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Abstract: Protecting ecological security has become the backbone of social and economic develop-
ment since declines in ecological quality due to an increase in human dominance over the natural
environment. The establishment of ecological networks is an effective, comprehensive spatial regu-
lation means to ensure regional ecological security. Panzhou city, as a case study, is a typical karst
county and has been confronted with the pressure of ecological degradation in recent decades. In this
study, an integrated approach combining ecological quality (EQ), ecosystem function importance
(EFI), and morphological spatial pattern analysis (MSPA) was developed to determine the ecological
sources. Ecological corridors, ecological pinch areas, and ecological barriers were extracted using
circuit theory to identify the restored and conserved priority areas of ecological security patterns.
The results showed that (1) the remote sensing ecological index (RSEI) and EFI exhibited typical
geographical distributions, with the highest values concentrated in the northern and southern parts
of the study area and the lowest values scattered in the middle part; (2) 26 patches with forestland,
grassland, and waterbodies as the main land cover types were selected as the ecological sources; (3) 63
ecological corridors, composed of 45 key ecological corridors and 18 inactive ecological corridors,
were extracted, accounting for 203.12 km and 163.31 km, respectively; (4) 82.76 km2 of pinch areas
and 320.29 km2 of barriers were identified, both of which were distributed on key ecological corridors
and played different roles in ecological security; and (5) 4 types of ecological security zones were
established according to ecological sources, corridors, pinch areas, and barriers. This integrated ap-
proach provides a scientific method for the identification and implementation of ecological networks
that can contribute to protecting regional ecological security. Our findings can serve as applicable
and reasonable guidance to land administrators and policy-makers for adopting suitable territorial
spatial planning, urban planning, green cities, etc.

Keywords: ecological network; remote sensing ecological index; ecosystem function importance;
morphological spatial pattern analysis; circuit theory

1. Introduction

Regional increasing urbanization and industrialization due to the increase in the hu-
man population have caused serious, diverse, and negative impacts on ecosystems [1,2].
Ecological degradation, such as loss of biodiversity and habitat fragmentation, is increas-
ing [3]. Thus, the sustainable development of human society and ecological security are
experiencing severe challenges [4,5]. Since the 18th CPC National Congress, the con-
struction of ecological civilization has become an important strategic goal in regional
development. The Fifth Plenary Session of the 19th CPC Central Committee put forward
strategic goals to increase ecological progress, strengthen ecological security barriers, and
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significantly improve the urban and rural living environment [6]. Restoring the broken
ecological space and promoting the healthy development of the ecosystem has become a
major task of ecological civilization and territorial spatial planning in China [7]. In this
context, constructing a profitable ecological security pattern is seen as the most profitable
strategy for ecological protection [8].

In recent years, studies on ecological security patterns that have been conducted
in different countries around the world indicated that the establishment of ecological
networks is an effective means of comprehensive spatial regulation to ensure regional
ecological security [9–13]. An ecological network can be described as a mutualistic web
to functionally connect habitat patches, facilitate the dispersal of species, and therefore
support the survival of numerous species typical to natural and semi-natural habitats [14].
Since the 1980s, establishing an appropriate designation and identification method has been
the key to an eco-logical network. A basic research paradigm for the ecological network
was developed, that is, determining ecological sources–constructing ecologically resistant
surfaces–extracting ecological corridors [15–17]. An increasing number of researchers have
focused on the application and improvement of this paradigm [18–20].

The ecological sources are the basic elements in an ecological network, which can
provide decisive functions in the ecological network, for instance, a stable habitat for
animals, high quality ecological patches for human beings. Currently, ecological sources
can be identified through two methods: on the one hand, based on empirical judgment from
the experiences and expertise of researchers, natural landscape elements—such as nature
reserves, large forestry, scenic spots, and wetland parks—were directly selected as ecological
sources after qualitative analysis [21,22], but this method was subjective and ignored the
effective measurement of the ecological state of the patches after being impacted by human
activities. On the other hand, a series of evaluation frameworks of ecological importance
have been used to identify the ecological sources, where ecological indicators [23], ecological
functions [24], or the ecological suitability index [25] were widely adopted in practice. More
importantly, these frameworks made it possible to find an effective solution to protect a
targeted zone, and it is more reasonable to rank patches based on their degree of ecological
importance than on the land attributes [26]. However, due to the lack of evaluation
principles of ecological importance, scholars often used different evaluation indicators to
evaluate ecological importance according to regional characteristics or protection objectives,
such as species conservation [27], ecological functions for the terrestrial ecosystem and
the aquatic ecosystem [28], habitat importance [29], or blue infrastructure (BI) [30]. In
this study, an integrated method was proposed to comprehensively evaluate ecological
importance in an effort to improve regional ecosystem structure, ecosystem function, and
ecological quality. Based on the result of the assessment, patches with superior importance
in ecosystem structure, ecosystem function, and ecological quality were demarcated as
ecological sources.

The resistance surface refers to the cost of landscape media to overcome interpatch
flow resistances and can reflect the inherent influence of landscape heterogeneity on the
ecological flow [31,32]. The resistance surface is essential for an ecological network and even
a regional ecological security model. There are many different methods in terms of defining
and establishing the resistance surface [2,28,33,34]. Because of the different geographical
locations, methodologies may differ. The resistance surface was firstly analyzed and
determined based on land-use types [29], and then the relevant indicators were involved,
some of which were related to human activities, such as night-time light intensity [28],
or urban expansion, such as the distance from residential areas [32]. At the same time,
some studies revealed that the ecological resistance depended on the ecological quality,
and the units with higher quality had smaller resistance. It was gradually realized that the
ecosystems had evolved into a highly artificial natural–socio compound ecosystem due to
the serious disturbance from rapid urbanization and industrialization. Hence, adjusting a
reasonable ecological resistance surface based on these human disturbances has become
an important recent trend. In this study, four classes of factors were used to estimate the
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resistance surface, namely, the topography of the study area, vegetation status, human
activities, and quantitative indexes reflecting the typical fragile ecological environment of
the study area.

The ecological corridor is commonly defined as a linear or ribbon ecological landscape,
which has the functions of natural habitat and serves a smooth channel for the flow of
materials, energy, and organism between core patches of ecological sources [17,35,36]. At
present, the minimum cumulative resistance (MCR) model and circuit theory are mainly
applied to identify corridors. The MCR can consider the internal relationship between
land cover units and identify the optimal direction and route of biological flows. Since it
was introduced in 1996 [37,38], the MCR has been widely used in the study of ecological
security patterns [39]. However, the MCR cannot clarify the spatial range and key nodes
of an ecological corridor that could hinder or weaken ecological flow [28]. Circuit theory
simulates the diffusion process of species in an ecosystem by applying the random walk
characteristics of electrons in a circuit [40,41]. The essential advantage of circuit theory
is that it can identify the key positions according to the current intensity and determine
the width thresholds of ecological corridors according to the frequency distribution of the
current values. Therefore, the circuit theory has gained increasing attention and was used
in this study.

Located in southwestern China, Panzhou city is a typical karst county in Guizhou
Province. Like other county-level regions in China, it has faced the problem of ecological
degradation originating from rapid development over the last few decades. Furthermore, as
one of the most prominent karst landform areas, it also has confronted notable pressure to
balance its ecological protection and economic growth. However, its vulnerable ecosystem
provides a distinctive landscape and necessary habitat for rare plants and animals, which
can contribute to the ecotourism industry, one of the province’s predominant economic
services. Despite its profound ecological advantages or disadvantages, research work
on ecological security patterns and the construction of an ecological network in karst
areas has rarely been explored in the literature. Therefore, in this study, ecological quality
(EQ), ecosystem function importance (EFI), and morphological spatial pattern analysis
(MSPA) were assessed, and the ecological sources were identified according to the superior
importance of the EQ, EFI, and MSPA, respectively. Using topography, vegetation status,
human activities, and quantitative indexes, the resistance surface was established, and the
circuit theory was applied to identify ecological corridors and specific nodes. Thus, the
objectives of this study were as follows: (1) to extract the ecological source of Panzhou city
based on multiple objectives, (2) to construct the ecological network pattern of Panzhou
city, and (3) to optimize the ecological network. The outcomes of this study may not only
enrich the currently existing research on ecological security patterns and the construction of
an ecological network in ecologically fragile areas, but they may also provide suggestions
for safeguarding both ecology and economic development.

2. Materials and Methods
2.1. Study Area

At the junction of Yunnan and Guizhou, Panzhou city (104◦17′–104◦57′ E, 25◦19′–26◦17′ N)
in western Guizhou Province is a part of Liupanshui prefecture-level city. As an important
node for transportation, energy, commerce, logistics, and tourism between Yunnan Province
and Guizhou Province, it has jurisdiction over six subdistricts, fourteen towns, and seven
townships, with a total area of approximately 4057 km2 (Figure 1). This area has a subtropical
plateau monsoon climate with a mean annual temperature of 15.2 ◦C and an annual precip-
itation of 1390 mm. Panzhou city has karst landforms, with plateau mountains as the main
body. The whole terrain is high in the northwest, low in the southeast, and uplifted in the
central and southern parts. The forest coverage rate reaches 46.69%, with a dense distribution
of rare animals and plants (e.g., millennium ancient ginkgo trees). There is a large coal reserve,
accounting for 15% of the total coal reserve in Guizhou Province. However, due to the typical
karst geomorphological characteristics, rapid urbanization and industrialization have made
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the ecological systems more fragile (e.g., soil erosion and rocky desertification), which has
restricted regional development.
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Figure 1. Geographical location and land cover types of Panzhou city.

2.2. Data

The basic data of this study included the scenes of Landsat 8 OLI, digital elevation
model (dem), net primary productivity (npp), normalized difference vegetation index,
harmonized world soil database, annual precipitation data at 1 km resolution in China, and
multi-period land-use land cover remote-sensing detection dataset in China. Land cover
types were reclassified into farmland, forestland, grassland, waterbody, and construction
land (Figure 1). All data (Table 1) were represented, and raster data were uniformly
resampled to 30 m for research purposes.
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Table 1. The types and sources of data.

Data Types Data Sources Resolution Period

Landsat 8 OIL The Geospatial Data Cloud (http://www.gscloud.cn, accessed on 2
September 2021) 30 m 2020

Digital Elevation Model The Geospatial Data Cloud (http://www.gscloud.cn, accessed on 2
September 2021) 30 m 2020

Net Primary Productivity Google Earth Engine, accessed on 8 September 2021 500 m 2014–2020
Normalized Difference Vegetation Index Google Earth Engine, accessed on 8 September 2021 30 m 2020

Harmonized World Soil Database The Food and Agriculture Organization of the United Nations
(http://www.fao.org, accessed on 8 September 2021) 1 km

Annual precipitation data at 1 km
resolution in China

The National Earth System Science Data Center
(http://www.geodata.cn, accessed on 8 September 2021) 1 km 2014–2020

Multi-period land-use land cover
remote-sensing detection dataset in China

The Resource and Environment Science and Data Central
(https://www.resdc.cn/, accessed on 19 September 2021) 30 m 2020

2.3. Methods
2.3.1. Research Framework

The overall research framework of this study can be divided into four steps (Figure 2):
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Figure 2. The research framework of this study.

Step 1: According to the ecological system in the study area, ecological quality (EQ)
and ecosystem function importance (EFI) were evaluated. Combined with morphological
spatial pattern analysis (MSPA), the ecological sources were determined.

Step 2: A comprehensive resistance surface was established based on the coefficient of
variation method from four aspects: (1) topography of the study area; (2) vegetation status;
(3) human activities; and (4) the soil erosion sensitivity index and the rocky desertification
sensitivity index were introduced, both of which can analyze the ecological sensitivity of
typical fragile ecological environment [42,43].

Step 3: Using circuit theory, the ecological corridors, ecological pinch areas, and
ecological barriers were extracted based on the ecological source and comprehensive
resistance surface.

Step 4: The initial ecological corridors were sorted and prioritized, and then patch
verification was conducted to determine the protection order of ecological sources, pinch

http://www.gscloud.cn
http://www.gscloud.cn
http://www.fao.org
http://www.geodata.cn
https://www.resdc.cn/
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areas, and barriers, which were used as the basis for constructing the ecological security
patterns and ecological restoration zones in the study area.

2.3.2. Assessment of EQ

Remote sensing has become an effective way to evaluate regional EQs [44,45]. It is not
sufficient to adopt a uniform ecological index to assess ecological quality due to the com-
plexity and diversity of the ecological system [46,47]. The remote sensing ecological index
(RSEI), which integrates four indicators (greenness, wetness, dryness, and heat) through
the principal component analysis (PCA) method [44,48,49], has been extensively applied
to objectively evaluate eco-environmental quality without requiring manual parameter
setting [44,50,51].

1. Retrieval of the RSEI

Accordingly, the greenness indicator is represented by the normalized difference vege-
tation index (NDVI), which can manifest the environmental state in the RSEI. Meanwhile,
the wetness indicator is measured by the wet component (WET) derived from the tasseled
cap transformation. The indicator of dryness is estimated by the normalized differential
build-up and bare soil index (NDBSI), composed of the index-based built-up index (IBI)
and bare soil index (BI), and usually adopted to indicate the pressures generated from soil
bareness and human activities on the environment. The land surface temperature (LST)
is applied to indicate the heat indicator, which is selected as the indicator of local climate
changes in response to environmental changes [51,52]. The formulas for those indicators
were as follows [44,50,51]:

NDVI:
NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

WET:

WetTM = 0.0315ρblue + 0.2021ρgreen + 0.3102ρred + 0.1594ρnir − 0.6806ρswir1 − 0.6109ρswir2 (2)

WetOLI = 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρ nir − 0.7117ρswir1 − 0.4559ρswir2 (3)

NDBSI:

IBI =

2ρswir1
ρswir1+ρnir

−
(

ρnir
ρnir+ρred

+
ρgreen

ρgreen+ρswir1

)
2ρswir1

ρswir1+ρnir
+
(

ρnir
ρnir+ρred

+
ρgreen

ρgreen+ρswir1

) (4)

SI =
(ρswir1 + ρred)− (ρnir + ρblue)

(ρswir1 + ρred) + (ρnir + ρblue)
(5)

NDBSI = (IBI + SI)/2 (6)

LST:
LST = T/[1 + (λ× T/ρ) ln ε] (7)

T = K2/ ln(K1/L + 1) (8)

L = Gain× DN + Bias (9)

ε =


0.995
0.970
1.0094 + 0.047 ln NDVI
0.986

NDVI ≤ 0
0 < NDVI ≤ 0.157

0.157 < NDVI ≤ 0.727
NDVI > 0.727

(10)

where ρblue, ρgreen, ρred, ρnir, ρswir1, and ρswir2 represent the reflectance of the blue band, green
band, red band, near-infrared band, and shortwave infrared band1 and band2, respectively;
λ is the wavelength of the emitted radiance (11.435 µm for Landsat 5/7 and 10.9 µm for
band 10 of Landsat 8); ρ is a constant (1.438 × 10−2 m K); K1 and K2 are calibration coeffi-
cients for TM/ETM+/OLI sensor thermal band, for TM, K1 = 607.76 mW cm−2sr−1µm−1,
K2 = 1260.56 K, while for OLI, K1 = 774.89 mW cm−2sr−1µm−1, K2 = 1321.08 K; Gain and
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Bias are the band-specific multiplicative rescaling factor and the band-specific additive
rescaling factor, respectively, which are available in the head file of the used image; and
DN represents the digital number of a given pixel.

2. Acquisition of the RSEI

The four indicators, i.e., NDVI, WET, NDBSI, and LST, were integrated into the RSEI
via PCA. According to the load of each indicator on the RSEI, the contribution of each
indicator was weighted. This method avoids losing original information and explains most
of the total variation in the dataset. The component of PCA, was employed to represent the
RSEI. As such, the expression of RSEI can be written as follows [46,53]:

RSEI0 =
n

∑
i=1

ωi × PCi[ f (NDVI, WET, NDBSI, LST)] (11)

RSEI = (RSEI0 − RSEImin)/(RSEImax + RSEImin) (12)

where RSEI0 is the result calculated by PCA; n is the number of the extracted components.
If the cumulative percentage of eigenvalues is greater than 80%, the corresponding prin-
cipal components are extracted. ωi is the weight of the principal component i, which is
automatically assigned by the contribution rates of each eigenvalue; PCi is the principal
component i, which is the weighted sum of NDVI, WET, NDBSI, and LST, according to
the contribution of each factor to the principal component i; RSEImin and RSEImax are the
minimum and maximum values of RSEI0 in the study area, respectively. Before using PCA,
the values of the four indicators were normalized between 0 and 1 to eliminate the impact
of the unit. The PCA was then calculated in ENVI (version 5.3) software using the PCA
Rotation tool; as a result, a single-band image (i.e., RSEI0 image) was created. Subsequently,
the RSEI was divided into five levels, each with a 0.2 increment, i.e., Level 1 (poor): 0–0.2,
Level 2 (fair): 0.2–0.4, Level 3 (moderate): 0.4–0.6, Level 4 (good): 0.6–0.8, and Level 5
(excellent): 0.8–1. Of the five levels, Level 1 represented a very bad condition of EQ, and
Level 5 denoted an excellent EQ condition [46,54].

2.3.3. Assessment of the EFI

The EFI of the study area was quantitatively analyzed to provide a basis for ecological
security patterns and ecological restoration. According to the concept and method in the
‘Guidelines for the Delimitation of the Red Line of Ecological Protection’ of China [55], the
ecological functions of the study area were classified into three types: the water source
conservation function (WR), water and soil conservation function (Ac), and biodiversity
maintenance function (Qxj). Therefore, the EFI was obtained from the three types of
ecological functions (WR, Ac, and Qxj): WR was calculated by the NPP quantitative index
evaluation method [56], Ac was assessed mainly by the revised universal soil loss equation
(RUSLE) [57,58], and Qxj was computed by the Habitat Quality (HQ) module in InVEST
software [59]. The formulas of those indicators were as follows:

WR:
WR = NPPmean × Fsic × Fpre × (1− Fslo) (13)

where NPPmean is the average NPP of ecosystems in the study area from 2000 to 2020; Fsic
is the capacity factor of the soil seepage, and the value for each soil type was shown in
Appendix ?? of Appendix A; Fpre is the average precipitation factor from 2014 to 2020 in
study area; and Fslo is the slope of the study area.

Ac:
Ac = Ap − Ar = R× K× L× S× (1− C) (14)

where Ap is the potential soil erosion; Ar is the actual soil erosion; R is the factor of average
precipitation erosivity from 2000 to 2020; K is the factor of soil erodibility in the study area;
and L, S, and C represent the slope length, slope, and vegetation cover, respectively. The
detailed calculations of the parameters in Ac are presented in Appendix A.2 of Appendix A.
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Qxj:

Qxj = Hj

(
1−

(
Dz

xj

Dz
xj + kz

))
(15)

where Qxj is the HQ index of grid x in land-use type j; Dxj is the habitat stress level of grid
x in land-use type j; Hj is the habitat suitability of land-use type j; k is the half-saturation
constant, usually set to 0.5 in the InVEST model; and Z is a normalized constant, for which
the default parameter of the InVEST model was 2.5. More details can be seen in the user’s
guide of the InVEST Model [59], and the relevant parameters are presented in Appendix A.3
of Appendix A.

Based on the evaluation results of three kinds of ecological functions (WR, Ac, and
Qxj), the total value of the EFI was shown as follows:

EFI = WR + Ac + Qxj (16)

The comprehensive evaluation of the EFI was normalized and separated into five
levels based on natural breaks: Level 1 (0.0–0.25, low), Level 2 (0.25–0.37, comparatively
lower), Level 3 (0.37–0.47, median), Level 4 (0.47–0.58, comparatively higher), and Level 5
(0.58–1.0, high).

2.3.4. Landscape Pattern Analysis Based on MSPA

MSPA, proposed by Vogt [60], analyses landscape patterns by combining the mathe-
matical morphology research of Riitters [61] with a mathematical morphology-mapping
algorithm developed by Soille [62]. Hence, the MSPA method not only can unveil geometric
descriptions and patch associations but also identify spatial pattern classes of landscapes at
the pixel level with connectivity importance and specific ecological meaning (Appendix A.4
of Appendix A).

Depending on land-use data with a 30 m × 30 m spatial resolution for Panzhou,
forestland was set as the foreground in the MSPA method, while other land cover types
(farmland, grassland, waterbody, and construction land) were set as the background.
Then, using the eight-neighborhood analysis method and the Guidos Toolbox software
3.0 (https://forest.jrc.ec.europa.eu/en/, accessed on 31 May 2022) [62], the edge width
parameter was set to 1 (a reference to the radius of a circle with an area of 1 hectare), and
the particle size was set to 30 m for MSPA.

2.3.5. Selection of Ecological Sources

Ecological sources, as the basis for the construction of ecological networks, aim to
improve ecological quality, protect important habitats, and stabilize regional ecosystem
services to a certain extent [63]. According to the results of the RSEI, EFI, and MSPA, high
levels of areas within RSEI > 0.8 and EFI > 0.58 were applied to the initial ecological sources
because these areas were of high suitability and functionality. Subsequently, the core areas
were used to merge into the initial ecological sources. Considering that patches in the initial
ecological sources with a small area are not ecologically suitable, these patches with an area
of less than 5 km2 were eliminated from the initial ecological sources. Finally, to maintain
the continuity and integrity of the preserved patches, the probabilistic connectivity index
(PC) was used to analyze the connectivity of ecological sources [64–66]. The formulas for
PC calculation are as follows:

PC =

n
∑

i=1

n
∑

j=1
ai × aj × P∗ij

A2 (17)

dPC = 100% · PC− PCremo

PC
(18)

https://forest.jrc.ec.europa.eu/en/
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where n is the total number of patches in the ecological sources; ai and aj are the areas
of patch i and patch j, respectively; A is the total landscape area; and P∗ij is the greatest
possibility of the direct diffusion of species in patches i and j. PCremo is the overall index of
the remained patches after removing patch i; dPC is the variation in PC. The higher dPC is,
the more importance the patch has and can be retained. Conefor Sensinode 2.6 software
(http://www.conefor.org, accessed on 31 May 2022) was used to calculate the PC values.

2.3.6. Construction of Resistance Surface

A resistance surface is a key link in the construction of an ecological network, and
the value can reflect the difficulty of passing through the ecological process. In this study,
the resistance surface was constructed from four perspectives: (1) topographic factors,
including elevation, slope, and topographic relief (see Equation (A3) in Appendix A.2);
(2) vegetation coverage (see Equation (A4) in Appendix A.5) [67]; (3) population density
and land cover type, which reflect regional human activities; and (4) the water and soil loss
sensitivity index (see Equation (A5) in Appendix A.5) [68] and the rocky desertification
sensitivity index (see Equation (A6) in Appendix A.5). Each resistance factor was divided
into five levels according to the natural breakpoint method. The resistance coefficients were
assigned 1, 250, 500, 750, and 1000, and the weight of each resistance factor was determined
by the coefficient of variation weight method [69]. The calculation of resistance factors and
the coefficient of variation method are presented in Appendix A.5 of Appendix A. The
resistance coefficient and its weight are shown in Table 2.

Table 2. Resistance coefficient and weight of each resistance factor in Panzhou city.

RC Elevation Slope TR VC PD LCT WSLSI RDSI

Weight 0.078 0.102 0.108 0.102 0.283 0.108 0.088 0.131
1 752–1563 0–10.4 20–104 0.83–1 19.12–293.18 Forestland 0–0.25 0–0.15
250 1563–1751 10.4–17.83 104–151 0.64–0.83 293.18–822 Waterbody 0.25–0.36 0.15–0.29
500 1751–1931 17.83–25.87 151–206 0.44–0.64 822–1864.63 Grassland 0.36–0.49 0.29–0.43
750 1931–2178 25.87–36.09 206–287 0.19–0.44 1864.63–3970.46 Farmland 0.49–0.6 0.43–0.58
1000 2178–2867 36.09–75.17 287–670 0–0.19 3970.46–7997.61 Construction land 0.6–1 0.58–1

RC: resistance coefficient; TR: topographic relief; VC: vegetation coverage; PD: population density; LCT: land
cover type; WSLSI: water and soil loss sensitivity index; RDSI: rocky desertification sensitivity index.

2.3.7. Circuit Theory

Circuit theory simulates the process of species migration or energy flow in the ecologi-
cal process by using the electronic random walk phenomenon in the field of physics [16]. It
identifies the ecological corridor by constructing the minimum cost path between the eco-
logical source and the ecological resistance surface [70]. In this study, the Linkage Mapper
(LM) model of GIS (https://circuitscape.org, accessed on 31 May 2022) was applied to iden-
tify the key ecological corridors and inactive ecological corridors, in which the ecological
sources were paired. Then, the minimum cost path between each pair of ecological sources
was identified according to the initial minimum cost path method. Finally, the minimum
cost path passing through other ecological sources was removed to generate the ecological
corridor [71].

The importance of an ecological source in the ecological security pattern can be
described in terms of the source centrality by applying Centrality Mapper (CM) in the
LM model. Referring to the circuit theoretical model, CM regards the minimum cost-
weighted distance (CWD) between any two ecological sources as a resistance. It turns the
current into different ecological sources and accumulates the currents successively to obtain
the cumulative current value of each corridor [50]. Higher current values indicate better
connectivity of that ecological source in the ecological security pattern. Similarly, based on
the Pinchpoint Mapper tool in the LM model, pinch areas can be discerned, through which
all currents (species) must pass [71]. Such areas can represent species migration with the
highest density, and thus the protection of pinch areas should be prioritized in ecological

http://www.conefor.org
https://circuitscape.org
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protection [50]. Conversely, barrier points, defined as nodes with a relatively high current
density and large ecological resistance value in ecological corridors, can be identified by
the Barrier Mapper tool in the LM model. Such points reflect the key areas that hinder the
flow of ecosystem services and need to be removed to improve landscape connectivity [70].
Barrier points are extracted with a high improvement coefficient (IC), which is defined as
the restoration value of connectivity per unit distance. In this study, the search radius in
the Barrier Mapper tool was set to 150 m, and the moving window method (diameter D)
was used to identify barrier points.

3. Results
3.1. Distribution of the RSEI

The RSEI is a spatially continuous measure of EQ that couples four indicators into
one by PCA [46]. The PCA data for the RSEI of Panzhou city are shown in Table 3 and
Figure A1. PC1 had the largest eigenvalue among the four PCs, with a proportion of
approximately 71%, while PC2 had the second-largest eigenvalue (approximately 15.94%).
The total proportion of PC1 and PC2 exceeded 80%, which indicated that PC1 and PC2
could represent and gather more information than PC3 and PC4 on the four indicators. In
PC1, the NVDI and WET had opposite signs; that is, they had a positive impact on EQ.
Nevertheless, the NDBSI and LST were negative in PC1, indicating that they had a negative
impact on EQ. Therefore, according to the PCA results, the final value of the RSEI was
calculated with the weighted sum of PC1 and PC2, in which the weights were assigned by
the contribution rates of each eigenvalue [51,53].

Table 3. Principal component analysis of four indicators.

Indicators PC1 PC2 PC3 PC4

NVDI 0.448 0.570 −0.550 0.415
WET 0.555 −0.147 0.663 0.481
NDBSI −0.545 −0.290 −0.165 0.769
LST −0.440 0.755 0.481 0.076
Eigenvalues 0.158 0.035 0.025 0.002
Percent covariance eigenvalue (%) 71.62% 15.94% 11.42% 1.02%

Figure 3 shows the spatial distribution of the RSEI, which is divided into five levels.
The spatial distribution of the RSEI in Panzhou was apparently dispersed due to the
fragmented landscape of Wumeng Mountain. The EQ was poorer in the western areas
than in the peripheral areas close to the rural zone, with the red and yellow polygons
concentrated in the western areas. Level 1 (0.0–0.2, poor) occupied an area of 305.45 km2,
accounting for 7.53% of the total study area. This level was mainly distributed in the
western region, which was the core area of construction land, e.g., cities and industrial and
mining areas. Because of urban expansion and intensive human activities in the west, the
NDVI and WET were lowest, while the NDBSI and LST values were higher. Level 2 (0.2–0.4,
fair) covered an area of approximately 683.28 km2 (16.85%), which was dominated by
rural construction land and less farmland near rural settlements with a lower HQ. Level 3
(0.4–0.6, moderate) covered an area of 1210.64 km2 (29.85%), mainly including waterbodies
and high-coverage farmlands with a medium HQ. Level 4 (0.6–0.8, good) was distributed
in the transition zone between construction land and moderate-vegetation mountains
due to the lower intensity of human activity, with an area of approximately 1354.87 km2,
accounting for 33.40% of the total study area. Level 5 (0.8–1.0, excellent) was mainly
scattered in the northern and southern areas with high-vegetation mountains, covering
an area of 501.77 km2 (12.37%). This result was consistent with the highest values of the
NDVI and WET and the lowest values of the NDBSI and LST due to the implementation of
ecological-protection policies. In general, the distribution of RSEI was relatively fragmented
and gradually increased as it moved away from the central urban area. This characteristic
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showed that improving EQ requires ecological restoration in urban areas and ecological
conservation in high-vegetation coverage areas.
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3.2. Distribution of the EFI

Ecosystem service functions based on the natural conditions in Panzhou city were eval-
uated and normalized between 0 and 1 (Figure 4a–c). The larger the value of the indicator
was, the more important the function was. Areas with high values of the water conservation
function were primarily concentrated in the east because of high amounts of vegetation and
slight anthropogenic disturbance (Figure 4a). Moreover, this distribution of such areas was
in accordance with the characteristics of precipitation; that is, the precipitation decreased
from southeast to northwest, and the southeast region had relatively more precipitation.
Nevertheless, the distribution of a low value of the water and soil conservation function
was relatively dispersed, indicating that soil erosion was prone to occur in these areas.
Meanwhile, areas with high values were scattered in the north-eastern and south-eastern
regions (Figure 4b). In terms of the biodiversity maintenance function (Figure 4c), the
northern and southwestern parts of the study area were relatively important in biodiversity
maintenance, where there were national scenic spots and the largest natural grassland in
southwestern China with an extreme abundance of animal and plant resources.

The comprehensive evaluation of the EFI was obtained by the superposition of single
function evaluation results, and then it was normalized and separated into five levels based
on natural breaks (Figure 4d). The importance levels, i.e., Level 4 and Level 5, covered
large areas of the eastern region, with about 35% of the studying area. Level 1 (0.0–0.25,
low) dominated an area of 954.71 km2, accounting for 23.54% of Panzhou city, and Level 2
(0.25–0.37, comparatively lower) occupied an area of 641.69 km2, accounting for 15.82%,
and was mainly distributed in the western part of the study area. Such areas had relatively
dense populations and put extreme pressure on ecological protection. Level 3 (0.37–0.47,
median) covered 1022.59 km2 (25.21%), which was associated with the location of farmland
and grassland. Level 4 (0.47–0.58, comparatively higher) and Level 5 (0.58–1.0, high), with
areas of 852.10 km2 (21.01%) and 584.91 km2 (14.42%), respectively, were distributed in
eastern Panzhou city. These two levels performed relatively important ecological functions
and played an important role in the sustainable development of the ecological environment.
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3.3. Analysis of Landscape Patterns Based on MSPA

As shown in Table 4 and Figure 5, the core area of Panzhou city was 1306.55 km2,
accounting for 82.65% of the foreground area. It was mainly concentrated in the northern
and western regions, indicating that it had strong connectivity. However, the core areas
were less abundant in the central region, where the spatial connectivity was poor and the
environment was not conducive to the flow of material and energy. The edge areas were
230.22 km2, accounting for 14.56% of the foreground area, which could better reduce the
interference caused by the transfer from the external landscape to the core area. The islets
were distributed in the upper reaches of rivers, occupying 0.05 km2 (Figure 5B). Although
small in size, they could be used as ecological stepping-stones to facilitate the flow of
material and energy in the region. The perforation areas occupied 33.25 km2, accounting for
2.10% of the foreground area, and played a better role in the edge effect. The loop areas were
shortcuts for animal movement within the patches and facilitated the migration of species
within the same patches [25], occupying 0.01% of the foreground area (Figure 5A). The
bridge areas that have essential ecological significance for species migration and diffusion
were 1.79 km2, accounting for 0.11% of the foreground area. Such areas with a relatively
small proportion demonstrated that the material and energy flows inside the core area were
hindered. The branches were considered interruptions of corridor connections with some
connectivity, accounting for 0.55% of the foreground area in Panzhou city (Figure 5C,D).
Overall, the core areas in the study area were concentrated in the north, south, and west,
indicating that the habitat and environment were suitable for species activities in these
areas.

Table 4. Results of MSPA in Panzhou city.

Categories Area (km2) Proportion (%)

Core 1306.55 82.65
Islet 0.05 0.00

Perforation 33.25 2.10
Edge 230.22 14.56
Loop 0.19 0.01

Bridge 1.79 0.11
Branch 8.7 0.55
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3.4. Ecological Source Identification and Resistance Surface Construction

The dPC value was calculated, and patches with a dPC less than 2 were removed. A
total of 26 patches were identified as ecological sources. The total area of the ecological
sources was 1007.74 km2, accounting for 24.84% of the study area. Using the natural breaks,
the ecological sources were divided into three classes, in which higher values indicated
more important locations, as shown in Table 5 and Figure 6a. The number of patches where
the dPC was greater than 17.09 was low, indicating that a few patches in the study area
significantly impacted the overall connectivity relative to the patches where the dPC was
less than 8.40. In terms of land cover types, most of the ecological sources were composed
of forestland, grassland, and water bodies. Among them, the forestland type sources
were concentrated in the northern, western, and south-eastern regions of the study area,
including the state-owned Forest Farm of Dengjiawan and the state-owned Forest Farm of
Bajiaojing and Niangniang Mountain. The grassland-type sources were mainly located in
the northern region, that is, the Wumeng Prairie and the Poshang Prairie. The water area
type sources were distributed in the south, which is a tributary of the Nanpan River of the
Pearl River system.

Table 5. Statistics of the ecological sources.

Value Number Total Area (km2) Area Percentage

dPC ≥ 17.09 3 328.18 32.57%
17.08 ≥ dPC ≥ 8.41 5 318.62 31.62%
dPC ≤ 8.40 18 360.95 35.82%

The resistance surface constructed by combining resistance factors (Table 2) reflected
the disturbance that species would experience during their migration between ecological
sources. Among the eight resistance factors (Table 2), the population density factor with
the highest weight (0.283) affected the migration of species in two aspects: one was to
exert pressure on the environment through the high-intensity construction and develop-
ment of nature that destroyed the living conditions of species, and the second was the
frequent human activities that interfered with the activities of species. Moreover, the rocky
desertification sensitivity index has a relatively higher impact on the connectivity between
ecological sources. The higher the value of this index was, the greater resistance of this
index to living activities.
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The resistance values for the resistance surface in Panzhou city ranged from 1 to 848.40
(Figure 6b). The high-resistance areas in the western region presented a flaky distribution,
most of which were occupied by cities and settlements, and the values were gradually
reduced outward from cities and settlements. The low-resistance areas in most of the study
area appeared distributed and fragmented but were concentrated in the southern region.
The center of the study area was represented by high mountains and hills that became
high-value resistance areas. This was mainly affected by ecological projects in Panzhou
city, such as the policy of ‘Low Production Forest Improvement’, ‘Law of Soil and Water
Loss Control’, and the program of Grain for Green, which made the ecological function
and biomass of forest in mountainous areas raise effectively and the obstacle to biological
flow significantly weaken. In the future, it is essential to strengthen the maintenance and
construction of the ecological landscape in the region to improve the ecological flow.

3.5. Distribution of Ecological Corridors

In this study, according to the ecological sources and ecological resistance surface,
the minimum cost-weighted distance, source centrality, and ecological corridors were
calculated based on circuit theory (Figure 7). The value of the minimum cost-weighted
distance indicated the difficulty of source expansion from low to high (Figure 7a). Due to
being far from the ecological sources, the high-value CWD was concentrated in the central
part of Panzhou city and decreased outward. On the contrary, CWD was relatively small in
the north, west, and south of the study area. This meant that the high-value CWD in the
middle made the ‘North–South’ biological flow channel blocked or difficult and was not
conducive to the species migration and energy exchange in the whole region.
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The source centrality of 26 ecological sources ranged from 26.01 to 172.44 (Figure 7b).
All ecological sources were divided into three levels, among which the darker the ecological
source was, the stronger the centrality was. On the whole, the centrality of the ecological
sources in the southern area was generally higher than that of the northern area. The
centrality value of the No. 23 ecological source was the highest, illustrating that this patch
was covered by forest and contributed the most to the connectivity of regional ecological
sources. In contrast, the minimum value of centrality was found for the No. 26 ecological
source, which was located in the south of the study area near the administrative boundary.
At the same time, it was reflected that the centrality values of the small sources (i.e., No. 3,
4, 15, 16, 17, 19, and 21) were not high, although they were concentrated in terms of spatial
distribution. This might arise from the smaller areas and comparative fragmentation of
these sources, both of which weakened the biological flow between the sources and their
surrounding patches.

Ecological corridors are the basic framework for maintaining regional ecological
security by connecting different sources, increasing regional landscape connectivity, and
maximizing ecological benefits [72]. A total of 63 ecological corridors, composed of 45 key
ecological corridors and 18 inactive ecological corridors, were extracted from the least-cost
path (LCP) via Linkage Mapper (Figure 7b). The total length of the key ecological corridors
was 203.12 km, with an average of 4.51 km, while the maximum length was 25.32 km, and
the minimum was 0.03 km. The key ecological corridors with lengths greater than 10 km,
accounting for 6 and 126.87 km, were densely concentrated in the central part where the
minimum cost-weighted distance was located. Such corridors formed a series of north–
south orientation ecological channels, connected the ecological sources of the Niangniang
Mountains and Wumeng Prairie, and maintained ecological security in the central part.
There were 17 key corridors with a length of 1–9 km, accounting for 70.22 km, and 22 key
corridors with a length of less than 1 km. The shorter key ecological corridors were mainly
located in the periphery area, connecting some small and close ecological sources. The
ecological sources (No. 3, 15, 16, 17, 19, and 21) in the south-eastern area were mainly
connected by overlapping key corridors, indicating that species movement in this area was
frequent. In addition, the total length of inactive ecological corridors was approximately
163.31 km (an average of 9.07 km with a maximum of 30.86 km and a minimum of 0.45 km).
The longer inactive corridors connected the ecological sources with a larger area. The
inactive corridors can be protected as backup resources for regional ecological security.
Therefore, the measures of ecological restoration, such as forest construction projects and
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shelter forest projects, should be implemented to expand the area of ecological sources and
improve the connectivity of ecological sources in Panzhou city.

3.6. Identification of Pinch Areas and Barriers

Pinch areas are active areas between ecological sources that play important roles in
maintaining the connectivity of regional ecosystem service security patterns [16]. As shown
in Figure 8a, high current intensity represented a high density of species migration and
vice versa. Because the quantity of the current flowing through the patch section was the
same, the density of the current in the narrow pinch area was relatively higher. There were
three pinch areas with a high current intensity between the northern and middle regions.
Such areas provided the basic corridors for species migration between the northern and the
middle parts of the study area. The middle part was the region where pinch areas were
concentrated. Although the ecological sources in such parts were comparatively small, they
became ‘the transit stations’ connected by the pinch areas with moderate current intensity.
The southern and western regions had fewer pinch areas and lower current intensity. The
pinch areas in these regions connected the ecological sources at the administrative boundary
and played key roles in the species migration to the south and west of Panzhou city. The
total area of pinch areas was 82.76 km2, accounting for 2.04% of the study area, including
23.37 km2 of farmland, 27.16 km2 of forestland, 31.96 km2 of grassland, 0.05 km2 of water
bodies, and 0.22 km2 of construction land.
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As shown in Figure 8b, the ecological barriers were consistent with the ecological
corridors. As human activities are often intensive in such areas, most barriers were located
at the junctions of ecological sources and ecological corridors or at the junctions of different
land cover types, both of which were key locations for the connectivity of species migration.
The barriers with a red color were the most important and had a higher improvement coeffi-
cient and greater hindrance. In contrast, barriers with a blue color had lower improvement
coefficients and smaller hindrances. The total area of barriers was 320.29 km2, accounting
for 7.89% of the study area, including 97.51 km2 of farmland, 102.74 km2 of forestland,
116.29 km2 of grassland, 0.11 km2 of waterbodies, and 3.65 km2 of construction land. The
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smaller the area occupied by the barriers, the less difficult it was to clear. Therefore, it is
necessary to improve the overall ecological connectivity of Panzhou city.

3.7. Construction of the Ecological Network

As shown in Figure 9, the ecological sources were classified into key conservation
zones and general conservation zones. The key conservation zones were the ecological
sources with a source centrality greater than 89.1 and an area greater than 10 km2. Such
zones were mainly concentrated in the south and the west of the study area, virtually
contiguous with human settlements; hence, they were easily degraded due to the pressure
from human activities. However, because they had the highest connectivity, these zones,
regarded as the basis of regional ecological security, dominated the ecological security of
the whole region because of their flaky distribution, and therefore should be given priority
to conserve both the EQ and the EFI and provide high-quality space for species. General
conservation zones were located on the fringes of key conservation zones, mainly in the
north and east of the study area. Such zones in the northern region were affected by the
terrain and blocked from connecting with the surrounding patches; meanwhile, those in
the eastern region were of less importance in the ecological network and had relatively
lower centrality due to fragmentation and smaller patch areas.
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Figure 9. Ecological security pattern of Panzhou city. (A–D) the larger images for the locations (A–D),
respectively.

Although there were key corridors connecting the ecological sources in the study
area, the number of key corridors was small. In addition, because the ecological sources
were lacking in the middle part, the length of the key corridors was too long. Attempting
to enhance the stability of the key corridors in the ecological network, the conservation
corridors were delimited on the basis of the normalized least cost corridor (Figure A2),
reflecting how much more costly the (locally optimal) path between the core areas passing
through each cell was relative to the (globally optimal) least-cost path connecting the core
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area pair [71]. In Figure A2, the red grid cells are closer to the corridor centers with the
value of 0, while the dark blue cells show routes that accumulated up to a 100,000 increase
in the cost-weighted distance more than the optimal (-least-cost) route. Subsequently, the
inactive corridors, that is, the possible path from each ecological source to all surrounding
sources, were planned as restoration corridors. On the one hand, the restoration corridors
could strengthen the energy exchange between the ecological sources and surrounding
substrates; on the other hand, they could alleviate the shortcomings of the uneven spatial
distribution of the ecological sources and improve the ecological quality in the fringe of the
study area.

Ecological pinch areas refer to an area with a high current density, indicating that there
are few or no alternative paths in this area, and habitat degradation or loss may cut off the
connectivity of the ecological network (Figure 8a). The pinch areas were divided into three
classes based on the current intensity by natural breaks: Class 1 (0–0.06), Class 2 (0.06–0.12),
and Class 3 (0.12–0.53). Class 2 and Class 3 were extracted and merged into the improvement
pinch areas. If an improvement pinch was an area with a high value of resistance, it indicated
that the probability of ecological degradation or loss of this pinch was high, and it should
be prioritized as a conservation pinch to prevent habitat degradation [73]. Therefore, the
pinch areas with high resistance were extracted from the improvement pinch areas as the
conservation pinch areas. As shown in Figure 9A–D, both pinch areas were mainly scattered
along the conversation corridors in the middle region of the study area. However, due to
landscape fragmentation, these pinch areas were sliced and formed isolated islands that were
more easily occupied by human activities and became narrower or smaller. Furthermore,
the conservation pinch areas showed that the conversation corridors in this type of pinch
area were relatively narrow in width. Thus, improving the landscape fragmentation to
reduce the resistance in the surrounding areas of both pinches should be an effective means
to widen the corridors for the flow of ecological services.

Based on the barriers shown in Figure 8b, they were divided into six classes by
natural breaks: Class 1 (0–30.37), Class 2 (30.37–74.23), Class 3 (74.23–119.09), Class 4
(119.09–169.42), Class 5 (169.42–234.96), and Class 6 (234.96–465.93), among which Class
6 was extracted. The barriers with areas less than 0.1 km2 were deleted, while those with
areas greater than 0.1 km2 were reserved as restoration barriers. As shown in Figure 9,
the restoration barriers were distributed in the eastern (Figure 9B) and middle regions
(Figure 9C) of the study area. Although the cumulative cost of the restoration barriers was
the lowest, the resistance value of these barriers was higher than that of other areas in the
same corridors. In terms of land cover type, the restoration barriers mainly occupied grass-
land (17.84 km2) and farmland (11.21 km2), both of which had relatively high resistance
coefficients. Consequently, ecological quality should be improved to reduce the resistance
to the flow of ecosystem services, and the means for the restoration of such barriers can be
classified according to the land cover type.

Based on the distribution of various components of the ecological security pattern
in Panzhou city, the key conservation zones, such as the Niangniang mountain in the
northeast, the Wumeng Prairie in the north, and the forest park in the southwest, were
important parts of the ecological security pattern. The ecological conservation corridors
connected the key conservation zones from north to south to form an ecological network,
which integrated the typical grassland and farmland in the middle. These regions formed
important ecological barriers in the western areas of Guizhou Province.

4. Discussion
4.1. Effectiveness of the Approach Based on the RSEI, EFI, and MSPA

Ecological civilization requires balancing human activities and ecosystem services
and is the goal of long-term efforts to build a global biodiversity framework, including a
sustainable landscape pattern. In this study, an integrated evaluation method was proposed
based on RSEI, EFI, and MSPA, by which the ecological situation under the pressure of
human interference was assessed from different aspects. In the integrated approach, the
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spatial distribution characteristics of RSEI and EFI were generally similar; that is, both
values were higher in the northern and southern parts and lower in the west. From the
perspective of the theoretical framework, complex human activities, land use patterns, and
even urban planning had distinctly negative effects on the ecological system. Conversely, a
series of ecological projects increased the coverage of vegetation and greatly improved the
regional ecological environment. The application of RSEI and EFI to evaluate the ecological
quality and ecosystem function in this study indicated that both methods can objectively
and quantitatively assess ecological conditions in a spatially continuous way and can be
applied in extensive geographical areas by using remote sensing images [46]. Additionally,
the lower values of the RSEI and EFI scattered in the middle part could not be ignored,
which indicated that landscape fragmentation was not conducive to the effective use of
land and thus had a negative impact on the ecological environment [74]. The results were
consistent with the results of a series of similar studies [46,75].

As a widely used ecological evaluation method, the MSPA method simplifies the
process of judging landscape patterns of ecological land and makes pattern changes more
intuitive, which provides a new basis for the analysis of an ecological system [27,60,76].
The results of MSPA showed that the cores of landscape patterns were mainly distributed
in the north, west, and south. Compared with the results of RSEI and EFI, these cores
had higher values of ecological security and ecological function importance. In general,
the combination of the RSEI, EFI, and MSPA utilized their benefits and alleviated their
respective weaknesses. Specifically, the RSEI and EFI could be used to identify quantitative
differences between landscapes but did not consider the spatial pattern of the landscape
sufficiently, while the MSPA was simpler in distinguishing landscape patterns but did not
fully consider the landscape differences in practical ecological conditions [25,60]. Hence,
this composite method compensated for the lack of differences between the same landscape
and identified the patches with more suitable conditions as ecological sources.

4.2. Ecological Network Construction of Panzhou City

A reasonable ecological pattern is the premise to ensure the regional ecological process
and give full play to ecological function. The ecological network is the skeleton of the
ecological pattern, while the restoration of the ecological network is the basis for restoring
the regional core ecological resources. The evaluation of resistance values is an essential
and complicated process for the identification and extraction of ecological networks [28]. In
addition, the water and soil loss sensitivity index and the rocky desertification sensitivity
index were added to determine the resistance surface, which had a greater influence on
ecological flow and fundamental roles during the process of extracting ecological corridors
in the study area [66,77–79].

As shown in Figure 9, the ecological corridors in Panzhou city were unevenly dis-
tributed in the whole area. The corridors with low resistance values were mainly distributed
in the northern and southern regions. This result may be due to the large area of ecological
space in these areas and the presence of fewer threat factors. In contrast, in the middle of
the study area, there were very few source patches. The corridors across this area were long,
and the resistance value was high. This result may be linked to the high fragmentation of
land use in this area and the lack of high-quality ecological space. Although the ecological
corridors effectively connected the ecological sources, a closed network structure had not
yet been formed, and the stability of the landscape structure needs to be further improved.
Additionally, the restoration corridors that had not been ‘activated’, that is, the possible
path from each ecological source to all surrounding ones, were planned. The restoration of
such corridors can greatly increase the connectivity and stability of the ecological security
network in the study area.

Simultaneously, ecological pinch areas and barriers were identified that were dis-
tributed in key ecological corridors. The existence of pinch areas indicated that the width
of the ecological corridor in this area was relatively narrow [80]. By improving the eco-
logical quality around pinch areas, the ecological corridors will be widened, and the
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anti-interference ability of the ecological corridor will be improved. Moreover, by analyzing
the land cover type for barriers, it was observed that these contained grassland and farm-
land, both of which had a relatively low utilization efficiency. Measures such as returning
farmland to forests should be taken in these areas to reduce the ecological resistance to the
barriers and increase the connectivity of ecosystem service flows.

4.3. Insights for the Development of Panzhou City

The ecological network for Panzhou city based on an integrated approach and circuit
theory not only contributes to a novel research framework for ecological security pat-
terns but also provides significant guidance for policy making, such as ecosystem service
maintenance, ecological environmental management, and urban planning [15,39].

Our results showed that the spatial distribution of the key conservation zones was
uneven. Although the key conservation zones in the west and south were concentrated, they
were vulnerable to human interference. The main reasons for this characteristic were that,
on the one hand, for the sake of basic food demand, rural residents living in these areas have
been forced to fully plough up and utilize sloping farmlands scattered in forestland and
grassland, causing the gradually increasing pressure on forestland and grassland. [81,82];
on the other hand, the western region of Panzhou city was the major urban area, and
urban expansion has inevitably occupied ecological land. Accordingly, policymakers can
implement targeted measures to prevent ecological land from turning into farmland or
construction land. For instance, the rational delimitation of urban development boundaries
in the west of Panzhou city can be employed in territorial spatial planning to effectively
achieve ecological protection [6,24]. More attention should be paid to the construction
and maintenance of green infrastructure (e.g., interconnected green spaces) in urban areas.
At the county level, the urban function of Panzhou city was obviously single, and urban
green infrastructure was lacking in urban planning. Increasing green infrastructure and
planning ecological corridors in urban planning could improve ecological services and
enhance ecological security in the whole region [83].

Furthermore, the central area, mainly occupied by farmland and grassland, was
large but was not an important component of the ecological security pattern in Panzhou
city. It was noticed that the farmland in the central area did not play an ecological role,
mainly because of the low quality and low coverage of crops. These findings suggest that
comprehensive land consolidation and the development of agricultural technology could
significantly increase the quality of farmland and the coverage of crops. Meanwhile, the
grassland in the same area played a minor role in the ecological security pattern, which
was affected by the rocky karst desertification in the west of Guizhou Province and the
occupation by farmland. It is known that grassland of high quality can provide superior
ecological services and alleviate the negative impacts derived from human disturbance to
some extent. Thus, decision-makers should not only control the expansion of farmland
in this area but also place more emphasis on the conservation of grassland, such as ‘the
project of Grassland treatment in the karst area’, to offset the lack of the major components
of the ecological network in this area.

4.4. Limitations and Directions for Future Work

The integrated approach used in this study was improved and innovatively compared
to other methods, such as empirical judgment [11,84], landscape connectivity [12], habitat
importance [85], and the least-cost corridor (LCC) model [86]; however, it inevitably faced
some obstacles: (1) Because the assessment of ecological security referred to many models
and the calculation process was complicated, some parameters or coefficients, such as the
vegetation cover factor in Ac and the sensitivity of threat factors in HQ, were determined
using the traditional analytic hierarchy process, for which there was no unified standard
or authoritative criteria. Thus, future works should concentrate on improving model
accuracy. (2) The ecological quality was evaluated by the RSEI, which relied on the accurate
determination of index factors from remote sensing images, and thus the results of the
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RSEI were closely related to the image quality [87]. Due to the changeable climate and
complex terrain in the study area, the remote sensing images were greatly affected by the
cloud amount in an image, so it was difficult to obtain the low-cloud image in summer
showing the best vegetation growth state in the study area [88]. Therefore, future works
will explore the effects of multiple sets of remote sensing data or indices to enrich the RSEI
index. (3) The ecological corridors were not just a series of lines; rather, they were polygons
with a certain width and area. Identifying the width of an ecological corridor was a difficult
task [28]. Some scholars have also used an ant colony algorithm to determine ecological
corridor width [29]. In this study, the width of the normalized least-cost corridor analyzed
by circuit theory was used as the ecological corridor width. The results were horizontally
comparable and could be used to evaluate the influence range of different corridors with
different widths. However, the method used to determine ecological corridor width was
not mature and was relatively simple. In future works, spatial heterogeneity identification,
biological flow characteristics, and migration characteristics of specific species should be
conducted to evaluate the ecological corridor width [27].

5. Conclusions

The accurate construction of ecological networks establishes the basis needed for the
further optimization of regional land use. Based on the characteristics of the study area and
the need for ecological protection, an integrated approach has been provided for ecological
network construction.

The results explored 26 ecological source areas that were selected. The large-scale
ecological sources were distributed in the north and south, while small-scale ecological
sources were distributed in the east. According to the source centrality and the area,
ecological sources were classified into key conservation zones and general conservation
zones in the ecological security pattern. From four perspectives, the resistance surface
was constructed, in which the distribution of high and low values was very separate. The
high values were obviously scattered in living settlements and highly related to human
interference, while the low-resistance areas were concentrated in the southern region.

Meanwhile, a total of 63 ecological corridors (i.e., the key corridors and inactive
corridors) were determined, which served as the main framework of regional ecological
networks. Among all the identified ecological nodes, including pinch areas and barriers,
most were located in the key ecological corridor and had different effects on species
migration. Then, the characteristics and functions of pinch areas and barriers were spatially
distinguished, which served as priority protected areas in the ecological security patterns to
effectively enhance regional ecosystem restoration and comprehensive land management.

These findings demonstrated that the application of RSEI and EFI provided an objec-
tive and quantitative process to evaluate the ecological quality and ecosystem function,
while the MSPA method uncovered geometric descriptions and patch associations. The
combination of these advantages can contribute to the methodological extension in the
ecological security pattern and be applied to other karst regions. Despite the practical
limitations of this integrated approach, this improved framework can better measure the
complex characteristics of the ecological system and construct an ecological network in
Panzhou city. Our findings are of great significance for policy-making, for instance, ecosys-
tem service maintenance, territorial spatial planning, and urban planning, to promote the
sustainable use of land resources and the healthy development of ecology.
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Appendix A

Appendix A.1. Assignment of the Fsic Indicator in WR

Table A1. The capacity factor (Fsic) of the soil seepage.

Soil Texture Value Soil Texture Value

Clay (heavy) 1/13 Sandy clay 8/13
Silty Clay 2/13 Loam 9/13

Clay (light) 3/13 Sandy Clay Loam 10/13
Silty Clay Loam 4/13 Sandy Loam 11/13

Clay Loam 5/13 Loamy Sand 12/13
Silt 6/13 Sand 13/13

Silt Loam 7/13

Appendix A.2. Calculation Method of Ac

(1) The precipitation erosivity is an index used to measure the potential capacity of
soil erosion caused by rainfall in the region. Based on the data for soil erosion, the factor of
average precipitation erosivity (R) was calculated using the method of [58] (p. 7):

R = 0.053Fpre
1.655 (A1)

where R is the factor of average precipitation erosivity from 2014 to 2020, and Fpre is the
average precipitation factor of the corresponding period.

(2) According to the data for soil characteristics, the factor of soil erodibility (K) was
calculated using the RUSLE [57]:

K = {0.2 + 0.3× exp[−0.0256× Sa× (1− Si/100)]} ×
(

Si
Cl+Si

)0.3
×[

1− 0.25×C
C+exp(3.72−2.95×C)

]
×
{

1− 0.7×(1−Sa/100)
(1−Sa/100)+exp[−5.51+22.9×(1−Sa/100)]

} (A2)

where Sa, Si, Cl, and C are the percent volumes of sand, silt, clay, and organic carbon,
respectively.

(3) In the assessment of Ac, topographic factors include the slope length factor (L) and
slope factor (S), which reflect the impact of terrain on soil erosion. In this study, topographic
relief, that is, the maximum elevation difference within a certain distance from the ground,
was used as the topographic index of regional soil erosion assessment [56] (p. 26):

LS = Hmax − Hmin (A3)

http://www.gscloud.cn
http://www.fao.org
http://www.geodata.cn
https://www.resdc.cn/
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where LS represents the topographic relief, Hmax is the maximum elevation value in the
study area, and Hmin is the minimum value.

(4) Referring to the remote sensing investigation and evaluation project of ten-year
changes in the ecological environment in Guizhou Province, the value of the vegetation
cover factor (C) was assigned to the land types in the study area (Table A2) [89]:

Table A2. The value of the vegetation cover factor (C) for each land-use type in Guizhou Province.

Land Cover
Types Farmland Forestland Grassland Waterbody Construction

Land

C 0.228 0.052 0.112 0 0

Appendix A.3. Calculation Method of Qxj

The HQ in the InVEST model, as an effective reflection of biodiversity [90], can be
expressed by evaluating the sensitivity of threat factors to different land cover types and the
intensity of external threats in a certain area [59,91]. According to the requirements of the
model and the actual situation of the study area, paddy fields, arid land, urban construction
land, rural residential land, and other construction land were selected as threat factors.
The relevant intensity of threat factors was set as shown in Table A3, and the sensitivity of
threat factors to different land cover types was set as shown in Table A4.

Table A3. The relevant intensity of threat factors for Panzhou.

Threat Factors Maximum Influence
Distance (km) Weight Decay Linear

Correlation

Paddy field 1 0.4 Exponential
Arid field 3 0.5 Exponential
Urban construction
land 9 1 Exponential

Rural residential land 7 0.8 Exponential
Other construction
land 5 0.6 Exponential

Table A4. The sensitivity of threat factors to different land cover types for Panzhou.

Land Cover Types Habitat
Suitability PF AF UCL RRL OCL

Paddy field 0.4 0 1 0.4 0.35 0.35
Arid field 0.3 1 0 0.35 0.3 0.3
Forestland 1 0.5 0.6 0.9 0.8 0.8
Shrub land 0.9 0.4 0.5 0.8 0.7 0.7
Wood land 0.8 0.5 0.6 0.7 0.6 0.6
Other forestland 0.7 0.5 0.6 0.6 0.5 0.5
Highly covered grassland 0.8 0.4 0.45 0.6 0.55 0.5
Moderately covered
grassland 0.7 0.45 0.5 0.55 0.5 0.5

Low-covered grassland 0.6 0.5 0.55 0.5 0.4 0.45
River and canals 0.9 0.45 0.5 0.8 0.7 0.6
Lake 0.7 0.65 0.7 0.75 0.55 0.2
Urban construction land 0 0 0 0 0 0
Rural residential land 0 0 0 0 0 0
Other construction land 0 0 0 0 0 0

Paddy field (PF), arid field (AF), urban construction land (UCL), rural residential land (RRL), and other construc-
tion land (OCL).
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Appendix A.4. The Ecological Meaning of Spatial Pattern Classes in MSPA

Table A5. The ecological meaning of spatial pattern classes in MSPA [60].

Pattern Class Ecological Meaning

Core Large habitat patches that can serve as source areas and provide
habitats or migration places for wildlife

Islet
Small patches that are weakly connected to each other, providing a
place for species to spread and communicate and promoting the flow of
matter and energy

Perforation Transition zone between the core area and the nongreen landscape area:
the edge of the internal patch, which has edge effects

Edge Transition zone between the core area and the nongreen landscape area;
has an edge effect and protects the ecological process of the core area

Bridge
Connecting corridor of the adjacent core area; provides the necessary
pathways for species diffusion and energy exchange between adjacent
patches of core areas

Loop Connects corridors inside the same core area to provide access to
species diffusion and energy exchange within the core patch

Branch Only one side is connected to an edge, bridge, loop, or perforation

Appendix A.5. Calculation Method of Resistance Factors and the Coefficient of Variation Method

Appendix A.5.1. Vegetation Coverage

VFC = (NDVI−NDVIsoil)/
(
NDVIveg −NDVIsoil

)
(A4)

where VFC is the vegetation coverage, which represents the fraction of the total ground
surface covered by vegetation, dimensionless. NDVIsoil and NDVIveg are the NDVI signals
from bare soil and dense green vegetation, respectively. In this study, NDVIsoil and NDVIveg
were calculated by the frequency cumulative value of the NDVI; that is, the value with
a cumulative frequency of 5% was NDVIsoil, and the cumulative frequency of 95% was
NDVIveg [67].

Appendix A.5.2. Water and Soil Loss Sensitivity Index

SSi =
4
√

Ri × Ki × LSi × Ci (A5)

where SSi is the water and soil loss sensitivity index of unit i; Ri is the factor of average
precipitation erosivity from 2014 to 2020 of unit i; Ki is the factor of soil erodibility of unit
i in the study area; and LSi and Ci represent the topographic relief and vegetation cover
of unit i, respectively [68]. The detailed calculations of the parameters are presented in
Section A.2. of Appendix A.

Appendix A.5.3. Rocky Desertification Sensitivity Index

Si =
3
√

Di × Pi × Ci (A6)

where Si is the rocky desertification sensitivity index of unit i; Di is the exposed area
percentage of carbonatite of unit i in 2020; Pi is the slope of unit i in 2020; and Ci is the
vegetation cover of unit i in 2020, which is presented in Section A.2. of Appendix A [56].

Appendix A.5.4. Coefficient of Variation Weight Method

CVi =
σi
xi
(i = 1, 2, 3..n) (A7)
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wi =
CVi

n
∑

i=1
CVi

(A8)

where wi is the weight of resistance factor i, CVi is the coefficient of variation of resistance
factor i, σi is the standard deviation of resistance factor i, and xi is the mean value of
resistance factor i [69].
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