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Abstract: Microgrid stability issues are classified into three categories: transient, voltage, and small
signal stability (SSS). Small variations in the load demand and small perturbations in the control
system and line impedance parameters can cause instability, which can be avoided by performing
an SSS analysis. This paper focuses on investigating the impact of line impedance and passive filter
parameters on the stability of a MG in grid-connected mode. Therefore, a MG system was represented
mathematically, before performing an SSS analysis that calculated the stability margin of the MG
parameters. A sensitivity analysis was performed to determine those parameters highly participating
in the SSS. The mathematical results were validated using the simulation results, which were obtained
using MATLAB Simulink.
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1. Introduction

A microgrid (MG) is a group of micro-sources and loads in a subsystem, which can
work in an islanding mode or in a grid-connected mode. If the MG is in grid-connected
mode, its frequency and voltage will be dominated by the grid, which makes stabil-
ity less crucial than that when it is in the islanding mode, where the variation of load
demands causes major disturbances to the frequency and voltage, which can lead to
destabilization [1,2].

Stability issues in MGs are classified as small signal, transient, and voltage stability.
Small signal stability (SSS) is related to the feedback gains of controllers, changes in power
demands, and small perturbations in system parameters. A MG is transiently stable if it
reaches the steady state condition after large disturbances such as faults, large load steps,
and switching to the islanding mode [3].

The power output of renewable energies changes with time, which is considered a
perturbation to the system. This power variation makes it challenging for MGs to produce
reliable and stable power, especially when there is variation in the load. Therefore, it is
crucial to study the impact of small power variations on MG stability, which are considered
SSS [4].

SSS can be studied using the eigenvalue theorem, where the system is unstable if
at least one of the eigenvalues is on the right half plane of an imaginary axis. However,
knowing the eigenvalues is not possible without obtaining mathematical models of the
whole system. Therefore, a MG system should be represented mathematically by linear
equations, before forming the state space model that allows stability analysis [5,6].

Power demand variations and parameter perturbations are considered SSS issues that
can affect the reliability of MGs. Therefore, it is crucial to provide accurate mathematical
models for MGs to analyze their stability conditions with respect to small changes to MGs
parameters and power demand variations [4]. Power systems behavior is represented
by non-linear differential equations. Thereafter, the stability condition can be tested by
using eigenvalue analysis, which can be compared with time domain simulations. The
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accuracy of the mathematical model representing a MG can be measured by the percentage
of matching between the analytical results and time domain results. A system is considered
stable if it is able to function again around the same operating point after a disturbance.
For example, the voltage of a system is stable if the voltage at all buses is settled after any
kind of disturbance. If the voltage becomes unstable, its behavior will be either falling or
rising [6,7].

When a MG is in grid-connected mode it is dominated by the grid, which makes
it less possible for the MG to be unstable. Stability is a big concern when a MG is in
islanding mode, where stability is highly related to control gains, load fluctuations, and
line impedance variation [8].

The authors of [9] studied the SSS of a MG in islanding mode, with two distributed
generators. The parameters of current, voltage, and LC passive filter were varied in small
steps to study the impact on stability. In [10], stability state was examined by applying a
load step to a MG in the islanding mode. A mathematical model, simulation model, and
experiment setup were provided, which showed the same results. The authors of [11] used
SSS analysis to study the impact of droop control gain variation and load variation on the
stability of a MG, with three distributed generators in islanding mode. Similarly, in [12]
SSS analysis was performed on a MG with two distributed generators in islanding mode,
with respect to droop control gains and load variation. The authors of [13] developed a
small signal model of a MG in islanding mode, to analyze the stability and robustness of
the MG, and then an adaptive control method was proposed to adjust the control gains
in response to disturbances. In [14–20] the SSS of MGs in islanding mode was studied
when controller gains were increased. In [18], the SSS of a MG in islanding mode was
resolved, while proposing a method that simultaneously ensures stability and optimal
power flow. Most research related to the SSS of MGs in islanding mode has focused on
designing controllers to manage the variation of the load demands, while ensuring stability
of the MG system [19].

The authors of [21] used an SSS analysis to examine the impact of droop control gains
on the stability of a MG in grid-connected mode. SSS analysis was implemented in [22] to
discover the stability margin of control gains in a MG in grid-connected mode. The authors
of [23] used an SSS analysis to study the stability of a MG in grid-connected mode, with
respect to load demand variations. The authors of [24] derived the SSS limits of a phase
locked loop, responsible for synchronizing a wind farm with the grid. The authors of [25]
provided a small signal model of a MG with dynamic loads and transmission lines, before
investigating the parameter sensitivity and proposing methods to the enhance stability of
MGs under different scenarios and configurations.

It is important to study any possible disturbance of MGs, especially in the islanding
mode, because the inertia is low and MGs are normally associated with renewable energy
sources. It is assumed that MGs are stable when they are in the grid-connected mode,
as they will be dominated by the grid. Therefore, previous research has focused on the
SSS analysis of MGs in islanding mode with respect to control gains and load demand
variations. Only a few articles discussed SSS when the MG is in grid-connected mode, as
the MG will be dominated by the grid and small disturbances to control gains and load
demands do not normally cause instability. Furthermore, there are scarce published data
on investigating the SSS of MGs in grid-connected mode, with respect to LCL filter and
line impedance parameter variations. Therefore, it was decided in this article to investigate
the SSS of a MG when it is in grid-connected mode.

The main contributions of this article are summarized as follows:

• Deriving a state space model of a MG in grid-connected mode, which involves a LCL
filter, line impedance, and control system.

• Investigation of the impact of the LCL filter and line impedance parameters on the
stability of a MG in grid-connected mode.

• Sensitivity analysis of MG parameters was performed to investigate the most sensitive
parameters that affect the SSS of a MG in grid-connected mode.
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This paper is organized as follows: Section 2 presents the MG system and its parame-
ters. Section 3 presents the state space of the MG system. Section 4 reports the simulation
model that was modelled in MATLAB, while Section 5 shows the analysis and results of
the MG model.

2. Proposed Controller Design

A MG supporting a three-phase grid with the proposed control method is represented
in Figure 1, and the system parameters are detailed in Table 1. The figure shows that the
MG is in grid-connected mode. The input is a DC voltage that is converted to AC through
the inverter. However, the output voltage of the inverter is mostly a square wave, which
requires a filter to convert the output square wave into a sine wave. The LCL filter is mainly
used to interface the MG with the grid and to reduce the ripples produced by the high
switching frequency of the inverter.
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Figure 1. Three-phase voltage source inverter connected to a grid via a control method and a
LCL filter.

Table 1. Parameters of the grid-tied inverter system [26].

Parameter Symbol Value

Inverter-side parasitic resistance Rc 0.25 Ω
Grid-side parasitic resistance of the LCL filter R f 0.25 Ω

Transmission line parasitic resistance Rg 0.25 Ω
Inverter-side inductance of the LCL filter Lc 4.77 mH

Grid-side inductance of the LCL filter L f 0.16 mH
Transmission line inductance Lg 3.44 µH

Filter capacitance C f 14.7 µF
Proportional gain of the current controller kpc 14.24

Integral gain of the current controller kic 2.11 × 104

Frequency droop gain m 1 × 10−6

Voltage droop gain n 1 × 10−6

Inverter input DC voltage vdc 180 V
Switching frequency fs 8 kHz

Grid voltage magnitude vg 120 V
Fundamental frequency fn 50 Hz

A three-phase voltage and current should be transformed into a two-phase orthogonal
rotating reference frame before entering a control system. The control system is working in
the rotating reference frame (dq) and is then transferred back to the three-phase (abc) before
entering the VSI, to appear at the input of the LCL filter. The reference active and reactive
power are considered as inputs to the control system, where the inverter output power
is controlled by controlling the inverter output current, while the inverter output voltage
should be fixed. The active power reference is set to 500 W, while the reactive power is
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set to zero, in order to make the power factor of the MG be at unity. Therefore, the total
reactive power demand should be covered by the grid.

The droop controller is used to generate the reference currents based on the input
reference values of the power. Therefore, the droop controller is responsible for meeting any
loads connected to the MG. The current controller is a PI controller, which is responsible
for comparing between the measured inverter output currents and the reference currents
produced by the droop controller. The reference currents are adjusted by the PCC voltage
and power references. The output of the PI current controller is a voltage that is fed to
the PWM generator to be compared with the carrier signal, to generate the appropriate
switching sequence and to allow controlling the voltage at the output of the inverter.

A phase locked loop (PLL) is used to decrease the frequency deviation between the
grid and MG. Frequency deviation can severely affect the power sharing accuracy of a MG
in grid-connected mode. The PLL is responsible for tracking the phase angle of the grid
with the phase angle of the voltage at the PCC. Integrating the output frequency of the PLL
provides the reference phase angle that is required for the transformation blocks.

3. State Space Model

To study the small signal stability of the system shown in Figure 1, the system is
divided into five submodules. Each submodule is linearized and represented in the state
space form. The general form of state space models is provided in [5,8]. The A matrix,
which is the state matrix, of the whole system is formed by the combination of all of the
submodules on a common reference frame. The stability was tested by analyzing the
eigenvalues resulting from the combined system A matrix.

3.1. Phase-Locked Loop

The MG has to be synchronized with the main grid, as a lack of synchronization may
cause large transient currents to occur at the point of common coupling (PCC). To ensure
the synchronization process, the grid voltage amplitude, phase angle, and frequency should
be accurately matched. This process is performed by the PLL.

The PLL in Figure 2 is used to track the MG frequency with the grid frequency and
provide the transformation angle. The dynamics of the PLL are represented in (1)–(3). The
small signal linearized state space model of the PLL is represented in (4) and (5).
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It is assumed that ΦPLL =
∫

voqdt to simplify the generation of the state-space model.

.
∅PLL = kp,PLLvoq + ki,PLLΦPLL (1)

.
ΦPLL = voq (2)

ωPLL = kp,PLLvoq + ki,PLLΦPLL (3) ∆
.
∅PLL

∆
.

ΦPLL

 = APLL

[
∆∅PLL

∆ΦPLL

]
+ BPLL


∆ildq

∆vodq

∆iodq

 (4)



Sustainability 2022, 14, 9372 5 of 15

[∆ωPLL] = [CPLL]

[
∆∅PLL

∆ΦPLL

]
+ DPLL


∆ildq

∆vodq

∆iodq

 (5)

where

APLL =

[
0 ki,PLL

0 0

]
, BPLL =

[
0 0 0 kp,PLL 0 0

0 0 0 1 0 0

]
CPLL =

[
0 ki,PLL

]
, DPLL =

[
0 0 0 kp,PLL 0 0

]
3.2. Droop Controller

Figure 3 shows the power control method, where the reference frequency is compared
with the output frequency of the PLL and the error signal is passed through the droop
frequency gain and added to the commanded active power. On the other side, the d-
component of the inverter output voltage at the PCC is compared with the reference
voltage, and the error signal is passed through the droop voltage gain and added to the
commanded reactive power. The outputs of the droop controller are the current reference
values. The dynamics of the droop controller are represented in (6)–(9). The small signal
linearized state space model of the droop controller is represented in (10) and (11).

.
P = P∗ + m(ω∗ − ωPLL) (6)

.
Q = Q∗ + n(E∗ − vod) (7)

i∗ld =
2

3vod

.
P =

2
3vod

(P∗ + m(ω∗ − ωPLL)) (8)

i∗lq = − 2
3vod

.
Q = − 2

3vod
(Q∗ + n(E∗ − vod)) (9)

 ∆
.
P

∆
.

Q

 = AD

[
∆P

∆Q

]
+ BD1


∆ildq

∆vodq

∆iodq

+ BD2[∆ωPLL] (10)

[
∆i∗ld
∆i∗lq

]
= CD

[
∆P

∆Q

]
+ DD1


∆ildq

∆vodq

∆iodq

+ DD2[∆ωPLL] (11)

where

AD =

[
0
0

0
0

]
, BD1 =

[
0 0 0 0 0 0

0 0 −n 0 0 0

]

BD2 =

[
−m

0

]
, CD =

[
0 0
0 0

]

DD1 =

 0 0 − 2
3v2

od
(P∗ + m(ω∗ − ωPLL)) 0 0 0

0 0 2
3v2

od
(Q∗ + n(E∗)) 0 0 0


DD2 =

[
− 2m

3vod

0

]
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3.3. Current Controller

Two PI current controllers are shown in Figure 4, and they are used to provide the out-
put voltage of the inverter. The controllers compare the measured currents at the coupling
inductor and the reference currents, which are the outputs of the previous submodule. The
dynamics of the current controller are represented in (12)–(15). The small signal linearized
state space model of the current controller is represented in (16) and (17).

.
γd = i∗ld − ild (12)

.
γq = i∗lq − ilq (13)

v∗id = −ωnLcilq + kpc(i∗ld − ild) + kicγd (14)

v∗iq = ωnLcild + kpc(i∗lq − ilq) + kicγq (15)

[
∆

.
γd

∆
.
γq

]
= AC

[
∆γd

∆γq

]
+ BC1

[
∆i∗ld
∆i∗lq

]
+ BC2

 ∆ildq

∆vodq

∆iodq

 (16)

[
∆v∗id
∆v∗iq

]
= CC

[
∆γd

∆γq

]
+ DC1

[
∆i∗ld
∆i∗lq

]
+ DC2

 ∆ildq

∆vodq

∆iodq

 (17)

where

AC =

[
0
0

0
0

]
, BC1 =

[
1 0
0 1

]

BC2 =

[
−1 0 0 0 0 0
0 −1 0 0 0 0

]
, CC =

[
kic 0

0 kic

]

DC1 =

[
kpc 0

0 kpc

]
, DC2 =

[
−kpc −ωnLc 0 0 0 0

ωnLc −kpc 0 0 0 0

]
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Figure 4. Current controller.

3.4. LCL Filter

The switches of the inverter are assumed to be ideal and they produce no losses, which
makes the inverter voltage the same as the demanded voltage vi = v∗i . The dynamics of
the LCL filter with the feeder are represented in (18)–(23). The PLL frequency, which is the
inverter frequency, is considered to be the common reference frame. Therefore, all of the
equations are represented in the inverter reference frame, except that the voltage at the grid
bus needs to be converted according to the transformation matrix, as in (24) and (25). The
grid voltage is transformed to the common reference frame according to (26), where the
transformation angle δ represents the phase angle difference between the grid voltage and
the inverter voltage. Finally, the equations are linearized and represented in the state-space
form. The small signal linearized state space model of the LCL filter is represented in (27).

.
ild = −Rc

Lc
ild + ωPLLilq +

1
Lc

vid −
1
Lc

vod (18)

.
ilq = −Rc

Lc
ilq − ωPLLild +

1
Lc

viq −
1
Lc

voq (19)

.
vod = ωPLLvoq +

1
C f

ild −
1

C f
iod (20)

.
voq = ωPLLvod +

1
C f

ilq −
1

C f
ioq (21)

.
iod = −

(Rg + R f )

Lg + L f
iod + ωPLLioq +

1
Lg + L f

(vod − vgd) (22)

.
ioq = −

(Rg + R f )

Lg + L f
ioq − ωPLLiod +

1
Lg + L f

(voq − vgq) (23)

f DQ,G = Tlocal
global f dq,g (24)

Tlocal
global =

[
cos(δ) − sin(δ)

sin(δ) cos(δ)

]
, δ =

∫
(ω − ωPLL) (25)

vgd = VgD cos(δ1)− VgQ sin(δ1)

vgq = VgD sin(δ1) + VgQ cos(δ1)
(26)
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where f DQ, G is the global frequency, f dq,g is the local frequency, and Vg,DQ is the grid bus
voltage in the global reference frame.

∆
.
ildq

∆
.
vodq

∆
.
iodq

 = ALCL

 ∆ildq

∆vodq

∆iodq

+ BLCL1

[
∆vid

∆viq

]
+ BLCL2[∆δ1] + BLCL3[∆ωPLL] (27)

where

ALCL =



− Rc
Lc

ωPLL − 1
Lc

0 0 0

−ωPLL − Rc
Lc

0 − 1
Lc

0 0
1

C f
0 0 ωPLL − 1

C f
0

0 1
C f

−ωPLL 0 0 − 1
C f

0 0 1
Lg+L f

0 − (Rg+R f )

Lg+L f
ωPLL

0 0 0 1
Lg+L f

−ωPLL − (Rg+R f )

Lg+L f



BLCL1 =



1
Lc

0

0 1
Lc

0 0

0 0

0 0

0 0


, BLCL2 =



0

0

0

0
VgD sin(δ1)

Lg+L f

−VgD cos(δ1)
Lg+L f


, BLCL3 =



ilq

−ild

voq

−vod

ioq

−iod


3.5. Bus

The grid angular frequency is represented by ωg, and the inverter angular frequency
is ωPLL. The phase difference between the grid and the inverter is δ1, which is used to
transform the grid voltage from the global frame to the local frame. This angle varies
consistently with the variation of the inverter frequency, as described in (28) and (29). The
small signal linearized state space model of the bus is represented in (30).

.
δ1 = ωg − ωPLL (28)

.
δ1 = ωg − kp,PLLvoq − ki,PLLΦPLL (29)[
∆

.
δ1

]
= ABUS[∆δ1] + BBUS[∆ωcom] (30)

where
ABUS = [0], BBUS = [−1]

3.6. Full System

The combined submodules are represented in (31) where there are 13 states and five
inputs. The Asys represents the state matrix of the full model, and Bsys represents the input
matrix to the system. [

∆
.
xsys

]
= Asys

[
∆xsys

]
+ Bsys

[
∆usys

]
(31)

u =
[

ωPLL P∗ Q∗ VgD VgQ
]T

x =
[
∅PLL ΦPLL P Q γd γq ild ilq vod voq iod ioq δ1

]T
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Asys =



APLL 0 0 BPLL 0

BD2CPLL AD 0 BD1 + BD2 DPLL 0

BC1 DD2CPLL BC1CD AC BC2 + BC1 DD1 + BC1 DD2 DPLL 0

BLCL3CPLL + BLCL1 DC1 DD2CPLL BLCL1 DC1CD BLCL1CC ALCL + BLCL1 DC2 + BLCL1 DC1 DD1 + BLCL1 DC1 DD2 DPLL + BLCL3 DPLL BLCL2

BBUSCPLL 0 0 BBUS DPLL ABUS


13×13
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4. Simulation Model

The MG system was modelled in MATLAB Simulink, as shown in Figure 5, and
the model parameters are reported in Table 1. The solver type in MATLAB was set to
ode45x with a time step of 1 µs. The total simulation time was eighteen minutes and it
was performed using a personal computer with an Intel® Core™ i7-8750H CPU @ 2.2 GHz
processor and memory (RAM) of 16.00 GB.
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Figure 5. Screen capture of a MG system in grid-connected mode modelled in MATLAB Simulink.

5. Results and Discussion

Figure 6 shows the active and reactive power output of the MG where they match the
reference values of 500 W and 0 VAR, respectively. Small perturbations in the parameter
values of any system may change the system’s behavior significantly, causing instability.
The effect of parameter variation on a specific system behavior can be determined by calcu-
lating the parameter sensitivity. The parameter sensitivity analysis gives information about
parameters that can cause instability with only small changes in their values. Therefore,
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parameter values can be designed carefully to avoid instability. The parameter sensitivity
is calculated by

Senλi
pj =

∣∣λi(p + ∆pj)− λi(p)
∣∣

∆pj
(32)

where λi(p) is the ith eigenvalue of the system before perturbation, λi
(

p + ∆pj
)

is the ith
eigenvalue of the system after perturbation, and ∆pj is the difference between the original
parameter value and the perturbed parameter value. The parameter sensitivity analysis is
illustrated in Figure 7, which shows that the most sensitive parameters in the MG system
were Lg and Lf. Therefore, it was decided to study the impact of changing their values on
the stability condition.
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The eigenvalues of the combined small signal model can be related to the system
parameters and states. This relationship can help us to optimize the system dynamic
response and stability. The trace of the eigenvalues when changing the grid side inductance
of the LCL filter is shown in Figure 8. The inductance value was varied in steps of 0.3 mH in
the time domain simulation performed by MATLAB. The figure shows that the value of Lf
that destabilized the system was 6.2 mH. In order to assess the accuracy of the mathematical
model, it was decided to simulate the system with different values of Lf and measure the
d-component of the voltage at the PCC. It was found in the simulation that the system
became unstable at 6.2 mH of Lf, as shown in Figure 9. The figure also shows that when
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reducing the Lf value by 0.3 mH, the system was stable, while the system was unstable
when it was increased by 0.3 mH.
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When varying the transmission line inductance in the mathematical model in steps of
0.3 mH, it was found that the system became unstable at 6.1 mH, as shown in Figure 10.
This value is validated by the simulation results shown in Figure 11. The figure shows that
when applying 6.1 mH and above, the system is unstable, with the appearance of high
voltage values with oscillations. When reducing the inductance value by 0.3 mH and when
applying the original setting of 3.44 µH, the system was stable, and the voltage stayed
around 120 V, without any high oscillations.
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The inverter-side inductance of the LCL filter did not affect the stability of the system,
as shown in Figure 12. This mathematical result is validated by the simulation results
shown in Figure 13. The figure shows that the system was stable, despite the significant
increase in the inductance value. These results are confirmed by the parameter sensitivity
analysis shown in Figure 7, which shows that the MG system was not highly sensitive to
changes in the inverter-side inductance.

The parameter sensitivity analysis showed that the poorly damped modes were related
to the LCL filter parameters and the feeder inductance. Consequently, the damping ratio
of these modes can be increased by increasing the series damping resistances of these
sensitive parameters. However, passive damping has some drawbacks, such as increasing
the power loss in the filter and weakening the ability of the LCL filter to attenuate the
harmonics generated by the switching in the inverter. Furthermore, it is not possible to
increase the damping of the feeder because, in practice, this represents the distance between
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the MG and grid. Therefore, active damping should be designed to avoid decreasing the
system’s efficiency.
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6. Conclusions

SSS has been discussed in this article for a MG in grid-connected mode, to improve
the control design and also the stability of the system. A controller proposal, to control a
MG in grid-connected mode, was introduced in this paper. The whole system of the MG,
including the control system, was divided into submodules, and the small signal model
for each submodule was produced in detail. The small signal models of the submodules
were combined together on the inverter reference frame, to generate the A matrix of the full
system, which was used to analyze the stability of the full system. A sensitivity analysis of
the MG parameters was performed, before applying small variations to the most sensitive
parameters, to the test stability. The aim of this dynamic modelling was to design the MG
parameters that ensure stability. It was found that increasing the inductance destabilizes the
MG system. When increasing the grid side inductance of the LCL filter beyond the value of
6.2 mH, the system became unstable; and when increasing the transmission line inductance
beyond the value of 6.1 mH, the system also became unstable. The small signal model
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mathematical results were validated by comparison with the simulation results produced
using MATLAB Simulink. Identifying stability margins is a crucial aspect of increasing
grid resilience and of avoiding instability, which causes power outages and high costs,
resulting from damages to the grid infrastructure. Furthermore, power outages may affect
the economy indirectly by reducing sales and productivity. In future work, a solar power
plant will be added, alongside electrical loads that represent the real loads of consumers,
before studying the SSS, based on variations in the power source and electrical loads.
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