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Abstract: Heat waves are expected to intensify around the globe in the future, with a potential increase
in heat stress and heat-induced mortality in the absence of adaptation measures. India has high
current exposure to heat waves, and with limited adaptive capacity, impacts of increased heat waves
might be quite severe. This paper presents a comparative analysis of urban heat stress/heatwaves by
combining temperature and vapour pressure through two heat stress indices, i.e., Wet Bulb Globe
Temperature (WBGT) and humidex index. For the years 1970–2000 (historical) and 2041–2060 (future),
these two indicators were estimated in Jaipur. Another goal of this research is to better understand
Jaipur land use changes and urban growth. For the land use study, Landsat 5 TM and Landsat
8 OLI satellite data from the years 1993, 2010, and 2015 were examined. During the research period,
urban settlement increased and the majority of open land is converted to urban settlements. In
the coming term, all months except three, namely July to September, have seen an increase in the
WBGT index values; however, these months are classified as dangerous. Humidex’s historical value
has been 21.4, but in RCP4.5 and RCP8.5 scenarios, it will rise to 25.5 and 27.3, respectively, and
slip into the danger and extreme danger categories. The NDVI and SAVI indices are also used to
assess the city’s condition during various periods of heat stress. The findings suggest that people’s
discomfort levels will rise in the future, making it difficult for them to work outside and engage in their
usual activities.

Keywords: heat stress; WBGT index; climate change; land use; humidex index

1. Introduction

The occurrence of more extreme climate events has been becoming more frequent
and severe as global warming, and causes a distressing effect on human lives [1]. These
changes can have both positive and negative impacts on urbanization and human health.
Climate change will have a significant impact on metropolitan areas, and it may result
in chronic health concerns [2]. Different climate change pathways affect human health
between different time periods [3]. India has generated only 2% of total carbon emissions
from fossil fuel combustion over the last 100 years [4], which is likely owing to the effects
of extreme weather events (NIOO-KNAW, 2017). Human health risks related to climate
change can, directly and indirectly, affect older people [5]. An urban heat island (UHI) is
a metropolitan area which is significantly warmer than its surrounding rural areas due to
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human activities. In metropolitan regions, UHIs tend to amplify the impact of heat waves,
and rising temperatures in the area contribute to the likelihood of heat-related deaths [6,7].
In 2003, 3500 deaths were estimated across Europe due to extreme heatwave [8]. People’s
conditions are worse at night due to the high temperature during heatwaves compared
to the high daytime temperature, and it also increases the mortality rate at night-time [9].
The high temperature causes an increase in mortality in metropolitan areas, as well as
various health conditions such as heat cramps, weariness, non-fatal heat stroke, and overall
discomfort [10]. Climate change models anticipate that a gradual increase in summer
temperatures and heat waves will exacerbate the situation [8].

India is most vulnerable to the increased temperature associated with climate change.
It is estimated that from 1992, about 25,000 Indian people died because of heat waves [11].
In 2003, heatwaves hit parts of India (Uttar Pradesh, Haryana, Punjab, Rajasthan, Gujarat,
Bihar, and Orissa), resulting in a higher fatality rate [12]. As a result of the increased
number and frequency of heat waves, the death rate will rise in the future [13]. The
climatic approaches such as El Niño-Southern Oscillation (ENSO) and fluctuations in the
sea surface temperatures in the Bay of Bengal have been related to the heatwaves over India.
Heatwaves may occur as a result of changes in wind direction and a lack of moisture in
inland areas, resulting in heat waves. Despite the significant societal impact, no systematic
attempt has been made to investigate the primary mechanism of heatwaves in India.

In different parts of the world, some authors employed the WBGT and humidex
for heat stress assessments [14,15]. WBGT is an experimental index that was developed
by Yaglue and Minard in 1957 and published as an ISO 7243 standard in 1989. It is
used in both indoor and outdoor environments. It was recommended to eliminate the
time-consuming process of calculating the effective temperature index (ET), which was
developed from a series of laboratory investigations about 1920 and quickly became the
standard approach for assessing heat stress [16]. Temperature, humidity, radiation, and
wind were merged into a single figure that could be utilized for assessment (ISO, 1989).
The natural wet bulb temperature, globe temperature, and air temperature are the key
determinants of WBGT. The WBGT index’s most important strength is its sensitivity to
radiant heat and air movement, which are two important factors in estimating the ambient
air temperature [15,17]. In tropical and subtropical areas of the world, climate change
has resulted in temporal and spatial changes in workplace heat exposure, resulting in
occupational health issues. In this regard, the results of prior studies show that WBGT
values have been rising in recent years. Wet bulb globe temperature (WBGT) is used as a
heat stress indicator for assessment of thermal comfort in environments [15,18,19]. Ref. [20]
examined WBGT in the Coimbra region of Portugal and found a strong association between
globe temperature of 2.8 percent and natural wet bulb temperature of 2.6 percent and
WBGT. Ref. [21] assessed the thermal comfort in 15 regions with the help of WBGT by
evaluating the past and future threshold exceedance rates concerning moderate (28 ◦C),
high (32 ◦C) and extreme (35 ◦C) temperatures. They are using the WBGT for the 2020s
and 2050s with A1B scenarios and in the HadCM3 model, and observed that heat events
might become aggravated in regions of tropical humidity and mid-latitude even though
the temperature there would be less than the global average, but the absolute humidity is
on the rise. The authors of [22] projected the future heat waves in India using the WBGT
index using the CMIP5 scenarios data. They used the three representative concentration
pathways (RCPs) RCP2.6, RCP4.5, and RCP8.5 for the historical and future period and
projected the severe heatwave in the future period. The study aims to calculate the heat
stress in the study area and its effects on human health in the past and future scenarios.
The state-of-the-art of the research in the study is presented in Section 2. Section 3 data
and methodology describes the SWBGT, humidex, and NDVI procedures and defines the
simulation flow. Section 4: Results and Discussion presents the simulation’s results as
well as a discussion on them. The study’s findings and the most important outcomes are
summarized in Section 5 Conclusions.
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2. Study Area Description

Jaipur is Rajasthan state’s capital, India, also called the Pink city, for its characteristics
of the buildings’ colour. Jaipur has a population of around 3.15 million people (Census
of India, 2011). The city is mostly flat and is flanked on three sides by the Aravalli hill
ranges: north, northeast, and east. The rest of the city is made up of a combination of barren
ground, low to medium height vegetation, and built-up areas like as highways, buildings,
and industries [23]. According to the Köppen climate classification, the Jaipur come under
the hot semi-arid climate. It is located at an elevation of 431 m above mean sea level and
at 26.92◦ N latitude and 75.82◦ E longitude. Jaipur covers approximately 1464 km2 (JDA)
area and this study cover the 472 km2 area (Figure 1). Jaipur city has mostly as-associated
a flat plain and hills encircle it in the northern, northeast, and east directions. The area
around Jaipur city experiences three seasons each year: winter from November to February
(cold nights with average air temperatures as low as 3 ◦C), summer from March to June
(very hot during the day with maximum air temperatures as high as 48 ◦C), and monsoon
from July to October (with extensive variations in daily average air temperature due to
atmospheric conditions) [22]. The rainfall mainly occurs in the July and August months
due to the monsoon. According to Chandra et al. 2018, the percentage change of the urban
area of the Jaipur city was 13.54 (1993) to 57.32 (2015) and open land has been decreased by
45.84 (1993) to 19.4 (2015) [24]. They also explained the urban city expansion in the north,
west, and south direction.
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3. Materials and Methods

The heat stress indicators were calculated using WorldClim’s historical and future
datasets. The WorldClim portal (http://worldclim.org (accessed on 2 May 2016) provides
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free access to WorldClim datasets for many climate indicators. Long-term average monthly
climate data of maximum temperature and vapour pressure were acquired from the World-
Clim data portal for the historical period (1970–2000) and future period 2050s (2041–2060)
RCP4.5 and RCP8.5 scenarios. Table 1 lists all of the GCMs that were employed in the heat
stress analysis. For the past and future eras, this study calculates two heat stress indicators
for Jaipur. Monthly ensemble 17 GCMs are used to forecast the research area’s future heat
stress indices for the future timeframe.

Table 1. Detailed information of the GCMs (CMIP5) data of RCP4.5 and RCP8.5.

GCMs Information Data Information

ACCESS1-0(AC), BCC-CSM1-1(BC),
CCSM4(CC), CNRM-CM5(CN),
GFDL-CM3(GF), GISS-E2-R(GS),
HadGEM2-AO(HD), HadGEM2-CC(HG),
HadGEM2-ES(HE), INMCM4(IN),
IPSL-CM5A-LR(IP), MIROC-ESM-CHEM(MI),
MIROC-ESM(MR), MIROC5(MC),
MPI-ESM-LR(MP), MRI-CGCM3(MG),
NorESM1-M(NO)

Monthly average maximum temperature
(◦C*10)

GHG Scenarios: RCP4.5; RCP8.5

This analysis was conducted by combining temperature and vapour pressure through
two heat stress indices, namely Simplified Wet Bulb Globe Temperature (SWBGT) and
humidex. Many researchers used the SWBGT indicators to estimate the general heat stress
index at various spatial and temporal scales [25,26].

The Australian Bureau of Meteorology [21] suggested the SWBGT indicator for spatial
analysis. Equation (1) is used to calculate the SWBGT of Jaipur city.

SWBGT = 0.567Ta + 0.393e + 3.94 (1)

where, Ta and e represent the air temperature (◦C) and water vapour pressure (hPa) near
the surface.

The humidex index was developed in Canada to estimate the humidity and conse-
quence of high temperature on human health. The humidex indicator is assessed by using
Equation (2) [27]:

Humidex = Ta +
(

5
9

)
(e − 10) (2)

where, Ta is air temperature (◦C) and e is the water vapour pressure (hPa) near the surface.
After an assessment of these indices, different categories are allocated based on these

values. Each group represents a particular kind of condition and is linked with the heat
stress situation for their effect on human health. Table 2 provides the classes of heat stress
along with their consequence on human health.

Table 2. Categories of the heat stress, WBGT and humidex index with human effects.

Heat Stress Category WBGT Index Humidex Index Inferences

Extreme danger Greater and equal to 40 Greater and equal
to 46

Dangerous and the
risk of heat stroke

Danger 34–39 38–45
Very uncomfortable
and avoid physical

exertion

Extreme caution 28–33 30–37 Little uncomfortable

Caution 22–27 20–29 Comfortable
Source: http://www.crh.noaa.gov, http://www.ec.gc.ca/meteo-weather/ (accessed on 6 August 2016).

http://www.crh.noaa.gov
http://www.ec.gc.ca/meteo-weather/
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3.1. Image Classification and Accuracy Assessment

The study area is divided into five key groups using a supervised technique with
the maximum likelihood classification method: water body, vegetation, urban settlement,
open land, and hilly area/rocky area. The Kappa technique was used to examine the
categorization accuracy [28,29].

Kappa coefficient (k) for the image classification is as follows:

k =
N ∑r

i=1 xii − ∑r
i=1 xi + ∗xi + 1

N2 − ∑r
i=1 xi + ∗xi + 1

(3)

k =
(Total sum o f correct)− Sum o f the all the (row and column total)

Total squared − Sum o f the all the (row and column total)
(4)

The Kappa coefficient should never be greater than or equal to one. The high Kappa
value indicates accurate land use class information. According to [30] Monserud and
Leemans (1992), Kappa coefficients ranging from 0.55 to 0.7 indicate good agreement, 0.7 to
0.85 indicate very good agreement, and values more than 0.85 indicate excellent agreement
between image and ground.

3.2. Normalized Difference Vegetation Index (NDVI)

Vegetation cover plays a vital role in diminishing the conservation issues in urban
areas. As indicated by Batista et al. 1997, the NDVI esteems went from −1 for the non-
vegetated area to +1 for vegetation [31]. For the NDVI estimation red band and visible
range band and the NIR band are utilized. The NDVI calculation is as follows:

NDVI =
(Band 4 − Band 3)
(Band 4 + Band 3)

(5)

3.3. Soil-Adjusted Vegetation Index Calculate (SAVI)

The SAVI index also plays a role in the vegetation cover, but it adds the area’s back-
ground soil conditions. SAVI calculation is as follow:

SAVI = (1 + L) ∗ (band4 − band3)/(band4 + band3 + L) (6)

where the TOA reflectance is used for each band and L is a soil brightness correction factor.
From Huete (1988), L = 0.5 is used in most conditions. Figure 2 shows the methodology
and the climatic data used in the study.
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4. Results and Discussions

Heat stress is on the rise in various countries of the world, including India, and is to
blame for the rising level of human misery. Heat stress is becoming more severe in cities as
a result of urbanization and greenhouse gas emissions.

4.1. Land Used Classification

Water body, vegetation, urban settlement, open land, and hilly terrain/rocky area are
the five primary land use types evaluated in this study. Land use classifications are carried
out for 3 years: 1993, 2010, and 2015. The accuracy of the classified map was determined by
a random selection of 330 points for each year. The overall accuracy of the classified maps
was found to be 0.92, 0.97, and 0.95 for selected years. According to Table 3, the Kappa
coefficients for the indicated years are 0.88, 0.95, and 0.93. In comparison to ground reality,
the classified land use accuracy is shown to be good.

Table 3. Accuracy assessment of the land cover types.

Users Accuracy %

Year Water Vegetation Urban
Settlement Open Land Hilly/Rocky

Area
Overall

Accuracy
Kappa

Coefficient

1993 100.0 95.4 96.7 97.9 69.8 0.92 0.88

2010 100.0 94.7 100.0 96.6 91.2 0.97 0.95

2015 100.0 95.7 97.2 92.7 88.6 0.95 0.93

Producer Accuracy %

Year Water Vegetation Urban
Settlement Open Land Hilly/Rocky

Area

1993 100.0 98.41 87.88 90.73 91.67

2010 100.0 97.83 98.21 95.45 100.00

2015 100.0 94.74 99.28 86.44 93.94
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Table 4 shows the total area covered by various categories and their percent coverage.
It has been observed that the urban settlement of Jaipur city has grown over time. It was
63.9 km2 in 1993, but by 2015, it expanded to 270.47 km2. This indicates that during the
course of 22 years, the area has changed nearly four times. In 2015, over 43.78% change of
the studied area was under settlement, compared to the entire area. These trends suggest
that the city is rapidly expanding, and it accelerated significantly after 2010.

Table 4. Land use area and percent change of different years.

Class Name Area 1993 Area 2010 Area 2015 % Change
(2010–1993)

% Change
(2015–2010)

% Change
(2015–1993)

Water. 0.4 0.9 0.8 0.10 −0.01 0.09

Vegetation 84.4 88.6 45.7 0.87 −9.09 −8.21

Urban Settlement 63.9 166.5 270.5 21.75 22.03 43.78

Open Land 216.3 159.8 91.5 −11.96 −14.47 −26.44

Hilly/Rocky Area 106.9 56.1 63.4 −10.76 1.55 −9.21

Figure 3 depicts the spatial distribution and patterns of land cover change during the
three years. The image clearly shows the evolution of urban settlement in Jaipur city. In
comparison to the 1993 map, there is a significant rise in of urban area in the Jaipur and
found the maximum land use was converted into the urban settlement.
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4.2. Humidex Index

For the historical and future RCP4.5 and RCP8.5 scenarios, the humidex index was
calculated on a monthly and seasonal basis. All of the monthly and seasonal data were
shown in Table 5. The lowest humidex was recorded in the month of January. The historical
minimum humidex value has been 21.4, and in the RCP4.5 and RCP8.5 scenarios, it will
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rise to 25.5 and 27.3, respectively. The highest humidex values are observed to be 39.5, 43.2,
and 46.4 for the historical and two future RCPs in the May month. In Table 5, the May and
June months show the danger conditions in the humidex index for all three cases, but the
RCP4.5 and RCP8.5 show the danger and extreme danger conditions in most of the months.

Table 5. Average monthly variation in humidex for historical and future periods.

Historical RCP4.5 RCP8.5 Historical RCP4.5 RCP8.5

January 21.4 25.5 27.3 C C C

February 24.2 28.2 30.4 C C EC

March 29.9 34.1 36.7 EC EC EC

April 35.8 39.9 42.7 EC D D

May 39.5 43.2 46.4 D D ED

June 39.5 41.5 44.3 D D D

July 39.1 36.0 38.2 D EC D

August 37.7 33.4 35.4 D EC EC

September 37.7 35.0 37.3 D EC D

October 35.3 35.6 38.3 EC EC D

November 30.2 31.5 33.7 EC EC EC

December 25.5 26.9 25.5 C C EC

Winter 23.7 26.9 27.7 C C EC

Monsoon 38.5 36.5 38.8 D EC D

Summer 35.1 39.1 41.9 EC D D

Autumn 32.8 33.6 36.0 EC EC EC
C—caution; EC—extreme caution; D—danger; ED—extreme danger.

Figure 4 depicts the spatial distribution of Humidex for all of the months in the past.
The months of May and June are classified as Danger and Extreme Danger. From January to
May, the Humidex values rise, then begin to decrease until the month of December. There
is a slight rise in value in September and October months compared to the decreasing trend.
In majority of the months over the historical period, the humidex is high in the southeast
and west.
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Figure 4. Spatial variation of humidex for historical in January to December months.

The spatial maps of humidex variations for January to December for the future RCP4.5
and RCP8.5 scenarios are shown in Figures 5 and 6. The majority of the month in these
statistics depicts danger and extreme danger conditions in hypothetical futures. The
months of May and June exhibit a danger situation, and the majority of the months fall
into the danger and extreme dangerous categories. In the figure, the area with low values
is represented by the colour green, while the area with high values is represented by the
colour red. The humidex is elevated in the east and south as well as in a small portion of
the west side between RCP4.5 and RCP8.5.
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Figure 6. Spatial variation of the humidex for future (RCP8.5) in January to December months.

The monthly difference in humidex for historical and projected RCP4.5 and RCP8.5
is shown in Figure 7. In the three months, July to September, as well as throughout the
monsoon season, humidex displays a drop. Because RCP8.5 represented the high emission
scenario, there is always a significant disparity between RCP8.5 and RCP4.5. It has been
demonstrated that the seasonal analysis helps to explain how the severe category shifts.
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By the year 2050, the summer season displays a shift from extreme caution to danger
and a rise in temperature in the urban region. Figure 8 displays the seasonal humidex
variations for the past and future of the city border. The monsoon and autumn seasons
show the maximum humidex value in all scenarios and cover the city’s east, west, and
north direction.
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Figure 8. Seasonal map of the humidex index of Jaipur city (Historical, RCP4.5, RCP8.5).

4.3. WBGT Index

The WBGT index is computed in this study on a monthly and seasonal basis for both
past and future periods. The average monthly seasonal fluctuations in the WBGT indicator,
together with its stress category, are shown in Table 6. In all three scenarios—historical,
RCP4.5, and RCP8.5—the danger categories are visible from June through September. In
January, the value is at its lowest, and in June and July, it is at its highest. However, the
WBGT, high in the monsoon season of RCP scenarios and the danger situation of the heat
of the city of Jaipur, are shown in the season-wise calculation. The correlation coefficient of
ESI and environmental parameters of wet temperature, dry temperature, solar radiation,
and relative humidity was obtained as 0.88, 0.96, 0.4, and −0.7, respectively, in a study
by [32] Hajizadeh et al. (2016), which aimed to investigate the correlation between the
environmental stress index (ESI) and WBGT index in a hot and dry climate.

As with the humidex, the lowest values of WBGT are observed for January month
in the historical and future periods. The historical value of WBGT is 19.7, which will
increase to 22.0 for RCP4.5 and 23.1 for RCP8.5 (Table 6). In the historical period, the
high value of WBGT is obtained in the month of July, but it shifts to June for the future
period. It is also observed that WBGT values are projected to decrease in the monsoon
season (July to September) with the heat stress category of danger. The monthly pattern
of values is similar for humidex, increasing from January to June/July and then further
decreasing until December. Some cases of a shift from the existing caution condition to
extreme caution condition in March, November, and December. The spatial variance of
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WBGT in Jaipur city for the past and the future is explained in Figures 9–11. In Figure 9,
the southern half of the city showed the greatest changes when compared to other places.
Figures 10 and 11, which depict possible futures and determine the city’s danger condition,
show the same pattern. These show the monthly variation of WBGT values for a future
period (both scenarios) compared with historical data. The indicator’s value decreases
throughout a three-month period from July to September, indicating a decline in indicators
during the monsoon season. These areas came under the industrial zones and cover half of
the city area. The green colour represents the area with low values, whereas the red colour
represents high values.

Table 6. Average monthly variation in WBGT for historical and future periods.

Historical RCP4.5 RCP8.5 Historical RCP4.5 RCP8.5

January 19.7 22.0 23.1 C C C

February 21.2 23.5 24.8 C C C

March 24.7 27.1 28.6 C EC EC

April 28.2 30.5 32.1 EC EC D

May 30.3 32.5 34.2 EC EC D

June 34.6 35.8 37.3 D D D

July 37.3 35.5 36.8 D D D

August 36.7 33.4 35.4 D D D

September 34.9 33.4 34.7 D D D

October 30.0 30.2 31.7 EC EC EC

November 25.5 26.2 27.5 C C EC

December 22.2 23.0 22.1 C C EC

Winter 21.0 22.8 23.3 C C C

Monsoon 35.9 34.5 36.1 D D D

Summer 27.7 30.0 31.6 EC EC EC

Autumn 27.8 28.2 29.6 EC EC EC
C—caution; EC—extreme caution; D—danger; ED—extreme danger.
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Figure 11. Spatial variation of WBGT for future (RCP8.5) period.

RCP8.5, which simulates a high emission scenario, consistently provides a large
difference from RCP4.5. Figure 12 illustrates the disparity pattern, which is seen to be
similar to the humidex indication. The study is being carried out to better understand
how heat stress conditions vary seasonally. All four seasons’ heat stress categories show
little variation; however, the monsoon season shows a rise in the danger category. In
the monsoon season, WBGT is at its highest; in the winter season, WBGT is at its lowest.
An increasing value is found in the future period when compared to the historical period.
Figure 13 shows the variation in monsoon WBGT for historical and future periods and the
difference in indicator value within the city boundary. The WBGT is high in the summer
and autumn season in the southeast direction and these changes are created due to the
changes in land use pattern and expansion of urban areas.
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4.4. Normalized Difference Vegetation Index (NDVI)

In this study, NDVI was calculated for different periods: April 1993, April 2000,
June 2010, and April 2015; NDVI values range from −1 to +1, different geographical
features show the different NDVI values. These layers give different information through
the bands and band 3 and 4 provides the vegetation with cover information of Jaipur city.
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The extracted vegetation layer covers of NDVI were spatially compared with the colour
composite image of Landsat-5 and Landsat-8 (TM and OLI) imagery. The range of NDVI in
1993 was −0.01 to 0.71, in 2000 was −0.019 to 0.63, and in 2010 was 0.04 to 0.56 of Landsat
5 TM imagery, and year 2015 shows the range of NDVI was −0.24 to 0.70 for the Landsat
8 OLI image of Jaipur city (Figure 14). The vegetation cover area utilizes solar radiation in
the photosynthesis process and reduces the city’s surrounding temperature.
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4.5. Soil-Adjusted Vegetation Index (SAVI)

The study area is mainly classified into different types of land use. All these random
samples are selected and the values of these cites are observed between NDVI and SAVI
indices. The range of SAVI in 1993 was −0.005 to 0.50, in 2000 was −0.005 to 0.44, and in
2010 was −0.024 to 0.43 of Landsat 5 TM imagery, and 2015 shows the range of SAVI was
0.118 to 0.52 for the Landsat 8 OLI image of Jaipur city (Figure 15). This influence can be
restricted using SAVI instead of NDVI. High NDVI and SAVI values were found in the
buildup area.

On the other hand, there is a correlation between land use and NDVI data and data
measured in meteorological stations in most research, including the current study, which
is a significant reason for the efficiency of using this data for environmental issues. As
a result, which can be derived indirectly using daily recorded metrological parameters in
weather stations, it can be used to assess thermal conditions in Jaipur. Because evaluating
environmental parameters for the calculation of heat stress indices is normally costly and
time consuming, it is possible to alleviate this problem in environmental evaluations in
open spaces by using daily recorded weather station data. Meteorological data has the
advantage of being continuously recorded and providing a low-cost and comprehensive
database for computing a variety of essential thermal indicators.
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5. Conclusions

The study’s major goal was to predict the WBGT and humidex indexes for the past
and future. This study demonstrates the expansion of urban land usage in Jaipur city
from 1993 to 2015 using intermediate satellite images. The number of people living in
cities has increased substantially in the last 23 years. The most prevalent type of land
converted to urban areas is open terrain, followed by vegetation and hilly/rocky areas.
The NDVI and SAVI indices are also used to determine the changes in land use patterns
in the city and the amount of green space in the urban and peri-urban areas. The WBGT
is highest during the monsoon season and lowest during the winter. When compared to
the historical period, the future time shows an increase in value. Humidex’s historical
value has been 21.4, but it is projected to rise to 25.5 and 27.3 under the RCP4.5 and RCP8.5
scenarios. In May, the greatest humidex values were 39.5, 43.2, and 46.4 for the historical
and two future RCP scenarios. The months of May and June are shown in the danger and
extreme danger categories in the analysis. From January to May, the humidex values rise,
then begin to fall until the month of December. It predicts that, with the exception of the
monsoon season in the metropolis, discomfort levels will rise in the future. The findings
indicate that the index’s average value is increasing. Global warming or the absence of
suitable conditions in these environments may be responsible for this trend. This will help
in the identification of a better heat stress index for diverse situations and temperatures.
There are some restrictions on the study; the distribution of indices studied throughout
the different continents varies because the majority of studies undertaken in this field are
focused on regions with hot climates. Application of WBGT and humidex indices has
limited application in warmer climates as it shows a low level when the air temperature is
in high range. The environmental heat index is preferred in occupational situations, but
is not suitable at all work locations [33]. The possible reason for using these indices is
comprehensiveness of the index for assessing the thermal stress conditions with limited
data availability. However, it is a useful indices to understand the pattern of long-term
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change and warning purposes. The additional limitations of this analysis were the dearth
of pertinent papers and the evidence provided in the articles. Appropriate protective
strategies are required to prepare for the working population, which includes vulnerable
persons whose occupational health and performance are harmed by heat stress.
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