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Abstract: The National Coastal Shelterbelt System Construction Project (NCSSCP) was proposed to
increase the afforestation area and neutralize the impact of urbanization, especially in the southeast
coastal sub-region of China. In this study, we identified the spatio-temporal evolution characteristics
and predicted the land use and land cover changes (LUCC) associated with this project by modeling
scenarios, seeking to explore the path of sustainable development. The spatial structure was analyzed
using the landscape pattern index approach and the land use transfer matrix. By coupling the Markov
model and patch-generating a land-use simulation model (PLUS), different scenarios were analyzed
to predict the quantity and spatial changes. According to the results, based on the current trends and
due to the impact of urbanization, the forest area was predicted to decrease by 633.19 km2, whilst
appearing more spatially fragmented and separated. However, with the completion of the NCSSCP
target, the forest area was predicted to increase by 1666.12 km2, and the spatial structure would
appear more cohesive and concentrated. From an overall perspective, the afforestation target of
NCSSCP will not be completed under the present trend. It is difficult for the afforestation speed of
the NCSSCP to keep up with the speed of urbanization. Therefore, giving consideration to both the
afforestation speed and quality and reducing the speed of urbanization to balance the economy and
ecology would be beneficial in terms of the realization of the aims of sustainable development.

Keywords: LUCC; spatio-temporal analysis; NCSSCP; PLUS; scenario prediction

1. Introduction

With rapid economic development, the rapid urbanization process in coastal areas
has led to a series of land use issues such as soil erosion [1], forest reduction [2] and other
environmental problems which severely threaten the economic development of coastal
areas. In 1988, the National Coastal Shelterbelt System Construction Project (NCSSCP)
was first proposed. From 1991 to 2000, the construction of the coastal shelter forest system
was fully implemented in 11 coastal provinces across China. In 2001, the State Forestry
Administration organized the NCSSCP Phase II Plan (2001–2010). The second period was
extended to 2015, further expanding the scope of the project’s construction. In 2015, the
implementation of the previous phase of the plan came to an end. The third phase of
the NCSSCP (2016–2025) [3] was then launched. The goals of NCSSCP phase III can be
divided according to their function into basal forest belt construction and deep forest belt
construction, and can be divided into 11 coastal provinces according to their region. The
southeast coastal area mainly includes the southeastern sections of Zhejiang Province, some
districts and counties of Ningbo City, and Fujian Province. Unclear zoning areas were
distributed according to the proportion of forest area, and the target afforestation area of
the NCSSCP was 1698.42 km2.

The southeastern coastal area has a subtropical monsoon climate, with abundant
precipitation, sufficient sunlight, diverse terrain, rich resources, and dense woodland;
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enormous achievements have been obtained in this area under the influence of the NC-
SSCP. However, there are still problems to be solved urgently, such as the low positioning,
deficiency in the total amount, and insufficient width of forest belts, as well as their unrea-
sonable structure [4]. Moreover, the level of NCSSCP forest construction still lags behind
the levels of economic and social construction, and relevant research is urgently required.

Many ecosystem and environmental degradation issues have induced fluctuations
in urban temperatures [5] and the eutrophication of the sea with the acceleration of ur-
banization [6]. The expansion of construction land occupies the area of agricultural land.
Therefore, it is difficult to ensure economic growth and living necessities due to more severe
land-use conflicts. The use of empirical models [7], the analysis of conflict zones [8], and
spatial identification and intensity diagnosis models for potential land use functions [4] can
reflect the real situation of land use and land cover changes (LUCC). Hence, the regression
method [9] and the decision tree model [10] of the random forest algorithm were employed
here to boost the accuracy of the LUCC, so as to improve the spatial resolution of the
southeastern coastal area for the following in-depth research. Because the expansion of
urban areas has resulted in unbalanced forest displacement [11] and tremendous pressure
on forest land, the Chinese government developed the NCSSCP [12]. The effects of the
NCSSCP have been analyzed in many studies from different perspectives. Researchers
have analyzed soil microbial and enzyme activities in order to breed tree species which are
suitable for shelterbelts [13], and have adopted spatial domain effect models to assess the
spatio-temporal patterns of shelterbelts [14]. The effects of the NCSSCP were demonstrated
by calculating the total primary productivity of forest vegetation [15], and by quantify-
ing the structure and plant diversity of shelterbelts [12]. Moreover, the ecological and
environmental impacts of the NCSSCP were explored from the perspective of ecosystem
protection and function [16,17]. Under the influence of the NCSSCP in the southeastern
coastal area, modeling scenarios and the simulation of the spatio-temporal evolution of
LUCC can reveal changes in spatial patterns and assist decision-makers in formulating
sustainable development strategies. Thus, two questions were proposed in this study:

1. Can the shelterbelt construction project successfully complete its goals according to
the development trends of the third phase of the NCSSCP?

2. What is the most suitable land resource management and planning strategy for the
southeastern coastal area?

LUCCs affect the landscape pattern and spatial structure [18]. The distribution charac-
teristics of LUCCs can be recognized by selecting appropriate landscape pattern indexes,
and by quantitatively analyzing the spatial structure [19]. Therefore, the high-quality devel-
opment of coastal cities and the management of land resources should be strengthened by
analyzing the characteristics of LUCCs and predicting the spatio-temporal evolution trends
of LUCCs under different scenarios [20]. Regional LUCCs consist of both quantitative
changes and evolutions in the spatial structure, and the chosen model must have both
quantitative prediction and spatial simulation capabilities [21]. Existing quantitative predic-
tion models consist of univariate gray models [22], system dynamics models [23], logistic
regression models [24], Markov models [25], and artificial neural network models [26]. The
Markov model describes stochastic processes based on Markov chain theory [27], and is
widely used in land use simulation prediction due to its lack of after-effects. The cellular
automaton model can simulate LUCC according to certain conversion rules [28], based on
the CA-Markov model [29], the CLUE-S model [30], the FLUS model [31], and the ST-CA
model [32], which are broadly applied to LUCC spatio-temporal evolution simulations.
However, they possess a weak ability to mine the potential drivers of LUCC and the use of
multiple patch types. Through the land expansion analysis strategy, the patch-generating
land use simulation (PLUS) model can be used to find the intrinsic driving force of the
spatio-temporal evolution of LUCC [33]. Combined with multi-objective optimization
algorithms, the PLUS model simulates the spatio-temporal evolution of LUCC at a higher
accuracy with new multiple random seed generation mechanisms.
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Therefore, the spatio-temporal evolution trend of the LUCC and the spatial pattern
in the southeastern coastal area from 1990 to 2020 are analyzed in this paper. Besides this,
the LUCC in 2020 is simulated by coupling the Markov quantity prediction model and the
PLUS model based on the remote sensing images of the LUCC in 2010 and 2015, and the
appropriate drivers. The Kappa coefficient is an indicator used for consistency testing, and
can also be used to measure the effect of classification. Therefore, the kappa coefficient
indicator is employed to verify the accuracy of the Markov-PLUS model. According to the
NCSSCP, the inertial development scenario and the goal-oriented scenario are set to predict
the evolution trend of the LUCC. Additionally, a suitable landscape pattern index system is
established to analyze the spatial structure and provide a scientific basis for the subsequent
sustainable development in the southeastern coastal area. The inspection of the NCSSCP
results can provide a reference for the completion of the project’s objectives, land resource
planning management, and sustainable development in the southeastern coastal area.

2. Study and Data Sources
2.1. Study Area

Located at 24◦52′~31◦04′ N, 117◦35′~123◦25′ E (Figure 1), the southeastern coastal area
spans the Zhejiang and Fujian provinces, including 79 coastal cities and a total area of 83,600
km2. The southeastern coastal area is one of the ten major ecological barriers and major
ecological restoration projects. The terrain of the southeastern coastal area is dominated by
medium and low mountains and hills. Bounded by provincial administrative divisions,
the terrain of Zhejiang slopes from the southwest to the northeast, while the terrain of
Fujian slopes from the northwest to the southeast. The southeastern coastal area belongs
to the subtropical monsoon climate, presenting sufficient sunshine and abundant rainfall,
with an average annual temperature of about 17 ◦C and an average annual precipitation
of 1200–2000 mm. The type of soil is generally laterite and yellow soil, and the vegetation
type is dominated by subtropical evergreen broad-leaved forest in the central and western
regions, and subtropical monsoon forest in the east. The construction of shelterbelts along
the southeastern coastal area takes place in three areas: the Zhoushan bedrock coastal island
area, the southeast Zhejiang and eastern Fujian bedrock coastal mountainous and hilly
area, and the southern Fujian sandy silt coastal and hilly area. With a total population of
48.455 million people and a rapid rate of urbanization, the southeastern coastal shelterbelt
construction area is one of the most economically developed areas in China. It is also the
‘locomotive’ driving China’s economic and social development, and plays a pivotal role in
the overall situation of national economic and social development.

2.2. Data Resources

The research data selected in this paper can be classified into natural environmental
data, socioeconomic data, LUCC data, and planning documents according to their attributes
(Table 1). Among these, the slope and aspect data of the natural environment data were
mainly produced using ArcMap 10.8, which is based on DEM data; the restricted data
were extracted from the water area data of the LUCC in 2020. In 2015, the State Forestry
Administration and the National Development and Reform Commission issued the “Na-
tional Coastal Shelter Forest System Construction Project Planning (2016–2025)”, which has
guiding significance for the construction of the southeastern coastal shelter forest system.
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Table 1. A list of the data used in the study.

Category Data Sources Spatial Resolution

Natural environment
data

DEM, slope, aspect
Geospatial data cloud

(http://www.gscloud.cn/)
(accessed on 16 March 2022)

30 m

Precipitation
National Earth Systems Science Data Center

(http://loess.geodata.cn)
(accessed on 16 March 2022)

30 m

Socioeconomic data

GDP
Resource and Environmental Science Data Center

(http://www.resdc.cn)
(accessed on 17 March 2022)

30 m

Distance to Build-up
Area

Scientific data bank
(https://www.scidb.cn)

(accessed on 20 March 2022)
1000 m

Distance to Residential
Sites

National Geographic Information Resources
Directory Service System

(https://www.webmap.cn/)
(accessed on 20 March 2022)

30 m

Distance to Coastline

National Geographic Information Resources
Directory Service System

(https://www.webmap.cn/)
(accessed on 21 March 2022)

30 m

http://www.gscloud.cn/
http://loess.geodata.cn
http://www.resdc.cn
https://www.scidb.cn
https://www.webmap.cn/
https://www.webmap.cn/
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Table 1. Cont.

Category Data Sources Spatial Resolution

LUCC
LUCC data in 1990,

1995, 2000, 2005, 2010,
2015, 2020

CLCD from Wuhan
University [34] 30 m

Limit development
data Water area - -

Plan file

National Coastal
Shelterbelt System

Construction Project
Planning

The Central People’s Government of the People’s
Republic of China

(http://www.gov.cn/)
(accessed on 1 March 2022)

-

3. Methodology
3.1. Landscape Pattern Index

The landscape pattern index is a crucial research tool for the analysis of the spatial
characteristics [35] and the spatial distribution of its landscape structure [36]. The land-
scape index in this study is derived from two dimensions of landscape fragmentation
and landscape diversity, in accordance with the actual situations of the study area. The
landscape fragmentation indicators primarily consist of the landscape shape index (LSI),
contagion (CONTAG), and land division index (DIVISION). The landscape diversity in-
dicators comprise the agglomeration index (AI), Shannon’s diversity index (SHDI), and
Shannon’s mean index (SHEI). The selected landscape pattern index and its formula are
listed in Table 2.

Table 2. The landscape pattern index chosen in this study.

Landscape Pattern Index Relation Formulation

Landscape
fragmentation

indicators

LSI
The larger the value, the more complex the shape
of landscape patch and the higher the degree of

landscape fragmentation.
LSI =

0.25
∫ n

i e∗ij√
TA

CONTAG
The larger the value, the higher the agglomeration
degree between landscape patches, and the lower

the landscape fragmentation degree.
CONTAG =

[
1+

(
n∫

i=1

n∫
j=1

[
(pi)

(
fij∫ n

i=1 fij

)][
ln(pi)

fij∫ n
i=1 fij

])
÷2 ln(n)

]
×100

DIVISION
The higher the degree of separation, the higher

the degree of dispersion and fragmentation of the
landscape system.

pi =
Dij
Mij

Landscape
diversity indicators

AI
The larger the value, the more the same landscape

patches gather, and the lower the landscape
fragmentation degree.

AI =
[

gij
max→gij

]
SHDI

The larger the value, the more heterogeneous the
patches in the landscape pattern, and the more

fragmented the landscape.
SHDI = −

n∫
i=1

(pilnppi)

SHEI
The closer the value is to 1, the more evenly

distributed the patchwork types are in landscape
pattern.

SHEI =
−
∫ n

i=1(pi ln pi)
ln(n)

The LSI indicates the shape of the landscape patches, and its value is positive for
landscape fragmentation. CONTAG describes the degree of agglomeration or the extension
trend of patch types in the landscape, and is inversely proportional to the landscape
fragmentation. The value of DIVISION is positive for fragmented landscapes. The AI
shows the agglomeration degree of a certain type of landscape element type patch. SHDI
suggests that the landscape elements are dominated by a few dominant patch types. In
particular, the larger values represent more heterogeneous patches. SHEI reveals that the
landscape elements are dominated by a few dominant patchwork types, and its value is
inversely positive to the diversity.

3.2. Markov Model

The Markov model has high simulation accuracy in the process of simulating land
use and land cover, and presents a lack of after-effects, in that LUCC is only related to

http://www.gov.cn/
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the previous moment and is not related to the later moment [37]. Therefore, this paper
selects the Markov model to simulate the LUCC of 2020 in the southeastern coastal area
on the basis of the remote sensing images of 2010 and 2015. The results were compared
with the real images of 2020 in order to check the accuracy of the model. Besides this, the
quantity of the LUCC in the southeastern coastal area in 2020 was predicted by using the
Markov model based on the remote sensing images of 2010 and 2015. The results were
compared with the real images of 2020 in order to check the accuracy of the model. The
inertial development scenario and the goal-oriented are utilized in this study. In the inertial
development scenario, the LUCC images from 2015 to 2020 were utilized to create the
Markov model to predict the LUCC in 2025. In the goal-oriented scenario, the land-use
evolution and distribution characteristics in 2025 were simulated under the forest land
construction target of the NCSSCP.

3.3. PLUS Model

The patch-generating land-use simulation model (PLUS) is a land-use simulation model
developed by the HPSCIL@CUG laboratory of the China University of Geosciences [38].
With raster data, the PLUS model can flexibly handle multiple types of land use patch
changes, and can be used for patch-scale land-use change simulations [39]. The PLUS model
combines the advantages of the transformation analysis strategy and the pattern analysis
strategy to form the Land Use Expansion Analysis Strategy (LEAS) [40]. By extracting
part of the land use expansion with two phases of the LUCC images, LEAS digs deep into
the land-use conversion rules and obtains the conversion inertia probability of each cate-
gory [41]. A CA model based on multi-type random patch seeds (CARS) [42] is proposed to
automatically simulate and generate land use patches under the spatiotemporal state with
the constraints of development land. The PLUS model couples the Land Use Expansion
Analysis Strategy (LEAS) and the CA Model (CARS) based on multi-type random patch
seeds, and combines the random seed generation and threshold decreasing mechanism
to accurately simulate the LUCC [43]. Compared with the current land use simulation
models, such as CA-Markov and logistics-CA, which use transformation analysis strategies,
as well as CLUE-S and FLUS, which use pattern analysis strategies [44], the PLUS model
has the following advantages: (1) PLUS can better explore the incentives of various types of
land-use changes; (2) CARS can better simulate the patch-level changes of multiple types
of land use; (3) the simulation results can better support planning policy in combination
with multi-objective optimization algorithms.

The land-use expansion data from 2015 to 2020 are extracted when the PLUS model is
used for simulation. Among them, 20% of the data are extracted by a random sampling
strategy as the training set with the random forest algorithm. The contribution value of each
driving factor is calculated in order to obtain the development probability atlas of various
types of land use by LEAS. In this way, the probability of random seeds is determined to be
0.01 in order to simulate future types of land use patches (CARS). The land use transfer
matrix refers to the land transfer from 2015 to 2020, and the construction land will not be
transferred out due to its particularity. The neighbourhood weight is confirmed by referring
to the ratio of the transfer area to the total transfer area of each category of land use in the
past land transfer changes (see Table 3).
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Table 3. The transition matrix and neighborhood weights.

The Type of Land Use Cropland Forest Grassland Water Area Bare Land Construction Land Wetland

cropland 1 1 1 1 0 1 0
forest 1 1 0 0 0 1 0

grassland 1 0 1 1 0 1 0
water area 1 0 0 1 0 1 0
bare land 1 0 1 0 1 1 0

construction land 0 0 0 0 0 1 0
wetland 0 0 0 1 0 1 1

Neighborhood
Weights 0.2 0.395 0.05 0.15 0.025 0.155 0.025

This section is divided into subheadings, providing a concise and precise description
of the experimental results, their interpretation, and the experimental conclusions that can
be drawn. The workflow chart is shown in Figure 2.
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3.4. Verification of the Kappa Index

The confusion matrix was employed to verify the simulation result image and com-
pare its accuracy. The confusion matrix classifies the simulated remote sensing images
and calculates the error matrix by comparing them with the real remote sensing images.
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Concurrently, the confusion matrix was composed of three accuracy indicators: overall ac-
curacy, producer accuracy, and user accuracy [45]. The Kappa coefficient comprehensively
considers all factors and reflects the accuracy of the simulation. The Kappa coefficient was
positively correlated with the simulation accuracy. Generally, the simulation effect and the
performance were preferable when the Kappa coefficient belonged to (0.8, 1) [46].

In this paper, the remote sensing images of the LUCC in 2010 and 2015 were adopted.
The remote sensing images of the LUCC in 2020 were simulated using PLUS by extracting
land-use expansion and making various types of land use development possibility images
according to LEAS. The quantity of the LUCC was predicted by using the CARS module.
Compared with the real LUCC remote sensing images in 2020, the Kappa coefficient
accuracy was 0.891 and the overall accuracy was 0.951. The fitting results of the model met
the simulation requirements.

3.5. Selection of the Driving Factors

Socioeconomic data and natural environmental data were selected as driving factors,
including the DEM, slope, aspect, GDP, precipitation, distance to the coastline, distance to
a built-up area, and distance to residential sites (Figure 3). The missing part of the data was
supplemented by interpolation, and the resampling was unified to a 30-m resolution. The
driving factors were put into the LEAS in order to extract the development probability of
each type of land use.
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Figure 3. The driving factor chosen in this study. (a) the driving factor of GDP; (b) the driving factor
of precipitation; (c) the driving factor of distance to residential sites; (d) the driving factor of slope;
(e) the driving factor of Dem; (f) the driving factor of distance to coastline; (g) the driving factor of
distance to build-up area; (h) the driving factor of aspect.
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The random forest algorithm was utilized to mine the contribution value of each
driving factor to the expansion of each type of land use. A total of two simulation plans
were carried out in this paper.

1. LUCC remote sensing images from 2010 to 2015 were used to simulate the LUCC in
2020 for the Kappa coefficient verification.

2. LUCC remote sensing images from 2015 to 2020 were employed to simulate the LUCC
under the effect of the NCSSCP in two scenarios.

The contribution values of each driving factor to various types of land use expansion
are exhibited in Figure 4.
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4. Results
4.1. The Change of the LUCC

The evolution of the LUCC in the southeastern coastal area from 1990 to 2020 is pre-
sented in Figure 5. However, the rate of urbanization remains high under the influence of
the NCSSCP. From an overall perspective, the rate of development of forests far exceeds
the rate of afforestation. In terms of different time series, the impact of the NCSSCP is
also different at each stage. Under the first phase of the NCSSCP, forest increased by 1.1%,
and construction land increased by 101.3%. Cropland decreased by 9.9%, and grassland
decreased by 68.2%. These results suggested that the first phase of the NCSSCP had a
great impact on LUCC and changed the geomorphic characteristics and spatial pattern
with the economic development and urbanization rate of the southeastern coastal area.
The decrease in grassland and bare land indicated that the utilization rate of land was
improved. From 2000 to 2010, it was the second phase of the NCSSCP in the southeastern
coastal area. China’s economic growth achieved a great leap up until 2015. Thus, construc-
tion land increased by 75.3%, maintaining a high growth rate. The possession amount
was 95.2%, while forest decreased by 1.1%, and was mainly converted to cropland and
construction land.
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The increase of the area of the conversion of cropland to forest was not as fast as forest
exploitation, with a deficit of 507.16 km2. The urbanization process and its irreversibility
deprived the expansion and development of other land-use types, especially forest. By
2020, the preliminary phase of the third phase had been completed, whereas its effect was
not significant due to the development of urbanization. However, cropland should meet a
certain level in order to match the economic growth. Therefore, the behavior of exploiting
forest for farmland reduced a large area of the forest land. In essence, it is the effect of
urbanization in other forms. Forest decreased by 1.8%, and its possession decreased to
93.4%. The total area of forest was still in a declining trend, and the deficit of cropland
reached 2523.22 km2. Forest was still not well protected even under the influence of the
NCSSCP. Cropland increased by 4.1%, owing to the use of forest and water. Compared
with the end of the second phase, construction land increased by 11.4%, still maintaining a
consistent growth rate. Simultaneously, wetland grew steadily, increasing by 192.9% and
17.6% compared with 1990 and 2000, respectively. Under the influence of ecological wetland
protection, the wetland has been restored well. The LUCC transfer matrix is presented in
Table 4.
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Table 4. The LUCC transfer matrix of the whole coastal shelterbelt system construction project.

The First Phase of the NCSSCP 2000

1990

cropland forest grassland water area bare land construction land wetland
cropland 16,639,270 * 3,338,626 24,168 411,278 2320 1,756,732 4739

forest 2,657,734 61,317,184 * 16,739 56,751 163 101,676 327
grassland 102,678 57,675 31,231 * 7001 4510 55,355 11
water area 251,083 75,423 3147 1,605,966 * 2028 136,339 5878
bare land 7684 316 2384 3043 12,430 * 8704 1

construction land 286,889 40,442 3599 80,043 1012 1,207,111 * 538
wetland 1995 275 82 1906 68 541 205 *

The second phase of the NCSSCP 2015

2000

cropland forest grassland water area bare land construction land wetland
cropland 15,167,729 * 2,360,134 21,586 350,968 4758 2,089,479 1196

forest 2,923,649 61,741,638 * 9203 9821 320 188,344 0
grassland 28,025 18,453 18,613 * 3355 1733 12,502 0
water area 215,173 18,425 3150 1,707,161 * 6459 270,622 1461
bare land 5064 87 644 5545 5201 * 7209 0

construction land 11,104 330 49 82,786 147 3,189,999 * 0
wetland 96 3 1 31 0 84 13,688 *

The early stage of the third phase of
the NCSSCP 2020

2015

cropland forest grassland water area bare land construction land wetland
cropland 13,450,195 * 2,803,576 11,003 224,050 3912 1,790,566 4419

forest 3,867,695 59,896,011 * 8319 107,470 334 184,443 587
grassland 19,594 13,533 3814 * 1864 900 12,116 125
water area 393,732 91,315 2994 1,380,425 * 3740 201,203 5643
bare land 5038 238 553 993 3868 * 7067 16

construction land 1,300,542 131,975 3372 106,786 4076 4,165,309 * 2284
wetland 3585 429 123 4884 1 2252 1858 *

* The symbol * represents the possession amount of each land use type.
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4.2. Landscape Pattern Index Analysis

In this paper, six indices, including landscape fragmentation indexes (LSI, CONTAG,
and DIVISON) and landscape diversity indexes (SHEI, SHDI, and AI) were selected in
order to analyze the LUCC and spatial pattern of the coastal shelterbelt in the southeastern
coastal area. Figure 6 demonstrates the changes in the two dimensions’ indices from 1985
to 2020. Generally, LSI, SHEI, and SHDI exhibited an increasing trend, while CONTAG,
DIVISON, and AI showed a downward trend. The landscape fragmentation index reflected
the fragmentation and complexity of the NCSSCP in the southeastern coastal area. The
improvement of the LSI index indicated that the shape of the LUCC in the southeastern
coastal area was more irregular. The patch edge was intricate, and the degree of landscape
fragmentation increased. The decrease of the CONTAG index suggested that the extent
of land species sprawl decreased, and the interaction among different land species was
fragmented. The decrease of DIVISION implied that the spread of land types in the
southeastern coastal area was reduced, and the interaction of different land types was
fragmented. Meanwhile, the degree of separation and discretization decreased. The
landscape diversity index reflected the diversity and complexity of land use and land cover
under the effect of the NCSSCP in the southeastern coastal area. The growth of the SHDI
index and SHEI index revealed the spatial diversity and complexity of the southeastern
coastal area. The decrease in the AI index represented the decline of the agglomeration
of the same land type in the southeastern coastal area. The LUCC implied a trend of
diversification under the interaction of different land types.
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4.3. Scenario Setting and Analysis
4.3.1. The LUCC Analysis of the Scenarios

Two scenarios of inertial development and goal-orientation are set in this paper. The
inertial development scenario (S1) takes the remote sensing images of the LUCC in 2015
and 2020, and the Markov model is employed to simulate and predict the land use and
land cover demand in 2025. S1 is set by the principle of business as usual; that is, each
type of land use would require development as the inertial trend. The Markov-PLUS
model is coupled to combine both quantity and spatial prediction in order to simulate
the spatiotemporal LUCC evolution in the southeastern coastal area. The goal-oriented
scenario (S2) is set according to the target of the afforestation area proposed in the NCSSCP.
The amount of forest area is extracted and quantified as the land demand, in order to
simulate the LUCC once the third phase of the NCSSCP has been completed, so as to
indicate differences in land use and land cover between S1 and S2. The comparison of
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the results is illustrated in Figure 7 ((a) the inertia development scenario—S1; (b) the goal-
oriented scenario—S2). In other words, whether the goal of the NCSSCP can be completed
can be determined according to the inertial trend of the preliminary development of the
NCSSCP in the southeastern coastal area from 2015 to 2020. However, such situations can
be visualized and displayed in space.
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The differences between the inertial development scenario and the goal-oriented
scenario are shown in Figure 6. The differences of the LUCC results in the district are
mainly distributed in four areas, among which (a) and (e) are distributed in the northern
area of the southeastern coastal area, (b) and (f) are distributed in the northeast area of the
southeastern coastal area, (c) and (g) are distributed in the central area of the southeastern
coastal area, and (d) and (h) are distributed in the southern area of the southeastern
coastal area.

Under S1, the forest is still in a state of continuous reduction. Compared with 2015,
forest decreased by 2.9%, and the possession amount of forest was 95.9%. Under S1, the
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forest was not well maintained and restored, while cropland extended the growth trend
from 2015 to 2020, with an increase of 564.03 km2 compared with 2020. Besides this, about
65.8% of the cropland was transferred from the forest, as the behavior of “exploiting forests
and creating cropland” is the main source of the growth of cropland. The construction land
increased by 1.29%, with a total increase of 74.54 km2. Under S1, the forest was used to
reclaim a large amount of cropland, and was then expropriated and built into construction
land, which is the most direct embodiment of urbanization’s influence. Forest decreased by
about 633.19 km2, contrary to the goal of the NCSSCP, namely, creating about 1666.12 km2

of forest. According to the development trend, ecological protection was ignored. Such
a development trend runs counter to the NCSSCP’s development philosophy, making it
impossible to complete the goal.

Under S2, the forest was well restored and increased, with a total increase of 1666.12 km2,
which was 2.94% higher than that in 2020. The ecological value of the NCSSCP in the south-
eastern coastal area was truly revealed. Meanwhile, the cropland was effectively used and
controlled at a decrease of 10.06% compared with 2015. Additionally, ecological restoration
was significantly promoted owing to the NCSSCP and the project of returning cropland to
forest. Construction land increased by 24.1% compared with 2015, with an increase of 11.4%
compared to 2020. The speed of the process of urbanization is still at a high level. However,
the afforestation speed matches the speed of urbanization and the economy. Ecological
restoration is emphasized under S2. Moreover, the southeastern coastal area achieved
high-quality development with the balance of ecology and economic development.

4.3.2. The Landscape Pattern Index Analysis

Under the two scenarios, the landscape pattern index evolution in the southeastern
coastal area is depicted in Figure 8. Specifically, (a) consists of the LSI index, CONTAG
index, and DIVISION index in the landscape fragmentation index, mainly reflecting the
fragmentation and the complexity of the landscape pattern and spatial structure of the
LUCC patches in the southeastern coastal area, and (b) demonstrates the landscape diversity
index, including SHDI, SHEI, and AI, suggesting the degree of diversity of the LUCC
patches in the southeastern coastal area and the interaction between different land types.
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Under the scenario of S1, the LSI index increased, implying that the fragmentation in
the southeastern coastal area became higher. The mutual transformation degree between
land types was higher. The CONTAG index was inversely proportional to the degree of
fragmentation, and its downward trend reflected the wide distribution of various types
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of land. The increase of the DIVISION index confirmed the increase in separation and
fragmentation, and the spatial structure was complicated. The increase of SHDI and SHEI
index demonstrated the increase in the diversity of landscape patterns, showing a richer
diversity compared to 2020. The AI index was inversely proportional to the diversity,
and its downward trend revealed a decrease in the aggregation of various species and an
increase in diversity.

Under the scenario of S2, the LSI still presented an upward trend, and the conversion
degree between cropland and forest was still high. Nonetheless, the rise of the CONTAG
index indicated that the spatial structure and landscape pattern of the southeastern coastal
areas increased with the deepening of the NCSSCP. The land types were scattered and
clustered. The decline of the DIVISION index manifested the decrease of separation of the
landscape pattern in the southeastern coastal areas, as well as the decrease in the degree of
fragmentation of the spatial structure. Compared with 2020, SHDI and SHEI decreased,
revealing that the diversity of landscape patterns in the southeastern coastal area was lower
than that of 2020, and the interaction between different types was small. Compared with
the S1 scenario, the AI index was on an upward trend. Thus, the aggregation among land
types was on the rise under S2.

5. Discussion
5.1. Simulation Result Analysis

The southeastern coastal area encounters the most frequent natural disasters. Thus,
NCSSCP is a critical part of China’s “two screens and three belts” strategy to protect
coastal ecological security. The impact analysis of the NCSSCP and the prediction of
the future changes in LUCC can provide scientific advice for the overall planning of
land and sea and the proper rational configuration of land resources, contributing to the
follow-up development of the NCSSCP. This study selected the PLUS model and set two
scenarios to predict the LUCC in 2025, which have a high accuracy in the simulation of the
spatiotemporal evolution of the LUCC [38].

Based on remote sensing images of the LUCC from 2010 to 2015, this research used
the PLUS model to simulate the LUCC in 2020, and used the Kappa coefficient to verify the
accuracy. The results show that the PLUS model has very high spatial simulation ability,
and can show the changes of the LUCC in time and space, coupled with the Markov model.
The PLUS model can be applied to LUCC simulation. Therefore, two scenarios were set
up to analyze the future LUCC and predict the landscape pattern and spatial structure of
southeastern coastal areas under different land resource management strategies.

5.2. Management Strategies for the Future Development of Land Resources

Under S1, the forest is mainly transferred out to cropland. The ecological protection
capacity is reduced, while construction land is expands rapidly. The restoration of the
ecological environment is slow, while the construction land expands rapidly with more
diverse and complex spatial structures. As a result, the ecological environment in the
southeastern coastal areas will be damaged, hindering the sustainable development of
ecological restoration projects.

Under S2, the ecological environment of the southeastern coastal area is restored, and
the ecological environment was well protected. The speed of afforestation matches the
expansion speed of the construction land, and the spatial pattern is more agglomerated.
Completing the goal of the NCSSCP in the southeastern coastal area can contribute to
the provision of guidance to sustainable development, which is of great significance to
displaying the spatial visualization of the LUCC.

Such different scenarios and land resource management strategies can provide a con-
trasting context for decision-markers to promote sustainable development. As suggested
by the development trend of the NCSSCP from 2015 to 2020 and the simulation results
analyzed by the different scenarios, the following suggestions can be provided.
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– Continue to implement the NCSSCP and expand the total amount of forest resources
in southeastern coastal areas. The implementation of the “Belt and Road” strategy and
the concept of green development can be comprehensively promoted. Continuing the
NCSSCP in the southeastern area is urgent for the further enhancement of the quality
of the ecological environment and the acceleration of the construction of ecological
civilization.

– It is also necessary to further facilitate the afforestation and promote the greening
construction of cities and their surroundings through scientific and effective means
of construction and management. In southeastern coastal areas, the protection of
shelterbelts should be strengthened in order to improve the disaster prevention.

– Further improving forest coverage and increasing forest carbon sink can offset some
industrial greenhouse gas emissions and reduce China’s total pollution. This is a
crucial measure in order to actively respond to global warming.

– The industrial structure of the southeastern coastal area should accelerate the change
of the first industry to secondary and tertiary industries. NCSSCP should focus
on achieving a net forest increase, as opposed to focusing on afforestation, which
seems plausible but has an insufficient forest area due to urbanization. The ecological
environment should be considered in the process of economic development in the
southeastern coastal area.

– The ecological system should be made more stable in order to promote sustainable
development. The landscape pattern and spatial structure of the southeastern coastal
area are relatively simple and complete. This indicates that the interaction between
various types of land use should be elementary. Therefore, the following development
should be clustered according to the landscape analysis.

5.3. Deficiencies and Prospects

The main limitation of this paper is that the LUCC dataset used was not detailed
enough. In other words, all of the evergreen broad-leaved, evergreen coniferous, deciduous
broad-leaved and deciduous coniferous forests were classified into a unified type of forest.
Although the LUCC can reflect the temporal and spatial evolution of forests, only a brief
description can be provided. Additionally, the LUCC dataset does not match the types
of forest land constructed in the NCSSCP, making it difficult to perform more in-depth
planning and discussion. During the simulation, the driving factors were selected from the
perspective of the natural environment and socioeconomics. Nevertheless, there are some
limitations and one-sidedness. The research only stops at the spatio-temporal evolution of
the ecological pattern.

Economic development, the ecological environment, and sustainable development
should be considered simultaneously in the future development of the southeastern coastal
area. This lays a scientific foundation for the achievement of balanced development
between economic growth and ecological security. In future research, field research and
sampling should be conducted, and various remote sensing technologies will be adopted
to analyze the ecological functions and service value under the evolution of the LUCC in
the southeastern coastal areas.

6. Conclusions

Since the first phase of the coastal shelterbelt system construction project in the south-
eastern coastal area in 1990, the forest has been restored, and the ecology has been effectively
protected. However, the rate of the return of farmland to forest was sluggish, as the rate
of forest development was slower than the speed of the economy’s development. Conse-
quently, the amount of forest exhibited a declining trend. In the process of urbanization, the
rate of forest development and the rate of the development of construction land were rapid.

From 1990 to 2020 (the first phase to the early stage of the third phase of the NCSSCP in
the southeastern coastal area), the landscape pattern and spatial structure were fragmented
and diversified, with irregular and discordant patch edges. The interaction between
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various land-use types was strengthened with the acceleration of economic growth and
urbanization. Meanwhile, the landscape connectivity was reduced. Therefore, the spatial
structure was highly discretized and fragmented, with poor stability, and the ecology was
damaged to a certain extent.

In the process of implementation, the shelterbelt system project only stresses the plan-
tation of the forest, while neglecting the reduction of forest land caused by the urbanization
process. Consequently, the net growth of the forest area in a real sense cannot be achieved,
resulting in a waste of resources and ecological imbalance.

Under the two simulation scenarios, the LUCC in the southeastern coastal area shows
different development situations. In the case of S1, the spatial structure of the LUCC is
fragmented and separated. The urbanization rate is high, but the ecology is not stable or
safe enough. In the S2, the spatial structure of the LUCC is more agglomerated, and the
forest area achieves a net increase.

Through the comparative analysis of the two scenarios, according to the current
development trend (a severe forest deficit), the goal of the NCSSCP cannot be achieved.
Meanwhile, through the visual analysis of the LUCC, it was shown to be conducive to the
sustainable development of the NCSSCP, and to provide spatial visualization guidance for
subsequent development.

The most suitable land resource management and strategic planning for the southeast-
ern coast should not only accomplish the afforestation goals of the NCSSC but also achieve
the net growth of forest land; that is, the speed of afforestation should exceed the speed of
urbanization. Such a strategy can achieve high-quality development that takes into account
both economic benefits and ecological security.
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