
Citation: Ghafoor, J.; Forio, M.A.E.;

Goethals, P.L.M. Spatially Explicit

River Basin Models for Cost-Benefit

Analyses to Optimize Land Use.

Sustainability 2022, 14, 8953. https://

doi.org/10.3390/su14148953

Academic Editor: Jan Hopmans

Received: 23 June 2022

Accepted: 16 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Spatially Explicit River Basin Models for Cost-Benefit Analyses
to Optimize Land Use
Jawad Ghafoor *, Marie Anne Eurie Forio and Peter L. M. Goethals

Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium;
marie.forio@ugent.be (M.A.E.F.); peter.goethals@ugent.be (P.L.M.G.)
* Correspondence: jawad.ghafoor@ugent.com; Tel.: +32-(0)9-264-90-01

Abstract: Recently, a wide range of models have been used in analyzing the costs and benefits of land
utilization in river basins. Despite these advances, there is not enough information on how to select
appropriate models to perform cost-benefit analyses. A literature search in the Web of Science (WOS)
online database was implemented and resulted in the selection of 27 articles that utilized models to
perform cost-benefit analyses of river basins. The models reviewed in these papers were categorized
into five types: process-based, statistical, probabilistic, data-driven, and modeling frameworks or
integrated models. Twenty-six models were reviewed based on their data and input variable needs
and user convenience. A SWOT analysis was also performed to highlight the strengths, weaknesses,
opportunities, and threats of these models. One of the main strengths is their ability to perform
scenario-based analyses while the main drawback is the limited availability of data impeding the
use of the models. We found that, to some extent, there is an increase in model applicability as the
number of input variables increases but there are exceptions to this observation. Future studies
should explicitly report on the necessary time needed for data collection, model development and/or
training, and model application. This information is highly valuable to users and modelers when
choosing which model to use in performing a particular cost-benefit analysis. These models can
be developed and applied to assist sustainable development as well as the sustainable utilization
of agricultural parcels within a river basin, which can eventually reduce the negative impacts of
intensive agriculture and minimize habitat degradation on water resources.

Keywords: spatially explicit models; cost-benefit analyses; optimized land use; river basin models

1. Introduction

Exponential population growth leads to land use changes (i.e., forest is converted into
farmlands), which provides humans with water, food, fiber, and shelter [1]. Land use deter-
mines the utilization efficiency of local natural resources and the related economical, ecological,
and social benefits [2]. Most often, land utilization is not sustainably planned and imple-
mented [3–5]. Moreover, land uses are often related to and interact with each other, i.e., either
synergistically or antagonistically, which may lead to critical trade-offs [1,6–8]. A method-
ological framework was therefore developed to measure land use efficiency, which includes
models, conditions, classification, integrated methods, sequential evaluation procedures, and
an indicator system [3].

A large portion of the land surface has been transformed either by altering natural land-
scapes for human beings or by human-dominated landscapes. Across the world, land use
practices vary, but most often, their final consequences are similar: degradation of environmen-
tal conditions [1]. Over the past few decades, research has revealed that there are substantial
changes in atmospheric composition and ecosystems throughout the earth [9–12]. Surface
energy and water balance have been affecting regional climates, which are also attributed to
land use changes [13]. Water balance have been altered due to the allocation of fresh water for
irrigation, domestic, and industrial purposes [14,15]. Furthermore, the increasing application
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of fertilizer in agricultural land uses has contributed to nutrient input in lands and streams
and has affected the water quality of freshwater and coastal ecosystems [11,16].

Recently, land use changes allowed the exploitation of an even-larger portion of the
environment’s goods and services, but at the same time, diminished the capacity of global
ecosystems to maintain freshwater and forest resources, sustain food production, mediate
infectious diseases and regulate climate and air quality. The result is clear: land use changes
increase short-term goals but damage the long-term goals, such as ecosystem services on a
regional or global scale [1].

For sustainable development, it is imperative to maintain an appropriate balance
between the provision of human needs and the maintenance of healthy ecosystems [16].
Land uses are often related to and interact with each other, leading to critical trade-offs of
ecosystem services. Ecosystems provide critical social and economic benefits but overex-
ploiting them may lead to possible long-term degradation; this should also be recognized
when assessing trade-offs between ecosystem services [13].

Assessing trade-offs between services is crucial for sustainable development. In
this context, cost-benefit analyses (CBAs) are beneficial. CBA is defined as an efficient
approach for economic evaluation by comparing the costs and benefits of various projects
or policy decisions [17,18]. However, CBA is not only limited to financial analyses but is
expanded to environmental and social indicators, some of which can be translated into
monetary terms [19,20]. CBA is also used for weighing the environmental and social costs
and benefits of different alternatives [19,21,22]. Other methods, such as the contingent
valuation method, is also used to measure economic values of the environmental and
ecosystem services. It uses a survey for the estimation of no-use values, i.e., asking people
how much they are willing to pay or the compensation they are willing to accept for
the environmental services [23]. However, this method has limitations, including that
respondents may have biased and hypothetical answers rather than the intended, which
may lead to wrong decisions [24]. In this regard, the CBA is advantageous because in most
cases it provides quantitative outcomes and therefore is a valuable tool in spatial planning
to resourcefully and efficiently use natural resources. For this reason, CBA is emerging and
has received growing attention in research and policy making [25]. CBA potentially allows
the attainment of optimal economic, ecological, and social policies [26]. Particularly, some
spatially explicit models can perform cost-benefit analyses and aid in analyzing land use
options, which support policy formulations. Figures 1 and 2 describe how spatially explicit
models can be applied in cost-benefit analyses.

For the past two decades, the application of spatially explicit models in environmental
studies has grown massively. Major progress is due to the increase in spatial resolution,
improvements in computer technology, and increased availability of data [27]. Spatially
explicit models have been applied in CBA, wherein the output of the model is used to
perform CBA (Figure 1). Furthermore, these models can be used to assess multiple scenarios
and identify scenarios that provide the optimal ecosystem services (Figure 2).

Despite these advances, there is not enough information on how to select appropriate
models to analyze the cost and benefits of land utilization. Therefore, we reviewed the
potential application of different models that are available and gathered information on
the time needed for data collection, adopting or developing a model, and applying the
model. This information is of paramount importance for selecting a model that is applied
in cost-benefit analyses.
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Figure 1. Flow chart describing the stepwise procedure for cost-benefit analysis using the model for 
environmental assessment. Data (e.g., geographic information system (GIS), field) are used in an 
environmental assessment model, the model output is used for the cost-benefit analyses, and then 
an economic assessment is performed. 

 
Figure 2. Ways that spatially explicit models can be used for cost-benefit analysis on certain land. 
Supposing that people will settle on forested land, an area for urban and agriculture would be 
needed. With the help of spatially explicit models, one can assess the multiple scenarios and quan-
tify the respective ecosystem services, including agriculture and water provisioning, as well as men-
tal well-being and health services, for instance. By simulating the different scenarios and analyzing 
the costs and benefits, one can determine the optimal land use based on predefined criteria. 
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In this study, we reviewed scientific literature that applied spatially explicit river ba-
sin models that perform cost-benefit analyses to optimize land use. We aimed to deter-
mine the models’ data needs and whether the model is user-convenient. In particular, we 
investigated their strengths, weaknesses, opportunities, and threats and also the steps 
used in the modeling. This study provides insights into the different spatially explicit 
models that can be used for cost-benefit analysis and for assessing spatial configurations 
that potentially provide optimal ecosystem services. 

Figure 1. Flow chart describing the stepwise procedure for cost-benefit analysis using the model for
environmental assessment. Data (e.g., geographic information system (GIS), field) are used in an
environmental assessment model, the model output is used for the cost-benefit analyses, and then an
economic assessment is performed.
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Figure 2. Ways that spatially explicit models can be used for cost-benefit analysis on certain land.
Supposing that people will settle on forested land, an area for urban and agriculture would be
needed. With the help of spatially explicit models, one can assess the multiple scenarios and quantify
the respective ecosystem services, including agriculture and water provisioning, as well as mental
well-being and health services, for instance. By simulating the different scenarios and analyzing the
costs and benefits, one can determine the optimal land use based on predefined criteria.

In this study, we reviewed scientific literature that applied spatially explicit river basin
models that perform cost-benefit analyses to optimize land use. We aimed to determine
the models’ data needs and whether the model is user-convenient. In particular, we
investigated their strengths, weaknesses, opportunities, and threats and also the steps
used in the modeling. This study provides insights into the different spatially explicit
models that can be used for cost-benefit analysis and for assessing spatial configurations
that potentially provide optimal ecosystem services.

2. Literature Search

The advanced search of the Web of Science (WOS) online database was used to gather
articles for reviewing spatially explicit models. We used the search codes TS = (“Land use*”
AND “Cost benefit analysis*” AND “model*”) and TS = (“land use*” AND “models*” AND
“cost benefits*”) for publication years 1996–2021, with the document type “articles” and
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language “English”. The start year we selected is 1996 instead of 1955 because there was no
paper published before 1996 in the WOS when this search code was used. We reviewed
the articles with spatially explicit models that were used for river basins. A total of one
hundred and twenty eight (128) articles came out from the search codes mentioned above.
Thirty-three (33) articles are the same in both of the search codes, sixteen (16) are related
to transport, and twelve (12) are related to urban development. Only twenty-seven (27)
articles fit our review scope using the criteria of river basin models and were used for
cost-benefit analysis, i.e., the models that are or can be used for the cost-benefit analysis for
river basins, with particular focus on changing land use, management practices, climate,
flooding, and risk.

Since the use of computers has become a norm, there has been a growth of activities in
the field of environmental modeling and environmental decision-support tools, which are
increasingly applied [14]. Figure 3a reveals an increasing interest in using models to assess
and analyze the impacts of land use and land use change in the past two decades. There is
also not only a growing interest in cost-benefit analyses but also in the models that perform
cost-benefit analyses in the past two decades (Figure 3b).
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Figure 3. The number of papers published on the web of knowledge from 1996 to 2021: (a) the
search code TS = (“land use”) and TS = (“land use*” AND “model*”); document type = articles;
language = English; (b) the search code TS = (“land use*” AND “cost benefit analysis*”) and
TS = (“Land use*” AND “Cost benefit analysis*” AND “model*”); document type = articles;
language = English.

3. Results and Discussion
3.1. Analysis of Selected Land-Use-Based Models

The computer age has revolutionized environmental modeling leading to the surged
utilization of mathematical models as a decision-support tool [28]. The reviewed models
were classified into five groups: process-based models, statistical models, probabilistic
models, data-driven models, and integrated models or modeling frameworks. Among
the reviewed articles, 8, 3, 1, 1 and 13 authors used process-based models, statistical
models, probabilistic models, data-driven models and integrated models or modeling
frameworks, respectively.

The different types of models make use of different mathematical methods. The
process-based model is a mathematical formulation that explicitly integrates different ap-
proaches: the hydrologic state variables and fluxes that are theoretically observable and can
be used in the laws of conservation of mass and energy and momentum at temporal scales
characterizing the underlying physical processes [29]. The statistical model is described as
a relationship of input and output variables between mathematical functions. These models
have a stochastic and deterministic component [30]. The probabilistic model predicts future
events on the theory of probability or randomness. These models integrate variables and
probability distributions into the model or phenomenon. Recent progress in computational
intelligence, specifically in machine learning, have greatly expanded the capabilities of
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empirical modeling. This new approach is called data-driven modeling (DDM) [31]. DDM
is based on analyzing data about a system, especially without a clear knowledge of the
physical behavior of the system, to find relationships between system state variables (input,
internal, and output variables) [31,32]. Lastly, integrated models connect ecology with
society and economy into one model or modeling framework. Integrated models consist of
two or more different models or model types in which the output of one model is used as
an input in the other. This type of model is widely used for policy making [28]. Integrated
models are also called “meta discipline”, which integrate practices across multiple scien-
tific fields and knowledge to develop an understanding of the environmental, social, and
economic consequences of management decisions.

3.1.1. Input Variables and Data Needed

The observations of some environmental variables can significantly alter over time and
space [33]. Consequently, it is essential to select suitable input variables before developing
the models [34–36]. Moreover, the model outcome depends on the assumptions made
during the pre-processing steps of the modeling process [37].

Based on the reviewed models, process-based models generally require numerous
input variables and may depend on different types of data (Figure 4 and Table 1). The
number of input variables used for process-based models range from 10 to 52. For instance,
SWAT that simulates nutrient dynamics in a river basin requires 52 input variables. On
the other hand, input variables of statistical models range between 10 and 22. The simple
statistical bivariate analysis model uses a minimum of 10 and the multiple regression
model (olive trees) uses a maximum of 22 variables. The statistical model is described as
a relationship of input and output variables between mathematical functions [30]. It is
observed that probabilistic and data-driven models required a lesser amount of input data
than process-based models. On the other hand, integrated models sometimes model both
the ecological and economic aspects, which are valuable in policy making. Multicriteria
decision analysis requires a maximum of 49 input variables while the DPSIR framework
(The Climate Change Project), deterministic finite time horizon dynamic optimization
model, and deterministic optimization approach with Monte Carlo methods require a
minimum of 5 input variables.

3.1.2. User Convenience

User convenience is an important aspect of a model as it is the users who provide their
perception of whether a model is convenient and easy to use. In Table 1, user convenience
of each reviewed model is based on the combination of literature findings and a trade-off
between the data needed and the number of possible applications. In general, easy-to-use
models are preferred by users. Models are convenient if they can be applied to answer a
wide range of research questions (e.g., for exploration and real-time control applications as
well as for education purposes). Simple models (i.e., models with a lower number of input
variables and data) are also generally convenient as their model output is straightforward
to interpret. However, models with a higher level of completeness, integrating various
processes, are of paramount importance for large-scale and time-specific environmental
design studies [64]. User convenience is, therefore, a trade-off between model simplicity
and the number of possible applications (Figure 5).
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Figure 4. The number of variables required for the reviewed models. On the y-axis are the reviewed
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port system (IA-SDSS), 3 meta-analysis benefit transfer—Strengths Weaknesses Opportunities Threats
and fuzzy analytic hierarchical process analysis, 4 multinomial logistic regression and environmental
and economic effect estimations.

Table 1. List of reviewed spatially explicit models that can be used for cost-benefit analyses for a river
basin. The reviewed models are classified into five categories: process-based models, statistical mod-
els, probabilistic models, machine-learning models, and integrated models or modeling frameworks.
L: Low, M: Medium, H: High.

Models Data
Needed

User
Conve-
nience

References

Process-Based Models

1 Soil and Water Assessment Tool 52 L
Tuo, et al. [38], Sun, et al. [39], Strehmel,

et al. [40], Liu, et al. [41], Rocha, et al. [42],
Mtibaa, et al. [43]

2 Soil and Water Integrated Model 40 L Tuo, Chiogna and Disse [38]
3 Generalized Watershed loading Function 16 L Tuo, Chiogna and Disse [38]

4 Annualized agricultural Non-Point Source
pollution model 35 L Tuo, Chiogna and Disse [38]

5 Hydrological simulation program-FORTRAN 27 L Tuo, Chiogna and Disse [38]
6 MIKE-SHE 20 L Thorsen, et al. [44]
7 Land Use Change Assessment 11 M Liu, et al. [45]

8 Integrated Valuation of Ecosystem Services and
Trade-offs Sediment Retention model 10 L Udayakumara and Gunawardena [46]
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Table 1. Cont.

Models Data
Needed

User
Conve-
nience

References

Statistical models

9 Simple statistical bivariate analysis 10 H Conforti, et al. [47]
10 Multivariate regression model (Olive trees) 22 H Noori and Panda [48]
11 Spatial prediction 20 H Qiu, et al. [49]

Probabilistic models

12 Favorability function approach 4 L Chung and Fabbri [50]

Data-driven models

13 Decision tree model 6 H Crossman, et al. [51]

Integrated models/modeling frameworks

14 Integrated modeling framework (peatlands) 8 L Van Hardeveld, et al. [52]
15 GeoImpress-Patrical model 13 L Ferrer, et al. [53]
16 DPSIR framework (The Climate change Project) 5 M Pouget, et al. [54]

17 Integrated assessment framework and spatial
decision support system (IA-SDSS) 18 L Wang, et al. [55]

18 Spatial model 7 M Zarei, et al. [56]

19 Deterministic finite time horizon dynamic
optimization model 5 L Cerdá and Martín-Barroso [57]

20 Integrated assessment framework
(flood Netherlands) 6 M Brouwer and Van Ek [26]

21 Deterministic optimization approach with
Monte Carlo methods 5 L Monge, et al. [58]

22 Multicriteria decision analysis 49 L Mwambo, et al. [59]

23
Meta-Analysis Benefit Transfer—Strengths

Weaknesses Opportunities Threats and Fuzzy
Analytic Hierarchical process analysis

44 L Jahanifar, et al. [60]

24 Cost-benefit analysis and land use modeling 19 L Pan, et al. [61]

25 Cost-benefit evaluation based on ecosystem
services (Simulation scenarios) 10 M Li, et al. [62]

26 Multinomial logistic regression and
environmental and economic effect estimations 13 H Bertoni, et al. [63]

Process-based models incorporate detailed environmental processes but are mostly
data and input-variable intensive. However, some process-based models, such as SWAT, can
be applied to long-term or time-specific simulations, such as assessing the impact of climate
change and land use change on streamflow [65]. The risk of groundwater contamination
and the outcome of alleviation measures can be predicted by a process-based deterministic
model (coupled Mike SHE/DAISY system) [44]. Although these models are data and/or
input-variable intensive, they can be applied to numerous research questions.

On the other hand, data-driven models and statistical models are relatively easy
to implement as they are flexible with the number of input variables; therefore, their
application depends on the input variables that are fed in the model. For instance, the
decision tree model was developed to reconfigure agricultural land use to accomplish
saving in water use and improve ecosystem services [51]. A statistical model (e.g., simple
statistical bivariate analysis) was used to provide future land planning by drafting a
landslide susceptibility map [47]. These models require a relatively low number of input
variables, which can be only used in time-independent applications.
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Figure 5. The number of potential model applications with the number of input variables of the
reviewed models. The potential applications of each model are presented in Tables S1–S4.

Integrated models are a combination of different model types and therefore the num-
ber of input variables and applications as well as the number of research questions they
can answer depends on the type of models that are combined. For instance, an integrated
assessment network, which integrates environmental, economical, and social impact as-
sessments, is applied to support decision making in the context of flood control policy in
the Netherlands [26]. An integrated modeling framework, which assesses water levels, soil
subsidence, and societal impacts, is applied for assessing strategies of water management
in Dutch peatlands [52]. The spatial model, integrating spatial models and analysis, is
adopted for determining methods that are advantageous to land use change [56].

3.2. Steps in Modeling
3.2.1. Data Collection

Before starting the modeling process, the modeler should have defined the aims and
objectives of modeling a particular system [66–68]. The first step of modeling is data
collection (Figure 6). Data collection may take a considerable length of time depending
on the amount and duration of data that needs to be gathered. In the project timeline, the
data management plan is often overlooked but it can increase efficiency and save time if
performed correctly [69]. Nowadays, data can be collected in different ways as technology is
advancing. For instance, ecological data can be collected by satellites, sensors, and sampling
campaigns [69]. For spatially explicit models, one may need to collect various data and data
types. It may also necessitate integrating them. For example, to estimate water and nutrient
balances through the SWAT model, various data are integrated, such as the digital elevation
model (DEM), soil and land use data, weather data, water quantity and quality data, crop
management practices and fertilizer application. The latter two can be collected through
a survey. Process-based models required much more data as compared to other models.
However, to accomplish a high level of understanding of ecological systems and processes
(e.g., population studies, hydrology, and meteorology), integration of data is critical [69,70].
Data integration can be time-consuming and is generally done manually [71,72]. Aside
from data integration, cleaning the data as well as pre-processing the data into correct
formats can also take time. Data visualization also allows the inspection of errors in the
data. This process can be part of data cleaning.
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One of the main problems in data collection is the data gap. To compensate for the
lack of time-series data and historical data, the models make use of simple and practical
functions (i.e., triangular and empirical), implementing various programming languages
and software packages [69,73]. Several scripted analysis environments are also used to
pre-process and clean the data such as R and MATLAB [69] and many approaches are
emerging [74–76]. These processes transform linkage between the source and derived data,
which greatly aid the scientific studies, particularly those that require a numerous variety
of data.

3.2.2. Model Development and/or Training

The second step of the modeling process is model development and training for most
data-driven models, such as statistical and machine learning models (Figure 6). Model
calibration is commonly performed for process-based models. Once the model is con-
structed or selected, the model is calibrated or trained and validated. In process-based
models, model calibration is a process of comparing model output (prediction) to model
input data (parameters) with observed data in the set of assumed conditions [77], while
model validation is a process of evaluating whether the model can produce sufficiently
precise simulations [78]. Due to the advancement in computational technology, researchers
are adopting more intense procedures for calibration and optimization [69]. For instance,
hydrological calibration is substantial in many process-based models, which reduces uncer-
tainty in model simulation [79]. Hydrological calibration involves (1) the use of weather
and hydrological data, including dry, wet, and average years [80]; (2) subsequently, the
use of multiple evaluation techniques to determine its accuracy [81]; (3) and lastly, the
calibration of all other components that are to be evaluated [77]. Some models, such as
machine learning models, are also optimized or tuned by adjusting the model parameters to
enhance model efficiency or increase predictive accuracy [82–84]. The length of time needed
for model development may vary from model to model. However, this information is not
well-documented in most papers. Therefore, it is difficult to assess the total time needed to
develop the model. For increasing model efficiency, both simulation and optimization are
performed [85].
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3.2.3. Model Application

Model application is the third step in the modeling process (Figure 6). Models can
be used in scenario analysis, which is the method of predicting the occurrence of an
object or situation, assuming the future trend will continue [86]. As a first step, the
selection of relevant scenarios is implemented. Stakeholders can be involved in selecting
different scenarios [87]. In strategic planning, scenario analysis is getting popular in
both public and private sectors [88,89]. Simulations are performed after selecting the
scenarios. Scenario simulation is a process of achieving stakeholders’ required results by
implementing scenarios in the model. When designing an effective simulation scenario, the
modelers and stakeholders require careful planning. Simulation models can be optionally
combined with an optimization model to help solve complex land use allocation problems
by considering multiple, often competing demands on landscapes [90]. An optimization
model is a decision-support tool used to find the best possible solutions to the problem
and the purpose of optimization models is to reduce or remove uncertainty aspects using
specific techniques [91]. These applications of the model may require a huge length of time
but are highly dependent on the type of model. Unfortunately, the time needed to perform
these model applications is not well-documented.

3.3. SWOT Analysis

To further discover the potential of spatially explicit models for river basins, we
performed a Strengths Weaknesses Opportunities Threats (SWOT) analysis. This strategic
assessment allows recognition of the strengths, weaknesses, opportunities, and threats
associated with the use of spatially explicit models for river basins (Table 2). SWOT analysis
gives insight into current capabilities and future possibilities of spatially explicit models
applied for cost-benefit analyses of river basins.

Table 2. SWOT analysis of spatially explicit models for cost-benefit analyses of river basins.

Strengths
Expert knowledge and empirical data can be used
Analyses of various (spatially explicit) scenarios

Applicable to various scales
Provides time and spatial-specific output

Some models includes both economic and environmental costs
and benefits

Weaknesses
Lack of model validation
Presence of errors in data
Limited data availability

Models are too complex and some are too simple
Some models are unable to incorporate other factors affecting

the spatial variables such as land use
Assumptions (e.g., spatial generalization) are used for the

estimation of economic impacts

Opportunities
Spatial explicit models becoming more reliable

Spatial data availability and quality are increasing
Modeling is advancing

The growing interest in river basin modeling

Threats
Data collection is expensive

Limited data availability
Over or under prediction

Results (e.g., land use changes) of some scenarios are unfeasible
environmentally or/and economically

3.3.1. Strengths

One of the main strengths of the models is the potential to use both empirical data and
expert knowledge. In case of limited data availability, the incorporation of expert knowl-
edge in the model is an important advantage [92]. For instance, using expert knowledge
could add additional relationships to models in which data are limited [93].

Scenario-based analysis can be performed by using models to explore water quality
by management and operation strategies [47,52,53,94]. For example, the GeoImpres (sta-
tionary) model was used to predict groundwater quality by applying different scenarios of
fertilizer application [53]. Another scenario-based study uses simple statistical bivariate
analysis for planning the land by drafting a landslide susceptibility map [47]. The analyses
of scenarios allow users to predict potential outcomes and risks of management strategies.
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River basin models can be implemented on various scales and provide adaptation
and management strategies [52–54,56]. For instance, the DPSIR framework (The Climate
Change Project) is used to define strategies for adaptation in the long-term planning of
water resources [54]. In another study, the integrated modeling framework (peatlands)
provides long-term management strategies to assess the impact of peatlands on water
management [52].

The other main strength of spatially explicit models is that they provide time- and
spatial-specific outputs [49–52,54]. For instance, the spatial prediction model, spatial model,
and SWAT model deliver time- and spatial-specific outputs. These are particularly relevant
when the research questions require time- and spatial-specific outputs.

3.3.2. Weaknesses

An important weakness of the river basin models is the lack of model validation
and the presence of errors in the input data [44,47]. Mistakes in the input data can cause
problems in the calibration and validation of models [95]. Thus, the Monte Carlo simulation
technique is used for predicting the uncertainties in data [44]. Errors in data can also lead
to an incorrect model outcome.

In numerous situations, models are difficult or even impossible to be implemented
due to the limited availability of data [38]. The comparatively low amount of data is used
to develop some models [38,96]. Due to the low amount of input data, model performance
may result in either poor output or output covering a narrow range of environmental
conditions. Furthermore, some models are not transferable to other regions due to the
restricted data that were used to train the model, such as the simple statistical bivariate
analysis model [47]. This model needs validation before it can be applied in other regions.

In this study, the reviewed models ranged from too simple to very complex. For
instance, process-based models are very complex as compared to statistical models. Simple
models are limited to their applications and scope depending on what input variables and
data are used. Most of them cannot be used in time-specific outputs due to the lack of
training data. On the other hand, a complex model requires extensive training of modelers
and an enormous amount of data (not only the number of cases and observations but also
the number of input variables), which are needed to calibrate and validate the model and
perform uncertainty and sensitivity analysis.

3.3.3. Opportunities

Due to the increasing interest in river basin modeling, the number of these models
is increasing. As observed from the search in the web of knowledge app over the past
two decades, the number of research articles that used models for predicting future sce-
narios and aiding future policies and management strategies had increased. One of the
important opportunities is the increase in data quality and availability, which improved the
capacity of model predictions. The development of environmental monitoring technologies
could result in datasets with a large number of variables of high-quality data that helps
deal with data scarcity and variability [97,98]. Environmental monitoring networks have
been established by many European countries, such as the reporting of their river water
quality [94]. Data collection using remote sensing methods can also be considered another
opportunity. There has been substantial progress made in modeling low quantity or quality
data. Furthermore, the accuracy of the models’ prediction can be analyzed by splitting
the data into training and validation [99]. This process allows the determination of how
well a model predicts an outcome by using performance metrics. Moreover, to support the
decision making related to ecological issues in a river basin, a combination of ecological
models can be used [100,101].

3.3.4. Threats

There are some threats to using modeling techniques for river basins regardless of the
strengths and opportunities. Particularly, the modeling process is threatened if the optimum
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order of scientific method is not followed, i.e., research question—the selection of modeling
technique—data collection—model development—model validation—interpretation of
the model output [64]. The costs of collecting data may constrain the use of these models.
This may result in limited data being available for modeling and may pose a threat to
utilizing these models in cost-benefit analyses. Moreover, the model’s output can over- or
under-predict outcomes, such as the case of the simple statistical bivariate analysis model,
which overpredicts landslide events in the most susceptible areas [47]. It is also a threat if
the model output is applied to formulate management strategies but the model output is
inaccurate or deviates from reality. It is therefore of paramount importance to evaluate the
models before any application.

3.4. River Basin Models in the Context of Sustainable River Basin Management

Models can be developed and applied to assist sustainable development as well as the
sustainable utilization of agricultural parcels within a river basin, which can eventually
reduce the negative impacts of intensive agriculture [63]. Land use changes have been
occurring in the past until the present, and these models can be useful to assess whether
these changes are sustainable. These models provide valuable insights into the effect of
land use changes; nevertheless, there is still room for improving them. In an integrated
analysis incorporating the different sustainable development goal indicators, models have
limitations, particularly not being able to integrate all processes, which, among other
reasons, is the technological challenge for computation power. With fast technological
evolution, the models will gradually become more holistic and will eventually be able to
address the numerous sustainability questions at the river basin scale.

4. Conclusions

Our review confirms that there is a systematic increase in the use of models for
cost-benefit analyses of river basins but there is a lack of information on the efforts and
time needed to gather data, develop and adopt the model, and apply the model in real-
world scenarios. Based on what we investigated, it seems that, to some extent, model
applicability increases with more input variables but the high number of input variables
does not always guarantee a high number of model applications. The information that is
needed by a modeler to determine which river basin model to use are the availability of
the data, how much the model is user-convenient, which CBA (i.e., environmental and/or
economical) is needed in the study, and how much time is available. Based on these aspects,
the modeler can decide which model is suitable for his/her study. Furthermore, future
studies should explicitly report on the necessary time needed for data collection, model
development, and/or training and model application (Figure 5). This information will aid
model developers and users to evaluate the optimal model they can utilize for a particular
cost-benefit analysis and should be available in a standardized format for future modeling
research studies.
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