupervised clustering is the number of clusters; however, many studies
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determine the number of clusters based on a priori knowledge and lack a quantitative
method to support it.

To fill this gap, this study is carried out to explore how users and their spatiotemporal
travel behavior varied over a long period of time. Three key questions will be addressed:
(1) how do users vary over a long period of time based on the unique smart card ID, (2) what
are the spatiotemporal travel patterns of users, and (3) how to determine the best optimal
number of clusters? To this end, we employed the Gaussian mixture model (GMM) and
spatial analyses to examine the spatiotemporal characteristics of travel behaviors, using the
smart card data of subway traveling from 2011 to 2017. Our contribution is summarized
as follows:

• We built individual subway trip chains (i.e., the sequence of trips generated during
the day, with the information of O-D times and locations) and explored individual
travel patterns based on individual trip frequency.

• We proposed a user clustering scheme to unveil the distribution of trip frequency
over the hour of the day for each user, employing the GMM with EM algorithm for
clustering and integrated Pareto principle method to decide the number of clusters.

• We revealed the evolution of residents’ personal travel patterns from 2011 to 2017,
as well as the spatial and temporal distribution of each cluster.

The rest of the content is organized as follows. The cluster method and model parame-
ters are explained in Section 2. Clustering results and the spatiotemporal characteristics of
travel behaviors are presented and discussed in Section 3. Finally, Section 4 concludes the
findings and presents our potential inferences.

2. Methods
2.1. Data Source and Preliminary Analysis

Smart card records were collected in Shenzhen, a modern city that serves as a window
for China’s reform and opening-up policy. In the last 40 years, Shenzhen has blossomed
into one of the most important financial, manufacturing, and technological centers in
China, attracting numerous migrants to work in this city. Luohu, Futian and Nanshan
district formed the central urban areas, concentrating a large number of jobs in this city.
The remaining districts and eastern suburbs formed peripheral urban areas. Due to the
abundance of cheap residential areas in the peripheral urban area, a large amount of
subway commuting occurs between the peripheral urban area and the central urban area.
In 2004, Shenzhen built its first-ever subway line, i.e., the east portion of Line 1. To meet the
needs for urban development, the subway system network in Shenzhen was established
in 2011, which opened five subway lines (including Line 1 West, Line 2, Line 3, Line 4,
and Line 5). The other three subway lines (Line 7, Line 9, and Line 11) had been built late
in 2016 (Figure 1).

In this study, we collected the smart card records for the second or third week of
every September from 2011 to 2017, avoiding the Chinese Mid-Autumn Festival and
National Day holidays (the Chinese Mid-Autumn Festival is on 15 August by the Chinese
lunar calendar, usually falling in September, and the National Day holidays start from
1 October). The entire dataset contains 155.72 million subway transactions and 18.94 million
cardholders. Each transaction record includes the passenger card ID number, the time
stamp of the transaction, the types of transactions (tap-in or tap-out from subway stations),
the trip fee (only for the tap-out record), and the terminal equipment ID of transactions,
and the subway station name.
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Figure 1. Spatial distribution of subway network in Shenzhen.

Compared with other attributes in smart card data, passenger (cardholder) IDs enable
us to create a continuous timeline chart for the number of trips by specific users based on the
seven-year dataset from 2011 to 2017, as shown in Figure 2. The horizontal axis indicates
the year and the vertical axis indicates the number of cardholders, including new and
continuous cardholders. Overall, from 2011 to 2017, cardholders increased from 1.7 million
to 3.86 million. Between 2012 and 2017, the total number of continuous cardholders
increased from 0.56 million to 1.87 million.

Figure 2. Composition of the number of cardholders from 2011 to 2017.

Travel time patterns can represent distinct groups of people’s activity characteristics [6].
Figure 3 describes the distribution of the proportion of trips over the day of the week each
year. No particular distinction can be detected from the distribution, except that the
proportion of trips that occurred on workdays continued to grow slightly over the years.
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Figure 3. The proportion of trips over the day of the week (2011–2017).

2.2. Vector of Individual Trip Features

Trip frequency, commuting time, and commuting distance were usually taken as clus-
tering indicators to explore travel patterns based on different research purposes. Unlike
commuting time and distance, which mainly contribute to identifying temporal character-
istics of personal movement, the trip frequency can uncover passengers’ activity intensities
and their preferences for using public transit systems.

To examine the travel behaviors of individual passengers in detail, we used a 168-
dimension (7 × 24 h per week) vector to compute the trip frequency of each passenger, thus
each element in the vector represents the number of trips during the hour corresponding to
the element index as follow:

Ai = (ai1, ai2, ai3, · · · , aiN) (1)

where A is the trip frequency per hour, i is the sequential number of cardholders and N is
the dimension (168 in this case).

2.3. Gaussian Mixture Model

Inspired by smart card research reviews [22,39,40], any multidimensional data [41–43]
can be fitted by the Gaussian mixture model as the further extension of previous research,
indicating that the cardholders’ transit records could be considered as a kind of mixture
model that consists of several components. Each component can be regarded approximately
following the Gaussian distribution, which is also conditionally independent between any
two clusters. The two essential conditions lay the foundation of the Gaussian mixture
model clustering, leading to a general acceptance of the explanation. The Gaussian mixture
models [44] are given by:

P(y | θ) =
K

∑
k=1

αkφ(y | θk) (2)

where K is the number of Gaussian functions in the model capturing the variety of trip
features and αk is the coefficient of the Kth component, which usually represents the
proportion of different types of clusters. The individual trip can be generated from the Kth
component. Meanwhile, φ(y | θk) denotes the probability density function of the Gaussian
distribution as follows:

φ(y | θk) =
1√

(2π)σk
exp

(
− (y− µk)

2

2σ2
k

)
θk =

(
µk, σ2

k

) (3)
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For each Gaussian component, µk represents the average vector of trip frequency
in the kth component and σk is the standard deviation for the kth Gaussian distribution.
The selection of the kth component depends on the probability αk corresponding to the
proportion of each cluster in this analysis.

2.4. Expectation-Maximization Algorithm

We solve the Gaussian mixture model with the expectation-maximization algorithm
and obtain different clusters based on the trip frequency features. In theory, for a solution
of the Gaussian mixture model, the parameter estimation method should be adopted to
identify the variables αk, µk, and σk. However, the mixture distribution of the sample
assumes that the category of the temporal vector is unknown. In order to solve the problem,
we introduce a latent variable γjk describing the responsivity of the component to individual
trip yj. Therefore, the dataset can be expanded as follows:(

yj, γj1, γj2, · · · , γjk

)
, j = 1, 2, · · · , N (4)

From the expanded data, the likelihood function for forming the passenger clusters is
given by:

P(y, γ | θ) =
N

∏
j=1

P
(

yj, γj1, γj2, · · · , γjk

)
(5)

The equation can be also written as:

P =
K

∏
k=1

αnk
k

N

∏
j=1

[
1√

(2π)σk
exp

(
− (y− µk)

2

2σ2
k

)]γkk

(6)

where the variables are given as:

nk =
N

∑
j=1

γjk

N =
K

∑
k=1

nk

(7)

In terms of the likelihood function, the EM algorithm takes the E-step and the M-step
to interpret unknown parameters in an iterative solution. The E-step of the algorithm
involves calculating the expectation of the likelihood function to identify the maximization
probability of classification. The expectation function can be written in a logarithmic
form as:

Q
(

θ, θ(i)
)
= E

[
log P(y, γ | θ)y, θ(i)

]
=

K

∑
k=1

{
N

∑
j=1

(
Eγjk

)
log αk +

N

∑
j=1

(
Eγjk

)[
log
(

1√
2π

)
− log αk −

1√
2π

(
yj − µk

)2
]} (8)

where Eγjk is the parameter estimation for the weightiness of clusters, also meaning the
cluster membership of each component, computed as

γ̂jk = Eγjk =
αkφ
(
yj | θk

)
∑K

k=1 αkφ
(
yj | θk

) (9)

Moreover, the initial variable value should be incorporated into the function to update
the further iterative variable in this anticipation function. The iterative method in the
M-step uses the derivation of this anticipation function to compute the maximum value for
new iterative variable values, which can be specified by:
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µi+1, σi+1, αi+1 = arg max Q
(

µ, σ, α, µi, σi, αi
)

(10)

where the values can be estimated in their partial derivatives, as follows:

µ̂k =
∑N

j=1 γ̂jkyi

∑N
j=1 γ̂jk

, k = 1, 2, 3, · · · , K

σ̂2
k =

∑N
j=1 γ̂jk

(
yj − µk

)2

∑N
j=1 γ̂jk

, k = 1, 2, 3, · · · , K

α̂k =
∑N

j=1 γ̂jk

N
, k = 1, 2, 3, · · · , K

(11)

The iterative calculation in the E-step and M-step continues until the model converges.
The workflow for GMM clustering is presented in Figure 4. According to the final result,
each trip vector could be trained to test the corresponding probability for all cluster centers
and finally allocated to the appropriate cluster.

Figure 4. Workflow for GMM algorithm.

2.5. Parameter Choice

Unlike the parameters estimated by the algorithm (µ, σ, α), the number of clusters
should be selected beforehand. In this section, we introduced multiple criteria to evaluate
the performance of distinct cluster numbers. Due to the complexity of the distribution of
clustering samples, it is significant that clustering results should keep more original sample
information. Considering to minimize the information losses in clustering, Akaike infor-
mation criterion (AIC) is adopted for evaluating the volume of information entropy [45],
which is denoted as:

AIC = 2m− 2 ln(P) (12)

where m represents the number of model parameters and P refers to the likelihood function
value. Generally, a lower AIC index reflects more abundant information entropy in the
clustering solution.

Another consideration for unsupervised clustering is to emphasize cluster validity.
CalinskiHarabaz (CH) criterion can be applied to assess the quality of clusters with specified
cluster numbers when ground truth labels are not known. CalinskiHarabaz index measures
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the weights between the cohesion of the intra-class average distance and the separation of
the inner-class distance, given as:

CH =
Tr(Bk)

Tr(Wk)
× N − k

k− 1
(13)

where k is the number of clusters and N is the number of individual trips. Tr(Bk) and Tr(Wk)
represent the trace of the inter-class dispersion matrix and the intra-class dispersion matrix.
According to the definition of CH index, a higher CH index indicates a better-defined
cluster number with reasonable allocation on intra-class distance and inter-class distance.

However, in the majority of cases, the performance of the same cluster number on
these two evaluations may be self-contradiction, because more clusters always enhance the
information expression and reduce the sensitivity among cluster features. To balance the
evaluation indexes of the two methods, we introduced the Pareto principle to extract the
solution set in a multi-objective decision [46]. For the multi-objective decision of parameter
choice, two objective functions are organized as f ∗(x) for minimization over cluster number
solution x, shown as:

min f ∗(x) = { f1(x), f2(x)} (14)

while the Pareto-optimal solution min f ∗(x) is selected for the reason that it is impossible
to get better fi(x) without negative effect on f j(x), given the original situation. We attempt
to pick all appropriate clustering numbers that satisfied the Pareto principle, forming the
Pareto front related to clustering performance as Figure 5.

Figure 5. The concept of Pareto front through the usage of multiple objective functions.

3. Results and Discussion
3.1. Clustering Results of Gaussian Mixture Model

Prior to presenting the clustering results, we present and discuss the determination of
model parameters, clustering results of GMM, and spatiotemporal characteristics of entire
passengers and continuous cardholders. Figure 6 demonstrates clustering performance
varying the cluster number from 2 to 30 while the horizontal coordinate is the normalization
value of CH−1 and the vertical coordinate is the normalization value of AIC (the results
with the lowest performance on every single criterion are excluded in our choices). In total,
thirteen Pareto-optimal solutions on cluster number have been identified.

To identify the exact clustering number of the Pareto frontier, we applied the dominant
principle to select the best Pareto solution, which is donated as:

DomiScore(x) =

√√√√ n

∑
i=1

∣∣∣∣ fi(x)−max fi(x)
max fi(x)−min fi(x)

∣∣∣∣2 (15)
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while max fi(x) and min fi(x) represent the highest and lowest performance in the ith
criterion. According to the comprehensive performance in both criteria, we determine the
number of clusters k as 7 from the Pareto frontier.

Figure 6. Pareto front for the best clustering performance.

As shown in Figure 7, seven clusters were generated by the GMM, indicating the
representative travel behaviors of passengers. In view of total trip frequency, clusters 1, 2, 3,
and 4 present much active traveling status among all types of clusters. Cluster 5 has some
non-peak travelers on the first four days of the week. Cluster 6 has few subway travel trips
during weekdays, but more active trips on the weekends. There is also a distinct group
(cluster 7) who seldom commutes during weekdays but travel frequently on Friday.

Peak features are characterized by obvious distinctions among clusters. Clusters 1,
3, and 4 follow the regular two-peak pattern, these cardholders should be commuters.
Specifically, the morning peak in cluster 1 (from 6:00 a.m.) is at least one hour earlier
than in other clusters. However, the evening peak in these three clusters extends from
6:00 p.m. to 8:00 p.m., which is in line with the normal commute time for most office
workers. Cardholders in cluster 3 have relatively consistent working hours, as they only
travel during morning and evening peak hours and rarely travel during other hours. Unlike
cluster 3, cluster 4 is not concentrated in the morning and evening peak hours, and they
have more flexible working hours. In addition, cluster 2 displays the inconspicuous three-
peak pattern for the so-called night owls, indicating that another evening peak occurs
around 10:00 p.m. The travel activities of cluster 6 in a week are mainly concentrated on
Fridays and Saturdays. This cluster should be the students living in schools. Since they live
in school on weekdays and do not need to travel, they may need to travel for social activities
on weekends. Cluster 7 is unique among all clusters in that it has a relatively regular but
inactive travel frequency from Monday to Thursday, with the main trips concentrated in
the evening peak. However, the daily trips on Friday seem to be activated, while trips on
weekends nearly fall into sleep. Based on their travel pattern, we can infer that these people
may be part of the passengers who choose other modes of transportation (bus, taxi) from
Monday to Thursday in the morning rush hour due to traffic congestion or other factors,
and occasionally choose the subway in the evening instead. Considering the abnormally
active trip frequency on Friday, they may choose the subway to go to more important
destinations such as airports, rail stations or ports based on the belief in the reliability of the
rapid transit system. This speculation can also explain why this kind of passenger becomes
less active on weekends.
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As for the comparison of trip frequency between weekdays and weekends, passengers
in clusters 2, 3, 4, 5, and 7 take the subway less frequently on the weekends than on
weekdays, whereas passengers in cluster 1 follow the same timetable for both workdays
and weekends. This implies that those passengers have a fixed routine seven days a week.
Moreover, the passengers of cluster 6, the largest user group (23.8%), prefer to travel in the
afternoon or evening at weekends, but their working day usage suggests that they probably
do not take the subway for commuting.

Figure 7. The configurations of travel behaviors in clusters 1–7. (a) Temporal profile of cluster
1: 549,327 passengers (2.9%); (b) temporal profile of cluster 2: 2,239,660 passengers (11.8%); (c) tem-
poral profile of cluster 3: 3,798,313 passengers (20.0%); (d) temporal profile of cluster 4: 2,234,894
passengers (11.8%); (e) temporal profile of cluster 5: 2,825,129 passengers (14.9%); (f) temporal profile
of cluster 6: 4,521,905 passengers (23.8%); and (g) temporal profile of cluster 7: 2,772,880 passengers
(14.6%).

3.2. Passenger Structures and Travel Characteristics

We statistically analyze the structure and travel characteristics of each cluster based on
the clustering results from the previous section. For a more comprehensive evaluation of
the variations in travel behaviors over the years, we examined the distribution of the pro-
portion of passengers across seven clusters every year, as shown in Figure 8. Although the
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proportions of clusters in the sequence slightly fluctuate over the years, the passenger
structure remains relatively stable in the entire dataset. Cluster 6 makes up at least 20%
of passenger records, ranking first since 2011. However, the detailed temporal profile of
cluster results shows that cluster 3 is approaching the occupancy rate of cluster 6, meaning
that an increasing proportion of typical bimodal passengers select the subway as their
commuting choice. In addition, for the representative commuting clusters, clusters 1 and 2
show a growth trend, suggesting that high frequency travelers also have more trust in the
urban subway system.

Figure 8. The proportion of passengers over clusters (2011–2017).

Figure 9 presents the average travel time of passengers belonging to each cluster every
year. Obviously, the travel time maintains the same trend each year for all clusters with the
fact that regular passengers (clusters 1–4) cost more time over years. Particularly, the time
cost of cluster 1 in 2017 increased by 100 seconds over the 2011 level. Considering the
general subway speed in Shenzhen (about 50–70 km/h), passengers in cluster 1 may be
less sensitive to commuting time.

Figure 9. The average travel time of passengers in each cluster (2011–2017).

3.3. Spatio-Temporal Evolution of Cluster

Analyzing the temporal and spatial evolution of various passenger clusters might
assist in exposing the evolving laws of urban spatial structure [8]. We illustrate the spa-
tiotemporal variation of different clusters from the spatial distribution changes for one
cluster and the transfer between clusters. Figure 10 describes the spatial distribution of
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travel patterns of cluster 1, presenting the classified boarding stations for cluster 1. For the
spatial variations, two stages can be identified from 2011 to 2017: (1) germination develop-
ment stage (2011–2014); and (2) axial growth stage (2014–2017). The first stage indicates that
stations’ ridership increased in both peripheral and central urban areas in relative terms
and synchronous steps. In 2014, the daily amount of travelers at three stations exceeded
5000. The second stage witnessed fast-growing subway patronage since 2015. By 2017,
the number of top-level stations with a large number of travelers increased to sixteen.
Interestingly, ridership growth has mainly concentrated on stations along with Line 1 and
Line 4 in the second stage. In fact, large-scale urban development and urban renewal have
led to land use restructuring, densification, and gentrification, which may partially explain
the increase in subway traveling.

Figure 10. Spatial distribution of daily station volume for cluster 1 (2011–2017). (a) cluster 1 in 2011;
(b) cluster 1 in 2012; (c) cluster 1 in 2013; (d) cluster 1 in 2014; (e) cluster 1 in 2015; (f) cluster 1 in 2016;
and (g) cluster 1 in 2017.
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Information on each passenger’s ID is embedded in smart card data, therefore we
can find out which cluster each passenger belongs to each year. As a result, the cluster
migration of each individual passenger can be tracked over years. Figure 11 delineates
the cluster transition matrix between 2011 and 2017. In the Sankey diagram, the order of
clusters on both sides is ranked by the proportion of passengers in the respective years.

For continuous cardholders, there were significant changes in passengers’ travel behav-
iors, i.e., only one-third of passengers stayed in the same cluster after six years. Moreover,
the proportion of commuting passengers increased in 2017, implying that passengers with
tidal characteristics (clusters 1–4) have become the main force of continuous cardholders.
In addition, a larger proportion of passengers switched from cluster 1 (traveling most
frequently) in 2011 to other clusters (traveling less frequently) in 2017, implying that some
passengers have started a slow lifestyle or they have changed their travel modes.

Figure 11. Clusters migration between 2011 and 2017.

4. Conclusions

Smart card data have been widely applied in transport studies to uncover human
travel behaviors. However, few studies have been conducted to explore the dynamics
of travel behaviors over years. To fill this research gap, this study was conducted to
understand spatiotemporal characteristics of human travel behaviors by examining the
variations of passengers and their travel behaviors, using the smart card data of subway
traveling from 2011 to 2017. To this end, a Gaussian mixture model was employed to
examine the spatiotemporal patterns of passengers’ travel behaviors. In particular, we
propose the Pareto frontier method to determine the number of clusters, which is more
reasonable than the traditional empirical-based method. Moreover, the dynamic changes
of continuous cardholders and their travel behaviors over years were examined as well.

We found that no significant difference in the distribution of the proportion of trips
over the day of the week can be identified between years. However, seven clusters were
generated by the Gaussian mixture model based on trip frequency, indicating distinct
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travel patterns over the hour of the day and between weekdays and weekends. Moreover,
the proportion of passengers in each cluster varied significantly over years, showing that
the proportion of commuting passengers increased year by year. In addition, for the spatial
variations of travel patterns of cluster 1, two stages can be identified from 2011 to 2017,
i.e., germination development stage (2011–2014) and the axial growth stage (2014–2017).
For continuous cardholders, significant changes in passengers’ travel behaviors were
highlighted between 2011 and 2017, indicating that only one-third of passengers stayed
in the same cluster after six years. Moreover, compared to 2011, commuters have become
the main force of continuous cardholders in 2017. In addition, around 70% of passengers
have switched from cluster 1 (traveling most frequently in 2011) to other clusters (traveling
less frequently) in 2017, implying that some passengers have started a slow lifestyle or they
have changed their travel modes.

This study has several limitations. We mainly focused on uncovering the spatiotempo-
ral dynamics of passengers and their travel behaviors over a long period of time, but neglect
the reasons (travel purposes) behind travel behaviors. The travel purposes of individual
passengers are complex and might be correlated with the distribution of land use patterns
and urban facilities as well as personal habits and preferences, which are beyond the scope
of this study. We only used on-week data for each year due to data unavailability, and col-
lecting more data might uncover more comprehensive portraits of human travel behaviors.
However, we believe that our study still provides useful information and knowledge on
the spatiotemporal dynamics of passengers and their travel behaviors in the long term.
With reference to these methods and insights, other researchers can explore the long-term
dynamics of individual travel behaviors in detail. Furthermore, these findings lay the
foundation for transportation planners and policymakers to better understand and further
improve the service of the subway system.
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