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Abstract: The rapid expansion of urban construction land (UCL) provides a guarantee to support
rapid economic development and meet the social needs of urban residents. However, urban construc-
tion land is also an important source of carbon dioxide emissions. Therefore, it is of great research
value to investigate the relationship between UCL and carbon emissions in depth. Based on this,
using panel data of 57 cities in the North China Plain from 2007 to 2018, the study found that there is a
strong positive correlation between UCL and CO2 emissions. It can be seen that the expansion of UCL
is an important source of CO2 emissions. On the basis of this research conclusion, first, this paper
uses the Tapio decoupling model to analyze the decoupling relationship between UCL and carbon
emissions in the North China Plain. Then, the spatial autocorrelation analysis was applied to explore
the spatial correlation characteristics of the carbon emission intensity of UCL in cities in the North
China Plain. Finally, using the GTWR model to analyze the influencing factors of the carbon emission
intensity of UCL, the following conclusions were drawn. In 2007–2015, the decoupling relationship
performed well, but it deteriorated significantly from 2015 to 2018; in addition, there was a significant
positive spatial correlation of carbon emission intensity of UCL. Various influencing factors have
a significant impact on the carbon emission intensity of UCL, for example, the urbanization rate,
industrial structure, economic development level, and population density have a positive impact, and
environmental regulations, foreign investment intensity, land use efficiency and greenery coverage
have a negative impact. The research results of this paper provide a scientific basis for making
decisions and optimizing pathways to achieve carbon emission reduction from UCL in the North
China Plain, as well as certain reference values for other regions to achieve low-carbon development
of UCL. This is significant for exploring the optimal solution of land and carbon emissions and
building a harmonious human–land relationship.

Keywords: urban construction land; carbon emission; carbon emission intensity of urban construction
land; North China Plain; tapio decoupling model; geographically and temporally weighted regression
(GTWR) model

1. Introduction

Since the reform and opening up, China’s economy has achieved rapid development,
and the country’s appearance has changed with each passing day. At the same time, China
is also a big energy-consuming country. The extensive development model is accompanied
by a large amount of energy consumption, making it the country with the largest carbon
dioxide emission in the world. Currently, the increasingly serious climate warming and
greenhouse effect are the most direct causes of various extreme weather events. It has
become an important factor restricting the development of human society. In the face of
the current severe emission reduction situation in society, China has made a commitment
at the 75th United Nations General Assembly to achieve the two goals of carbon peaking
and carbon neutrality before 2030 and 2060, which reflects China’s efforts in addressing
climate change, a major country’s responsibility and firm determination on the issue of
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change. Adhering to a low-carbon economy and achieving sustainable development is an
inevitable choice concerning the destiny of all mankind.

At the same time, land is the most important support and carrier of human activities,
and human production activities also have an impact on the land; unreasonable production
activities cause direct damage to land resources and increase the burden on land. Studies
have shown that 60% of land changes are related to direct human activities [1]. Land use
and cover change is the second most important cause of increased CO2 emissions in the
atmosphere, after fossil fuel combustion [2,3]. In recent years, China has been rapidly
urbanizing, and UCL has increased significantly, which is one of the important sources
of carbon emissions. The expansion of land use has resulted in tight land supply and
demand, air pollution, and the greenhouse effect. From the source of carbon emissions,
land expansion increases carbon sources, such as industry and housing; from the end of
carbon emissions, land expansion reduces carbon sinks, such as forest vegetation. Therefore,
how to reconcile land expansion and carbon emissions and minimize carbon emissions,
while reasonably expanding land area and promoting economic and social development,
has become a problem that must be addressed head-on. On the basis of this research
purpose, this paper selects 57 cities in the North China Plain as research objects and, firstly,
explores the coupling relationship between UCL and carbon emission and then further
analyzes the spatial and temporal patterns and key driving forces of carbon emission
intensity of UCL, which is important for fully exploring the emission reduction potential of
UCL, reasonably planning the development direction of UCL, and improving the ecological
environment.

The background, significance, and main structure of the study have been analyzed
above; however, the question regarding how to better achieve the objectives of the study
remains, which requires the selection of appropriate research methods. The decoupling
theory provides a good theoretical framework for exploring the relationship between eco-
nomic growth and resource consumption, and it has become an effective analytical method
for academics to measure the relationship between the two changes. The decoupling the-
ory was first proposed by the Organization for Economic Cooperation and Development
(OECD) [4], and Tapio introduced the elasticity method to the decoupling theory to study
the decoupling relationship between economic growth and carbon emissions in the Eu-
ropean transport sector [5]; the model was later widely used to explore the relationship
between resource consumption and environmental pollution. At present, a large number
of scholars have applied the decoupling model at the international [6,7], national [8–13],
regional [14–17], urban [18,19], and industrial levels [20–23]. For example, Zhao et al.
analyzed the decoupling relationship between carbon emissions and economic develop-
ment for 29 countries, based on the Tapio model, and the study found some differences
in the decoupling status among countries in each period. Among them, the United States
performed the best, followed by the four countries where the climate target process was
legal (France, the United Kingdom, Hungary, and New Zealand) [6]. Using annual data on
Qatar’s economic income and CO2 emissions from 1970 to 2018, Shannak and Contestabile
find through empirical analysis that Qatar is currently experiencing an expanded relative
decoupling [12]. Liu et al. explored the decoupling relationship between economic growth
and industrial CO2 emissions in 13 cities in Jiangsu Province and found that the three
regions of southern, northern, and central Jiangsu experience weak decoupling, weak nega-
tive decoupling, and weak decoupling, respectively [16]. The study by Wang et al. found
that Beijing and Shanghai both experienced weak decoupling in construction, expansive
negative decoupling in transport, expansive coupling in trade, and weak decoupling in
others over the period 2000–2015 [19]. Yan and Chen analyzed the decoupling state of
economic development of construction industry and CO2 emissions in different provinces
of China during 2009–2019, and the results of the study showed that Beijing and Jiangsu
reached the ideal strong decoupling state, and Heilongjiang had the worst decoupling
state [21]. Through sorting and summarizing the existing literature, it is found that most
of the literature applies the decoupling model to investigate the decoupling relationship
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between economic growth and environment, and very few literatures combine resources
(especially land resources) and environment alone to study the decoupling status of the
two. In the face of the increasingly serious situation of carbon emission reduction and un-
reasonable expansion of urban land, it is important to introduce UCL and carbon emission
indexes into the decoupling model and investigate the change relationship between them,
in order to further optimize the land policy for macro-control and ensure the sustainable
and healthy development of land resources.

As described above, the decoupling model is used to assess the decoupling relationship
between UCL expansion and carbon emissions, but the model does not provide an effective
way to reduce carbon emissions from UCL. Since UCL is an important source of carbon
emissions, it is of great importance to study how to minimize carbon emissions from UCL.
Based on this research purpose, carbon emission intensity as an important indicator to
measure the harmonious relationship between economic and social development and the
ecological environment; it is essential to introduce the indicator of carbon emission intensity
of UCL (carbon emission per unit of urban construction land) and analyze its influencing
factors. Under the current increasingly serious situation of carbon emission reduction, the
research on carbon emission intensity has also been a hot topic of academic research. Many
scholars have conducted research on the carbon emission intensity of GDP (carbon dioxide
emission per unit of GDP), and the research results are very fruitful, mainly including the
measurement of carbon emission intensity of GDP and analysis of spatial and temporal
evolution characteristics, change trends, regional differences, and influencing factors. Jiang
and Liu studied the inter-provincial CO2 emission intensity inequality in China during
2005–2015 by using the Thiel index, and their findings indicate that the inter-provincial
CO2 emission intensity inequality in China has significantly increased. Energy efficiency is
the most important and positive factor regarding the inter-regional, eastern, central, and
western inequality in China [24]. Wang et al. analyzed the characteristics of the spatially
correlated network structure of carbon emission intensity in China’s construction industry
and its driving effects during 2006–2017. The results showed that the regional differences
in carbon emissions were significant, and the carbon emission intensity of the construction
industry showed a fluctuating trend. The overall network of carbon emission intensity
shows an obvious “core-edge” state, and the hierarchical network structure is gradually
broken [25]. Liu et al. found that the carbon emission intensity of China’s transportation
industry shows a spatial pattern of low in the southeast and high in the northwest, and there
are regional differences in the effects of energy structure, population size, and industrial
structure on carbon emission intensity, with energy intensity occupying a pivotal position
among all drivers [26]. Through sorting and summarizing the existing literature, it was
found that most of the previous literature focused the research on the carbon emission
intensity of GDP, and little literature focused on the carbon emission intensity of UCL
(carbon emission per unit of urban construction land). Studies have shown that land use
change affects greenhouse gas emissions and sequestration and has become a key driver
of global and regional carbon emissions change [3,27]. Among various land use types,
the total and intensity of carbon emissions from UCL are obvious, and the expansion of
construction land is one of the important factors affecting urban carbon emissions [28–33].
Therefore, the carbon emission effect caused by the expansion of UCL is worthy of academic
discussion, and the in-depth investigation of the carbon emission intensity of UCL has great
research space and value. It is also an important basis for formulating emission reduction
policies and initiatives, and efforts to reduce the carbon emission intensity of UCL are
essential for achieving low-carbon sustainable development. From this perspective, this
paper will attempt to fill the gap in this research area and investigate what may be driving
the increasing carbon intensity of UCL. Is there spatial heterogeneity in the effects of
different drivers? The answer to this question will help to formulate a scientific strategy for
low-carbon land development, which is of great theoretical and practical significance, in
order to achieve carbon emission reduction and sustainable use of land resources.
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The rest of this paper is organized as follows. Section 2 provides the research materials
and methods. Section 3 shows the study results, mainly including the decoupling change
relationship between UCL and carbon emissions, as well as the factors influencing the
carbon emission intensity of UCL. Section 4 presents the discussions. Section 5 presents the
conclusions.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The North China Plain is located between 32–40◦ North latitude and 114–120◦ East
longitude. With its flat terrain, numerous rivers and lakes, convenient transportation,
and developed economy, the North China Plain is the political, economic, cultural, and
transportation center of China. By the end of 2019, the North China Plain had a total area of
300,000 square kilometers (accounting for 3.1% of China’s total land area), total population
of 339 million people (accounting for 24.2% of China’s total population), and gross domestic
product of 25.16 trillion yuan (accounting for 25.4% of China’s gross domestic product),
as well as a per capita gross domestic product of 74,218 yuan in 2019. The North China
Plain spans Beijing, Tianjin, Hebei Province, Shandong Province, Henan Province, northern
Anhui Province, and northern Jiangsu Province, with a total of 57 cities, as shown in Table 1
and Figure 1. Figure 1 shows the spatial distribution of land use types in the North China
Plain, with land use data from the Resource and Environmental Science Data Center of
the Chinese Academy of Sciences. Table 2 shows the percentage of each land use type. In
addition, the soils in the North China Plain are mainly tidal soils, sand ginger black soils,
brown soils, wind-sand soils, and saline soils.

The main considerations for choosing the North China Plain as the research area are as
follows. (1) The North China Plain is one of the three major plains in China. Compared with
plateaus and mountains, plains have natural topographical advantages, flat terrain, and
sufficient water resources, which are extremely conducive to the expansion of construction
land and formation of cities. According to the statistical data of China Urban Construction
Statistical Yearbook 2018, the UCL area of cities in the North China Plain occupies about
one-fifth of the total UCL area in China. (2) The North China Plain is also one of the areas
with the most serious environmental problems in China. High pollution and emissions
are the prominent features of environmental problems in the North China Plain. It is
an important production and accumulation place of carbon dioxide and air pollutants in
China.

Table 1. Classification of cities in North China Plain.

Study Area Cities

Beijing Beijing

Tianjin Tianjin

Hebei Province Shijiazhuang, Qinhuangdao, Tangshan, Handan, Xingtai, Baoding,
Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui

Shandong Province
Jinan, Qingdao, Zibo, Zaozhuang, Dongying, Yantai, Weifang,

Jining, Taian, Weihai, Rizhao, Linyi, Dezhou, Liaocheng,
Binzhou, Heze

Henan Province
Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Anyang, Hebi,

Xinxiang, Jiaozuo, Puyang, Xuchang, Luohe, Sanmenxia, Nanyang,
Shangqiu, Xinyang, Zhoukou, Zhumadian

Northern Jiangsu Province Xuzhou, Lianyungang, Suqian, Huaian, Yancheng

Northern Anhui Province Huaibei, Bozhou, Suzhou, Fuyang, Bengbu, Huainan
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Table 2. Percentage of land use types in North China Plain.

Land Use Types Percentage (%)

Forest 13.06
Water bodies 4.41

Cropland 58.88
Grassland 8.25

Urban and build-up 15.03
Other 0.37

2.1.2. Data Sources

The data of UCL area are from China Urban Construction Statistical Yearbook, and
other data are from China Urban Statistical Yearbook. These datasets have been used in
many studies, and a series of reliable findings have been obtained [34–40]. This proves that
the datasets used in this study are valid and reliable.

2.2. Methods

In this paper, we obtain the data of urban construction land area and basic data of
carbon dioxide emission from the statistical yearbook and calculate the carbon dioxide
emission by the corresponding carbon dioxide emission estimation method. On this basis,
the decoupling relationship between UCL and carbon emissions in 57 cities in the North
China Plain was evaluated; then, the spatial autocorrelation analysis was used to explore
the spatial distribution characteristics of carbon emission intensity of UCL Finally, the
GTWR model is used to investigate the drivers of carbon emission intensity of UCL. The
general research framework of this paper is shown in Figure 2.
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Figure 2. Research framework.

2.2.1. Tapio Decoupling Model

The “decoupling” is used to reflect the coupling between the changes of different
systems with certain intrinsic correlation, and the OECD first proposed the “decoupling
index” [4]; however, the OECD decoupling index is affected by the choice of the base period.
The Tapio decoupling index is based on the elasticity of change and uses the ratio of the
rate of change of two correlated variables in a certain period to measure the decoupling
relationship, which is more flexible in calculation and makes up for the shortcomings of the
OECD decoupling index. To investigate the decoupling relationships of urban construction
land and carbon emissions in cities of the North China Plain, in this paper, Tapio decoupling
model is used to calculate and classify the decoupling between UCL and carbon emissions
in 57 cities in North China Plain.

The decoupling index between UCL and CO2 emissions is calculated as follows:

α =
(Lt − L0)/L0

(Et − E0)/E0
=

rL
rE

(1)

In the formula, α represents the decoupling index, and E0 and L0 represent the UCL
area and CO2 emissions in the base period of the study area, respectively; Et and Lt represent
the UCL and CO2 emissions at the last period of the study area, respectively; rE and rL
represent the change rate of UCL area and CO2 emissions, respectively. The unit of UCL
area is km2, and the unit of total carbon emission is 10,000 tons.

In the actual study, in order to prevent the slight changes of the random variables
from being interpreted too significantly, the decoupling elasticity value of 1.0 is generally
considered to be in the linkage state, within the range of 20% above and below, with the
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elasticity index of 0.8 and 1.2 as the boundary. According to the calculated value of the
decoupling elasticity index and the sign of rE and rL, the decoupling state is classified into
8 categories. The specific classification criteria are shown in Table 3. The strong decoupling
of UCL and carbon emission is the most ideal state, while the strong negative decoupling
is the most imbalanced state of UCL and carbon emission; the expansive connection or
recessionary connection indicates that the change of UCL and carbon emission is about the
same, which is the transitional state between decoupling and negative decoupling.

Table 3. Decoupling status classification criteria.

Decoupling Type Changes in
UCL

Change in CO2
Emissions

Decoupling
Index Meaning

Strong decoupling >0 <0 (−∞, 0) Increase in UCL area and decrease in
CO2 emissions

Weak decoupling >0 >0 (0, 0.8) Increase in UCL area and slow
increase in CO2 emissions

Expansive connection >0 >0 [0.8, 1.2] UCL area and CO2 emissions increase
at the same rate

Expansive negative decoupling >0 >0 [1.2, ∞] Increase in UCL area and significant
increase in CO2 emissions

Strong negative decoupling <0 >0 (−∞, 0) Decrease in UCL area and increase in
CO2 emissions

Weak negative decoupling <0 <0 (0, 0.8) Decrease in UCL area and slow
decrease in CO2 emissions

Recessionary connection <0 <0 [0.8, 1.2] UCL area and CO2 emissions decrease
at the same rate

Recessionary decoupling <0 <0 [1.2, ∞] Reduced UCL area and significant
reduction in CO2 emissions

2.2.2. Spatial Autocorrelation Analysis

In this paper, Moran index is used to measure the spatial distribution characteristics
of carbon emission intensity of UCL in the study area [41]. The global and local Moran
indices are calculated as follows [42,43]:

I =

n
∑

i=1

n
∑

j=1
wij

(
Yi −

−
Y
)(

Yj −
−
Y
)

S2
n
∑

i=1

n
∑

j=1
wij

Ii =

n
(

Yi −
−
Y
)

n
∑

j=1
wij

(
Yj −

−
Y
)

n
∑

i=1

(
Yi −

−
Y
)2 (2)

where, I and Ii represent the global and local Moran index of the carbon emission intensity
of UCL. n represent the number of spatial locations, wij denotes the spatial weight matrix,
and the spatial adjacency matrix is chosen; Yi and Yj represent the carbon emission intensity
of UCL in i city and j city; and S2 is the sample variance. If Moran index is greater than 0,
it means there is spatial positive correlation; if Moran index is less than 0, it means there
is spatial negative correlation; if Moran index is equal to 0, it means there is no spatial
autocorrelation.

2.2.3. Geographically and Temporally Weighted Regression Model

Compared with the OLS, TWR, and GWR models, the GTWR model can take both
temporal and spatial non-stationary characteristics into account [44], so the GTWR model
can achieve better explanatory power and estimation results and effectively reduce model
errors and parameter estimation errors [45–47]. Therefore, the GTWR model is used
in this paper to explore the spatio-temporal heterogeneity of each factor affecting the
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carbon emission intensity of UCL under the constraints of spatio-temporal differences.
By establishing a three-dimensional (longitude, latitude, and time) elliptical coordinate
system [48], the GTWR model can describe the spatio-temporal effects using regression
coefficients associated with the explanatory variables. The GTWR model expression is as
follows [49]:

yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)xik + εi (3)

where (ui, vi, ti) represents the spatiotemporal coordinates of the ith city; β0(ui, vi, ti)
represents the spatiotemporal intercept term of the ith city; p represents the number of
independent variable; yi represents the dependent variables of the ith city; xik represents
the kth independent variable of the ith city; βk(ui, vi, ti) represents the regression cofficient
of xik; and εi represents the error term.

2.2.4. CO2 Emission Estimation Method

CO2 emissions from cities are mainly energy CO2 emissions, including natural and liq-
uefied petroleum gases, as well as CO2 emissions from electricity and heat con-sumption [50];
therefore, the sources of urban CO2 emissions can be divided into two categories: direct
and indirect. Carbon emissions from direct sources (natural and liquefied petroleum gases)
can be obtained by multiplying the end consumption of these energy sources by the rel-
evant conversion factors provided by the United Nations Intergovernmental Panel on
Climate Change (IPCC) in 2006. Indirect sources are carbon emissions from electricity
and heat, where the carbon emissions from electricity are obtained by multiplying the
baseline emission factors of each regional grid with the urban electricity consumption [51].
The carbon emission from thermal energy is calculated by first calculating the required
amount of raw coal using heat supply, thermal efficiency, and raw coal heat coefficient, then
calculating the amount of standard coal consumed for centralized heating using the raw
coal conversion factor, and finally, calculating the carbon emission from thermal energy
consumption using the emission factor provided by IPCC2006. The heat supply data
are obtained from the China Urban Construction Statistical Yearbook, and the minimum
standard of thermal efficiency of coal-fired industrial boilers in China is between 65% and
78%. Considering that the current Chinese central heating boilers are mainly small- and
medium-sized coal-fired boilers, the value of thermal efficiency is taken as 70% [50]. Finally,
the carbon emissions generated by the above four energy sources are summed up to get the
total carbon emissions of each city.

3. Results
3.1. Time Series Changes of UCL Area and Carbon Emissions in North China Plain

As shown in Figure 3, the UCL area and total carbon emissions in the North China
Plain, as a whole, show a more obvious upward trend, except for individual years. During
the 12 years from 2007 to 2018, the area of UCL in the North China Plain expanded from
6884 km2 in 2007 to 10,958 km2 in 2018, while the total carbon emissions increased from
509 million tons in 2007 to 788 million tons in 2018, up by 59.2% and 54.8%, respectively.
As can be seen from Figure 3, UCL has a strong positive correlation with total carbon
emissions (the correlation coefficient is higher than 0.9 for all 12 years), thus indicating
that the expansion of UCL causes a consequent increase in carbon emissions with a strong
impact.
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Figure 3. Changes in UCL area and carbon emissions in the North China Plain during 2007–2018.

3.2. Evaluation Results Analysis of Decoupling Effect of UCL and Carbon Emission

Based on the Tapio decoupling model, the decoupling relationship between UCL area
and carbon emissions was studied in 57 cities in the North China Plain, and the Tapio
decoupling elasticity index was used to identify and classify the decoupling of UCL area
and carbon emissions in each city.

Considering that there may be a lagged relationship between UCL expansion and
carbon emission increase, the study period is divided into three periods: 2007–2011, 2011–
2015, and 2015–2018 for the convenience of analysis. Based on the relevant formulae and
index data of 57 cities, the decoupling indices of each city in different time periods were
finally calculated, and the decoupling types were identified, as shown in Figure 4. To
facilitate the analysis, Table 4 shows the number of cities with different decoupling types in
the four time periods at the same time.

Table 4. Number of cities of various decoupling types in different periods.

Decoupling Type 2007–2011 2011–2015 2015–2018

Strong decoupling 6 14 9
Weak decoupling 24 13 9

Expansive connection 6 5 10
Expansive negative decoupling 20 21 24

Strong negative decoupling 1 2 5
Weak negative decoupling 1
Recessionary connection
Recessionary decoupling 1

As shown in Figure 4, the decoupling status of UCL and carbon emissions in the North
China Plain is clearly distributed in a differentiated pattern. In the three time periods,
the main decoupling types in North China Plain cities are weak decoupling, expansive
negative decoupling, and expansive negative decoupling, in that order, and the overall
decoupling situation shows a change from good to bad.
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From 2007 to 2011, the overall decoupling status of the North China Plain was good,
with more than half of the cities in strong and weak decoupling, which showed an increase
in the area of UCL and decrease or slow increase in carbon emissions, thus achieving a low
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carbon development of UCL, which is a very desirable state. They are mainly located in
the eastern, northern, and southwestern parts of the North China Plain, with most of the
areas in Shandong showing strong or weak decoupling. The regions with poor decoupling
performance are mainly distributed in Henan and central Hebei. These cities are in the state
of expansive negative decoupling, which shows that the increase rate of carbon emissions
is faster than the expansion rate of UCL, and UCL presents an extensive expansion trend.
The worst performer is Huainan City, which is in a state of strong negative decoupling. As
UCL shrinks, carbon emissions increase. The two are in a state of extreme dissonance.

In the period of 2011–2015, as can be seen from Figure 4, the most obvious change,
relative to the period of 2007–2011, is that some cities in central Shandong and western
Henan have improved their decoupling status from the previous weak decoupling status to
a strong decoupling status; anyway, the decoupling status has not changed much, compared
to the previous period.

Finally, during the period of 2015–2018, the overall decoupling performance in this
period was poor, compared with the previous two periods, and the number of cities
in strong and weak decoupling has decreased, among which, the number of cities in
strong decoupling had decreased by 5 and the number of cities in weak decoupling had
decreased by 4, compared with the previous period; the decoupling status of Shandong
and Hebei has deteriorated significantly. It can be seen that, during the period of 2015–
2018, Shandong and Hebei blindly expanded their UCL, while ignoring the ecological and
environmental problems arising from it, which intensified carbon emissions and aggravated
the greenhouse effect. In addition, the number of cities with strong negative decoupling
increased to five during this period. Although these cities reduced UCL, carbon emissions
increased, indicating that people in this region are more frequently engaged in various
industrial production, construction, and commercial activities, which greatly increase the
burden of land and are not conducive to the intensive use of land.

3.3. Calculation of Carbon Emission Intensity of UCL

In this paper, the carbon intensity of UCL indicates the carbon dioxide emissions per
unit area of UCL and is expressed as the ratio of carbon dioxide emissions to the area of
UCL.

In order to clarify the trend of carbon emission intensity of UCL in cities of North
China Plain, this paper first measured the average value of carbon emission intensity of
UCL in 57 cities of North China Plain.

As shown in Figure 5, in terms of time series, the average value of carbon emission
intensity of UCL in 57 cities in the North China Plain increased from 68,026 tons/km2

in 2007 to 73,326 tons/km2 in 2018. After little fluctuation from 2007 to 2013, the carbon
emission intensity showed a decreasing trend year-by-year, between 2013 and 2016, thanks
to China’s active implementation of the strictest arable land protection system and land
conservation system in 2013, which provided an important guarantee for economic and
social development, The Blue Book on China’s Land Policy (2013) points out that the focus
of land administration in that year changed from an emphasis on approval to supervision,
increment to an emphasis on both stock and increment, and the introduction of policies to an
emphasis on policy effects, with significant policy effects. Additionally, it is expected that,
in 2014, the policy of saving and concentrating land will be fully implemented; the scale of
land will be implemented to control the total amount and reduce the supply, increase the
supply of stock construction land, and reduce new construction land. In 2016, the carbon
emission intensity of UCL showed an increasing trend year-by-year, probably due to the
local implementation of the central policy of land conservation and intensification of land
use, which was gradually negative and lax, and began to pursue more economic growth
and “face-saving projects” brought by the expansion of construction land. This has led to
the rough expansion of UCL and intensified carbon emissions.
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Figure 5. Average carbon emission intensity of 57 cities in the North China Plain in each year between
2007 and 2018.

3.4. Spatial Distribution Pattern of Carbon Emission Intensity of UCL

The carbon emission intensity of 57 cities in four years (2007, 2011, 2015, and 2018)
was classified into five categories by using the natural breakpoint grading method with
arcgis software, as shown in Figure 6. Spatially, the carbon emission intensity of UCL in
the North China Plain shows an overall spatial distribution pattern of “high in the north
and low in the south”, with obvious clustering characteristics. The areas with high carbon
emission intensity are mainly concentrated in Beijing–Tianjin–Hebei and the central and
western part of Shandong, especially in the Beijing–Tianjin–Hebei region, which is the
agglomeration of high carbon emission intensity, while the areas with low carbon emission
intensity are mainly concentrated in the southern part of Henan, northern Jiangsu, and
northern Anhui, which are the agglomeration of low carbon emission intensity.

From the observation in Figure 6, since the carbon emission intensity of UCL in the
North China Plain shows agglomeration characteristics, we consider that there may be a
spatial autocorrelation in the carbon emission intensity of UCL, in order to test whether it
has a strong spatial correlation. By using GeoDa software, after 999 random permutations,
the global Moran index was calculated for 12 years from 2007 to 2018, which described the
spatial correlation and spatial difference of the carbon emission intensity of UCL each year.
The calculation results are shown in Table 5.

Table 5. Global Moran’s I for carbon emission intensity of UCL during 2007–2018.

Year Moran’s I Z-Score p-Value

2007 0.3011 3.8317 0.001
2008 0.3047 3.9230 0.001
2009 0.2694 3.4686 0.002
2010 0.2278 2.9870 0.003
2011 0.1245 1.7808 0.054
2012 0.1028 1.5960 0.062
2013 0.1678 2.4659 0.014
2014 0.1991 2.7429 0.008
2015 0.1917 2.6124 0.013
2016 0.1749 2.2830 0.016
2017 0.1401 1.8776 0.037
2018 0.0724 1.3499 0.085
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As can be seen in Table 5, all 12 years passed the significance test, and Moran’s I was
greater than 0, indicating that there is a significant positive spatial correlation between the
carbon emission intensity of UCL.

In Table 5, Moran’s I roughly experiences three stages of “decline—rise—decline”.
From 2007 to 2012, the Moran’s I showed a decreasing trend, and then started to rise
again; in 2015, it again showed a decreasing trend year-by-year. Corresponding to the
change of Moran’s I, the carbon emission intensity of UCL shows a strong spatial clustering
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characteristic during 2007–2010, and the clustering characteristic transiently weakens
during 2011–2012; the clustering characteristics continue to increase during 2013–2014, and
then weaken year-by-year during 2015–2018.

To further clarify the local agglomeration distribution pattern of carbon emission
intensity of UCL in 57 cities in the North China Plain, the data of four years (2007, 2011,
2015, and 2018) were selected to derive the Lisa agglomeration distribution map and classify
the agglomeration types into four categories by using GeoDa software. Figure 7 shows the
cities whose local spatial correlation statistics passed the significance test at the 5% level.
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As can be seen from Figure 7, the carbon emission intensity of UCL in cities in the
North China Plain is involved in all four forms of agglomeration. L-L agglomeration is
dominant, i.e., cities with lower carbon emission intensity are surrounded by cities with
lower carbon emission intensity, and these cities are mainly concentrated in southern
Henan, northern Jiangsu, and northern Anhui. This is followed by H-H agglomeration,
where cities with higher carbon emission intensity are surrounded by cities with higher
carbon emission intensity; these cities are mainly located in Hebei and Tianjin. This is
consistent with the results of the above analysis. The number of cities with L-H and H-L
agglomeration is relatively small.

3.5. Analysis of Spatial and Temporal Heterogeneity of Factors Influencing Carbon Emission
Intensity of UCL

In this paper, we synthesize the existing research literature [52–60] and select the
corresponding indicators as influencing factors from eight aspects: urbanization rate, indus-
trial structure, economic development level, population density, environmental regulation,
foreign investment intensity, land use efficiency, and greenery coverage. The specific
descriptions are shown in Table 6 (below).

Table 6. Selection and description of relevant variables.

Variable Type Variable Name Explanation of Variables Unit

Dependent
variables Carbon emission intensity of UCL Carbon emissions/UCL area 10,000 tons/km2

Independent
variables Urbanization rate (UR) Urban population/resident population %

Industrial structure (IS) Output value of secondary industry/gdp %

Economic development level
(EDL) Real gdp per capita (2000 as base period) 10,000 yuan

Population density (PD) Total population/municipal area 100 people/km2

Environmental regulation (ER) Comprehensive utilization rate of general
industrial solid waste %

Foreign investment intensity (FII) Actual amount of foreign capital utilized/gdp %

Land use efficiency (LUE) Municipal area/real gdp km2/100 million yuan

Greenery coverage (GC) Green area/total land area %

It is worth noting that, since the UCL is located in municipal districts, in order to
ensure the reasonableness and rigor of the whole study, in the next selection of relevant
indicators of influencing factors, except for the urbanization rate, the relevant data in the
China Urban Statistical Yearbook are selected from the municipal district caliber.

3.5.1. Outcomes of Model Fitting

The regression results of the OLS model are shown in Table 7. Since the GTWR model
cannot test the significance of each influencing factor, the OLS model is used to explore
the influence of each influencing factor on the carbon emission intensity of UCL. As can
be seen from Table 7, all factors have a significant effect on the carbon emission intensity
of UCL, except for the land use efficiency, which is significant at the 10% level; all other
influencing factors are significant at the 1% level. Among them, urbanization rate, industrial
structure, economic development level, and population density have positive effects, while
environmental regulations, foreign investment intensity, land use efficiency, and green
coverage have negative effects. In addition, to avoid the effect of multicollinearity, the
VIF (variance inflation factor) of each influencing factor was also calculated, as shown in
Table 7, proving that there is no multicollinearity among the influencing factors.
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Table 7. OLS model regression results.

Influencing Factors Coefficient Standard Error t-Statistics p-Value VIF

UR 0.0556 *** 0.0143 3.89 0.000 1.86
IS 0.0483 *** 0.0126 3.82 0.000 1.12

EDL 0.2526 *** 0.0579 4.36 0.000 1.78
PD 0.1709 *** 0.0226 7.53 0.000 4.72
ER −0.0385 *** 0.0069 −5.56 0.000 1.03
FII −0.2954 *** 0.0581 −5.08 0.000 1.11

LUE −0.0561 * 0.0293 −1.91 0.056 1.59
GC −0.3255 *** 0.0464 −7.01 0.000 4.44

Note: * indicates p < 0.1; *** indicates p < 0.01.

To ensure the applicability and accuracy of using the GTWR model, the ols, TWR, and
GWR models were introduced successively, and the estimation results were compared and
analyzed, as shown in Table 8.

Table 8. Evaluating the performance of different models.

Model R2 RSS AICc Bandwidth

OLS 0.254 7442.11 3591.78 —
TWR 0.294 7055.52 3586.03 0.289735
GWR 0.566 4333.35 3345.45 0.140444

GTWR 0.710 2900.51 3325.10 0.118590

Based on the comparison of R2, RSS, and AICc, it was found that the GTWR model has
the largest R2, smallest RSS, and smallest AICc among the four models, which indicates that
GTWR model fits better than other models. In particular, the R2 of the GTWR model is 0.71,
indicating that the explanatory power of the GTWR model is 71%, which is 45.6%, 41.6%,
and 14.4% higher than that of the OLS, TWR, and GWR models, respectively. In addition,
the GTWR model has the smallest AICc among the four models, and the difference of AICc
between GTWR model and other models is much larger than 3, which indicates that the
overall fitness of the GTWR model is much better than the other models [47].

In summary, the GTWR model has the best applicability performance, followed by the
GWR model, and the TWR and OLS models have poor performance, in terms of the factors
influencing the carbon emission intensity of UCL in cities in the North China Plain from 2007
to 2018. That is, according to the superiority of applicability, GTWR > GWR > TWR > OLS.

In Table 8, we can also see that the GWR model possesses better fitting results and is
more applicable than the TWR model, which reflects that the spatial factor is much more
influential than the temporal factor in the carbon emission intensity of UCL in the North
China Plain; that is, the spatial factor plays a dominant role in the influence of carbon
emission intensity of UCL [61].

As can be seen from the quartile table (Table 9), the regression coefficients of each
variable have a wide range of variation, with both positive and negative values, and the
change of intensity is obvious, thus indicating that the intensity of influence factor on the
carbon emission intensity of UCL has significant non-stationarity data, both in time and
space [62].

Based on the above analysis, it can be seen that the GTWR model can more effectively
and comprehensively explain the factors influencing the carbon emission intensity of UCL
in the cities of North China Plain. In addition, the advantage of the GTWR model is that
it can calculate the regression coefficients of the influencing factors in different times and
in space, and it can also visualize the regression coefficients through ArcGIS 10.2, so as
to explore more visually determine the differences regarding the degree of influence of
each factor on the carbon emission intensity of UCL in different local areas. Therefore,
this paper chooses to use the GTWR model to analyze the factors influencing the carbon
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emission intensity of UCL in detail, and then obtain the spatial and temporal variation of
the regression coefficients of each factor.

Table 9. Test results of GTWR model.

Variables Minimum 1/4 Quantile Median 3/4 Quantile Maximum

UR −0.276 −0.002 0.051 0.114 0.500
IS −0.510 0.033 0.067 0.129 0.343

EDL −2.604 −0.080 0.314 0.825 2.666
PD −0.230 0.063 0.153 0.313 1.807
ER −0.162 −0.064 −0.034 −0.002 0.330
FII −1.486 −0.495 −0.394 −0.292 0.318

LUE −2.246 −0.129 −0.014 0.132 1.475
GC −1.831 −0.462 −0.327 −0.226 0.093

3.5.2. Time Series Evolution of Factors Influencing Carbon Emission Intensity of UCL

This paper portrays the changes of regression coefficients of each factor affecting the
carbon emission intensity of UCL in the North China Plain, in the form of boxplot from the
time latitude, as shown in Figure 8.

(1) The urbanization rate (UR) shows an overall positive relationship with the carbon
emission intensity of UCL, which is consistent with the regression results of the OLS
model. This indicates that population urbanization can increase the carbon emission
intensity of UCL. This is because, in the process of urbanization, rural residents flock
to cities and become urban residents, leading to changes in their lifestyles, as well as
employment fields. Due to the convenient transportation and living conditions in the
cities, the consumption demand has been increased and diversified, thus resulting
in a rapid increase in their demand for products such as automobiles and household
appliances. In terms of employment fields, rural residents are mainly engaged in
primary industries, while, when they become urban residents, their employment
fields change from primary industries to secondary industries, bringing about rapid
development of industries, as well as construction, which increases the burden of
UCL and causes an increase in carbon emission intensity. However, in a few cities,
population urbanization reduces the carbon emission intensity, which may be due to
the fact that population urbanization can lead to more standardized and collective
production and lifestyle; for example, centralized heating in urban areas facilitates
energy saving and reduces carbon emissions, compared with decentralized direct
coal-burning heating in rural areas [56]. At the same time, urban areas are also
influenced by factors such as the inflow of talents, industrial structure optimization,
and technological innovation to reduce their dependence on energy consumption and,
thus, reduce carbon emission intensity.

(2) The industrial structure (IS) shows an overall positive relationship with the carbon
emission intensity of UCL, which is consistent with the regression results of the
OLS model. This indicates that the larger the proportion of the output value of the
secondary industry in GDP, the higher the carbon emission intensity of UCL. This is
because the secondary industries are mainly manufacturing, construction, and mining,
which are resource-intensive industries, and high pollution and energy consumption
are the main characteristics of these industries, which are the main sources of carbon
emissions. The rapid development of China’s secondary industries in recent years,
especially before the 19th National Congress, has put more emphasis on “development
quantity”, rather than “development quality”, and the rough development model has
led to an increase in carbon emissions year-by-year.

(3) The economic development level (EDL) and carbon emission intensity of UCL show
an overall positive correlation, which is consistent with the regression results of OLS
model. That is, the higher the level of economic development, the higher the carbon
emission intensity of UCL. This is because most production and business activities
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are carried out on land, and economic development is based on land expansion. The
area of UCL is closely related to the total economic volume; although the increase
in the scale and intensity of human activities drives economic development, it also
accelerates carbon emissions, while creating wealth.

However, in the initial years, the level of economic development in a small number
of cities reduces the carbon emission intensity of UCL, which may be due to the fact that,
in the early stage, various types of infrastructure are being built rapidly, when economic
development has positive externalities; the agglomeration of economic activities generates
economies of scale, and the economies of scale effect and the sharing of facilities reduce
the carbon emission intensity. At this stage, the total economic volume is low and does not
bring about large-scale CO2 emissions. However, with the rapid expansion of the economy
over time, the high intensity of economic activities, mainly heavy industry, consumes a
large amount of energy, and consequent “increasing effect” of carbon emissions gradually
become stronger than the “reducing effect” of carbon emissions caused by the economies
of scale of economic agglomeration and sharing of facilities [63], which starts to push up
the carbon emission intensity.

In addition, it is worth noting that the box shows an obvious upward trend year-by-
year, as seen in the boxplot, which reflects that the level of economic development has
played a stronger and stronger pulling role in increasing the carbon emission intensity.

(4) The population density (PD) shows an overall positive relationship with the carbon
emission intensity of UCL, which is consistent with the regression results of the OLS
model; that is, the greater the population density, the higher the carbon emission
intensity of UCL. This is because higher urban population density will lead to the
problem of uneconomical agglomeration, and excessive population agglomeration
brings about the “congestion effect”; the impact of the “congestion effect” on carbon
emissions is mainly manifested in transportation energy consumption. Increased
population density puts pressure on urban transportation infrastructure, and traffic
congestion is common [64], which has a negative impact on energy consumption, thus
leading to higher carbon emission intensity.

In addition, it is worth noting that the box shows an obvious upward and longer trend,
as seen in the boxplot. The upward shift of the box indicates that the regression coefficient
is increasing year-by-year, which reflects that the pulling effect of population density on
the increase of carbon emission intensity of UCL is increasing year-by-year. The longer box
indicates that the regression coefficients become increasingly scattered, which may be due
to the fact that it is a result of the large difference in population density among regions.

(5) Environmental regulation (ER) shows a negative relationship with carbon emission in-
tensity of UCL, which is consistent with the regression results of OLS model; that is, the
higher the comprehensive utilization rate of general industrial solid waste, the lower
the carbon emission intensity of UCL, which indicates that environmental regulation
can reduce the carbon emission intensity of UCL. This is because residual industrial
solid waste is the waste slag, dust, and other wastes discharged into the environment
during industrial production, and these wastes will produce a large amount of carbon
dioxide if they are not treated properly. Improving the comprehensive utilization
rate of general industrial solid waste can greatly avoid the carbon emission problems
caused by improper treatment, thus reducing the carbon emission intensity.

In addition, it can be seen from the boxplot that the box shows a clear trend of becoming
shorter, which indicates that the regression coefficients are becoming more concentrated
and dispersion has decreased.

(6) Foreign investment intensity (FII) shows an overall negative correlation with the
carbon emission intensity of UCL, which is consistent with the regression results of
the OLS model, i.e., the higher the foreign investment intensity, the lower the carbon
emission intensity of UCL. The relationship between foreign investment and energy
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consumption is generally discussed in the literature around the “pollution refuge
hypothesis” and “pollution halo hypothesis”. The “pollution refuge hypothesis”
argues that, although the infusion of FDI (foreign direct investment) expands the
scale of the economy, it increases the pressure of the environment and resources,
due to the transfer of some energy-intensive and high-polluting industries, thus
leading to an increase in pollution and carbon emissions in the host country, while
the “pollution halo hypothesis “ argues that under the environmental regulation of
the home country, FDI improves the technology level of the host country through
knowledge and technology spillover, which improves the production process, thus
enhancing the energy utilization efficiency and reducing the energy intensity [65,66].
This paper empirically verifies the “pollution halo hypothesis”, which shows that the
“increase effect” of carbon emissions caused by the “pollution refuge hypothesis” is
weaker than the “decrease effect” of carbon emissions caused by the “pollution halo
hypothesis” in the cities of North China Plain, has a significant inhibitory effect on
foreign investment intensity on carbon emission intensity.

(7) Land use efficiency (LUE) shows an overall negative relationship with carbon emission
intensity of UCL, which is consistent with the regression results of OLS model; that
is, the higher the land use efficiency, the lower the carbon emission intensity of UCL.
This is because when the ratio of land area to gdp is smaller, which proves that less
land area is needed to create a unit of gdp, which proves that the land carries more
intense human production activities; the land is overused, which increases the burden
of land and pulls up the carbon emission intensity of UCL.

In addition, it is worth noting that, from the boxplot, it can be seen that the box has
shown an obvious upward trend since 2012, and the regression coefficient began to change
from negative to positive, which indicates that the land use efficiency and carbon emission
intensity of UCL began to show a positive correlation. This may be because the local
government has gradually realized the problem of excessive use of land resources. In
particular, China has clearly defined the key tasks to promote the construction of ecological
civilization in the 18th National Congress, and the report points out that it is necessary to
optimize the spatial development pattern of the land, control the development intensity,
adjust the spatial structure, and promote the intensive and efficient production space, in
accordance with the principles of balancing population, resources, and environment, as
well as unifying economic and social and ecological benefits. The implementation of the
policy has reversed the overuse of land, and the carbon emission intensity of UCL has
begun to decline.

(8) The greenery coverage (GC) shows an overall negative correlation with the carbon
emission intensity of UCL, which is consistent with the regression results of the
OLS model; that is, the higher the greenery coverage, the lower the carbon emission
intensity of UCL. This is because increasing the green area of the land plays a crucial
role in the reduction of carbon emissions from the land, and the increase of green
area not only reduces carbon sources, such as various types of productive activities,
but also greatly increases carbon sinks, such as forest vegetation, which is effective in
reducing the carbon emission intensity of UCL and helps accelerate the achievement
of carbon neutrality target.

In addition, it is worth noting that the box shows an obvious downward and longer
trend from the boxplot. The downward shift of the box indicates that the inhibitory effect
of greenery coverage on the carbon emission intensity of UCL is gradually increasing;
the longer box indicates that the regression coefficients become increasingly dispersed,
probably due to the large difference of greenery coverage in each region, which causes the
degree of influence to become increasingly discrete.
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3.5.3. Spatial Heterogeneity Analysis of Factors Influencing Carbon Emission Intensity
of UCL

In order to more intuitively observe the spatial variability of the influence of each
influencing factor on the carbon emission of UCL in different cities, the mean values of the
regression coefficients of each influencing factor in different cities during 2007–2018 were
calculated and visualized in this paper, as shown in Figure 9.



Sustainability 2022, 14, 9434 21 of 29

(1) The regression coefficients of urbanization rate (UR) and carbon emission intensity of
UCL are positive in the majority of cities in the North China Plain, and the high impact
areas are mainly concentrated in Beijing, Tianjin, Hebei, northwestern Shandong, and
western Henan. In these areas, the increase of the urbanization level brings the
concentration of population and production activities, which eventually leads to the
increase of consumption level, as well as the corresponding energy demand, due to the
high-intensity urban land development, and the urbanization mode of over-reliance
on land finance and rough and sprawling land development in these places brings
great pressure on urban emission reduction. However, the regression coefficients
are negative in eastern and southern Shandong, eastern Henan, northern Jiangsu,
and northern Anhui. This is because, as mentioned above, the urbanization rate
reduces the carbon emission intensity in these regions, especially in the eastern coastal
region, due to the influences of talent inflow, technological innovation, and industrial
structure optimization.

(2) The regression coefficients of industrial structure (IS) and carbon emission intensity of
UCL are positive in most cities in the North China Plain, and the high impact areas are
mainly concentrated in Beijing, Tianjin, western and central Shandong, eastern Hebei,
and northern Jiangsu, etc. A large proportion of these cities are heavy industrial cities,
and the energy structure is dominated by coal, iron, steel, and other energy-intensive
industries. The crude development model has greatly increased energy consumption,
thus making the carbon emission intensity high.

(3) The regression coefficient between the level of economic development (EDL) and
carbon emission intensity of UCL is positive in most cities in the North China Plain,
and the high value is mainly concentrated in the southern part of the North China
Plain, i.e., Henan, northern Jiangsu, and northern Anhui, where the high intensity of
economic activities consumes a large amount of energy, thus causing an increase in
carbon emission intensity of UCL.

However, in the Beijing–Tianjin–Hebei region, the regression coefficient is negative,
i.e., economic development reduces carbon emission intensity of UCL, as mentioned above,
which may be due to the fact that the “reduction effect” of carbon emission caused by
the economy of scale effect and facility sharing is stronger than the “increase effect” of
carbon emission caused by energy consumption. In order to verify this assumption, by
examining the change trend of regression coefficients of economic development levels of
cities in Beijing–Tianjin–Hebei region during 2007–2018, it is found that most of them show
a negative to positive trend. It can be seen that, when the “increase effect” in other regions
is already stronger than the “decrease effect”, the “increase effect” in Beijing–Tianjin–Hebei
region has a tendency to change from weaker than the “decrease effect” to stronger than
the “decrease effect”. This proves previous assumption.

(4) In most of the cities in the North China Plain, population density (PD) increases
the carbon intensity of UCL, with the high impact areas mainly concentrated in
the eastern and northern parts of the North China Plain, i.e., Shandong and Hebei,
because, in these areas, the population density is relatively high, which brings about
the “congestion effect”, leads to higher energy consumption in transportation, and
contributes to higher carbon emission intensity.

(5) Environmental regulations (ER) can reduce the carbon emission intensity of UCL in
most cities in the North China Plain, with the high impact area mainly concentrated
in the southwestern part of the North China Plain, i.e., Henan Province. This indicates
that environmental regulations play a more effective role in reducing the carbon
emission intensity of UCL in Henan Province, compared to other regions.

(6) In all cities of the North China Plain, without exception, the intensity of foreign
investment (FII) significantly reduces the carbon emission intensity of UCL, which
shows that the effect of foreign investment on reducing the carbon emission intensity
of UCL is obvious. The “pollution halo hypothesis” is prevalent in the North China
Plain, and foreign investment can improve local production technology and increase
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the productivity of enterprises to achieve environmental improvement and carbon
emission intensity reduction. As can be seen from Figure 9, the high impact value
area is mainly concentrated in the western part of Henan Province. The main reason
may be that, in these cities, local enterprises have lower energy saving and emission
reduction technology, when foreign investment with high technology, low energy
consumption and low pollution enters afterwards. The technology level gap can
greatly play the technology spillover effect of foreign investment, which, in turn,
significantly reduces carbon emission intensity.

(7) The spatially differentiated distribution of the regression coefficients of land use
efficiency (LUE) in different cities is obvious, among which, the number of cities with
positive and negative regression coefficients is large, and the areas with negative
regression coefficients are mainly concentrated in Beijing, Tianjin, Hebei, and northern
Henan, which shows that these regions rely too much on land finance, and the high-
intensity human activities are challenging the land carrying capacity and increasing
the land burden. Although the efficiency of land use has improved, it is also driving
up the intensity of carbon emissions. However, in southern Henan, northern Jiangsu,
northern Anhui, and some areas in Shandong, the regression coefficients are positive,
which indicates that, in these areas, by reasonably controlling the intensity of land
development and optimizing the structure and spatial layout of land, a reasonable
allocation of land resources has been achieved, which, in turn, reduces the carbon
emission intensity of UCL.

(8) In all cities of the North China Plain, the green coverage (GC) significantly reduces
the carbon emission intensity of UCL, which shows that the carbon sink of green land
can, indeed, effectively reduce the carbon emission intensity of UCL. Increasing the
area of green land is an important way to enhance the carbon absorption capacity,
so it is significant to build green water and green mountains. As can be seen from
Figure 9, the high impact value areas are mainly concentrated in Shandong Peninsula
and the western and southern parts of Hebei, as well as the eastern part of Henan
Province, where the green land greatly reduces the carbon emission intensity of UCL
and demonstrates a very prominent carbon reduction capacity.
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4. Discussion
4.1. Research Findings

Previous studies have analyzed the effects of urbanization rate, industrial structure,
population density, and foreign investment on carbon emission intensity [52–60], and their
findings are similar to this paper. However, in contrast to the previous findings, we found
that there seems to be a possible “U”-shaped relationship between the level of economic
development and the carbon intensity of UCL, with a negative, and then positive, relation-
ship. The reason for this, as described above, may be that the “reduction effect” of carbon
emissions caused by economies of scale and facility sharing is weaker, and then stronger,
than the “increase effect” of carbon emissions caused by energy consumption. A previous
study followed the environmental Kuznets curve hypothesis, which shows an inverted
U-shaped relationship between economic development and carbon emission intensity [67].
We believe that this is not to say that the environmental Kuznets curve hypothesis is wrong,
but we make a further conjecture based on the environmental Kuznets curve hypothesis,
i.e., whether there is an “inverted N”-shape relationship between economic development
level and carbon intensity of UCL. However, the second inflection point of the “inverted
N”-shape has not been reached yet, and this hypothesis may not be confirmed in this paper,
due to the limitation of sample size and study period. However, an inverted “N”-shaped
relationship between economic agglomeration and carbon emission intensity has been
found in the literature and proved by empirical analysis [63]. In conclusion, we believe
that, in the future, economic development will inevitably reduce the intensity of carbon
emissions. With the improvement of economic development, people can reduce carbon
emission intensity by optimizing energy structure and developing energy-saving and emis-
sion reduction technologies, as well as by increasing people’s awareness of environmental
protection. The current volatile change situation is all about phase. When the second
inflection point of the “inverted N” curve is reached, the level of economic development
will significantly reduce the carbon emission intensity.

In addition, our study discusses the effect of land use efficiency on the carbon emission
intensity of UCL. Overall, land use efficiency pulls up the carbon emission intensity of
UCL, which is not difficult to understand. The decrease in land use efficiency (land
area to real GDP ratio) also proves that land takes on more intense production activities,
which most likely brings about an increase in carbon emission intensity. However, there
are exceptions in southern Henan, northern Jiangsu, northern Anhui, and some parts of
Shandong that draw our attention, and we speculate that it may not only be due to the
optimal allocation of the structure and spatial layout of land in these areas, but also a
reason that these areas (especially the coastal areas of Jiangsu and Shandong) have a higher
level of science and technology development and higher number of high-tech industrial
incubation parks. The economic development level (i.e., GDP) of these regions is more
driven by technological innovation. The development of science and technology innovation
can effectively curb carbon emissions, so that when the land use efficiency (land area to real
GDP ratio) decreases, the carbon emission intensity will decrease. This finding can provide
a reference value for policy makers’ policy making. Promoting economic growth through
scientific and technological innovation, rather than relying on energy-intensive industries
with high pollution and energy consumption, can not only reduce the burden of land, but
also reduce the carbon intensity of land, thus achieving the best of both worlds.

Finally, most previous studies have neglected the carbon reduction effect of green
cover, which plays an important role in maintaining the concentration of greenhouse gases
in the atmosphere through the carbon sink function of plants, which absorb carbon dioxide
and release oxygen through photosynthesis. Taking this as the starting point, this paper
analyzes the effect of green cover as an influencing factor on the carbon emission of UCL,
and the research results support the above discussion; that is, green cover greatly reduces
the carbon emission intensity of UCL, and urban green space system can reduce carbon
emission in cities. The results of this study suggest that we should return more land
to forests and guide regions to scientifically promote land greening, in order to achieve
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a balance of carbon emissions and effectively combat global warming. This is not only
an important means to build a low-carbon urban land spatial form, but also an urgent
requirement in the field of urban land planning to integrate the concept of ecological
environment.

4.2. Policy Implications

At present, although the expansion of UCL has promoted economic development, the
blind expansion of land and massive land acquisition are important reasons for the crude
spread of land. According to the results of this paper, in recent years, the overall decoupling
status of UCL and carbon emissions in the North China Plain has performed poorly, and the
decoupling status varies among cities. Therefore, based on the advantages of local natural
endowments and land carrying capacity, we should actively explore the emission reduction
paths suitable for the region, gradually get rid of over-reliance on land finance, continue
to optimize the industrial structure, accelerate the conversion of old and new dynamics,
and gradually eliminate enterprises with high emissions, high energy consumption, and
overcapacity, while actively developing green renewable energy.

Based on the findings of this paper, it is believed that the greening coverage of UCL can
be appropriately expanded to enhance the “carbon sequestration” capacity of green areas,
thus reducing the burden of land and promoting the low-carbon development of land. We
should continue to deepen environmental regulation policy reform, improve environmental
management capacity, and force enterprises toward green transformation and technological
innovation; at the same time, we should increase the introduction of foreign investment,
implement stricter entry conditions for foreign investment, and optimize the structure of
foreign investment, so as to give full play to the emission reduction effect of knowledge and
technology spillover brought by foreign investment. Anyway, over-urbanization should
also be avoided, which is the main cause of big city disease, urban ecological deterioration,
and resource tension. The corresponding strong measures should be taken to reasonably
control the scale of cities and achieve a virtuous cycle of harmonious development of
economy and environment under the constraints of resource carrying and environmental
capacity.

The land is a very valuable non-renewable resource, and it is necessary to implement
the strictest land protection policy, resolutely resist the rough management and overuse of
land, strictly control the blind and rapid expansion of UCL, scientifically develop and utilize
land, continue to optimize the structure and layout of UCL, and promote the coordinated
development of the economic and environmental benefits of land use, which is the key to
realizing the rational allocation and efficient use of land resources, promoting intensive
land development, and ensuring the sustainable and healthy development of land.

4.3. Limitation and Further Research

(1) Due to the unavailability of some data, we only obtained relevant data for the period
between 2007–2018, which is relatively old. In future studies, if the time span can
be extended, different findings may be obtained, based on the findings of existing
studies.

(2) In this paper, only 57 cities in the North China Plain were selected as research objects,
and the corresponding research conclusions were obtained. Although some of the
research conclusions are universal, the research conclusions are not comprehensive
because the number of cities we selected only accounts for one-fifth of the total
number of cities in China, and the development basis, development mode, and current
situation of each city are different. In future studies, the sample can be expanded at
the city level, and more targeted development strategies can be proposed, according
to the differences in development status among cities to obtain more comprehensive
research findings.

(3) In the analysis of the influencing factors of carbon emission intensity of UCL, the
influence of individual influencing factors may not be linear, especially the influence
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of economic development level. So, the model selection in this paper may have
limitations. In future research, further optimization of the model can be made, i.e., by
introducing some nonlinear models to explore the specific nonlinear relationships.

5. Conclusions

As the most important component of urban land, the total and intensity of carbon
emissions from UCL are obvious. In the context of the two major goals of carbon peaking
and neutrality that China will achieve by 2030 and 2060, achieving low-carbon development
has become a new issue in the macro use regulation of UCL. Therefore, this paper uses
a decoupling model to investigate the decoupling status of UCL and carbon emissions
based on panel data of 57 cities in the North China Plain. The spatial autocorrelation
and GTWR models were used to analyze the spatial distribution characteristics of carbon
emission intensity of UCL in the North China Plain, as well as the influencing factors. The
conclusions of the study are as follows:

(1) Urban construction land in the North China Plain shows an extremely strong cor-
relation with carbon emissions; that is, the expansion of urban construction land
significantly pulls up a significant source of CO2 emissions, which is the basis of this
study.

(2) The decoupling types of UCL and carbon emissions in the North China Plain are
mainly weak decoupling and expansive negative decoupling types. The decoupling
situation showed a general trend of improvement and then deterioration.

(3) Overall, the carbon emission intensity of UCL shows obvious clustering characteristics
in both the north and south of the North China Plain; it is high in the north and low
in the south.

(4) There is temporal and spatial variability in the effects of different influencing factors on
the carbon intensity of UCL. Overall, urbanization rate, industrial structure, economic
development level, and population density have positive effects; environmental
regulations, foreign investment intensity, land use efficiency, and green coverage have
negative effects.
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