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Abstract: When it comes to sustainability, steel rebar corrosion has always been a big issue, especially
when they are exposed to harsh environmental conditions, such as marine and coastal environments.
Moreover, the steel industry is to blame for being one of the largest producers of carbon in the
world. To supplant this material, utilizing fiber-reinforced polymer (FRP) and hybrid FRP bars as a
reinforcement in concrete elements is proposed because of their appropriate mechanical behavior, such
as their durability, high tensile strength, high-temperature resistance, and lightweight-to-strength
ratio. This method not only improves the long performance of reinforced concrete (RC) elements
but also plays an important role in achieving sustainability, thus reducing the maintenance costs of
concrete structures. On the other hand, FRP bars do not show ductility under tensile force. This
negative aspect of FRP bars causes a sudden failure in RC structures, acting as a stumbling block to the
widespread use of these bars in RC elements. This research, at first, discusses the effects of different
environmental solutions, such as alkaline, seawater, acid, salt, and tap water on the tensile and
bonding behavior of different fiber-reinforced polymer (FRP) bars, ranging from glass fiber-reinforced
polymer (GFRP) bars, and basalt fiber-reinforced polymer (BFRP) bars, to carbon fiber-reinforced
polymer (CFRP) bars, and aramid fiber-reinforced polymer (AFRP) bars. Furthermore, the influence
of the hybridization process on the ductility, tensile, and elastic modulus of FRP bars is explored.
The study showed that the hybridization process improves the tensile strength of FRP bars by up
to 224% and decreases their elastic modulus by up to 73%. Finally, future directions on FRP and
hybrid FRP bars are recommended.

Keywords: composite bars; FRP bars; hybrid FRP bars; GFRP bars; BFRP bars; CFRP bars; durability;
hybridization process; alkaline solution; seawater solution

1. Introduction

Population growth is causing an increased demand for the development of infrastruc-
tures and a tremendous consumption of materials. Two of the most important materials
for infrastructures are concrete and steel [1]. The corrosion of steel bars is a major prob-
lem that causes a heavy cost for repairing or replacing concrete elements. Thus, it is not
feasible to use steel bars as a reinforcement in seawater sea-sand concrete because of the
corrosion [2–8] of these types of bars [9–14], as well as the aggressive environmental condi-
tions that exist near to coastal areas [15–24]. Seawater and sea sand contain chloride ions.
These ions speed up corrosion development and negatively affect the long performance of
concrete structures [25–29]. The corrosion of steel bars causes the cracking, staining, and
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spalling of concrete cover [26,30]. It also reduces the cross-sections of bars, thus, shortening
the service life of reinforced concrete (RC) structures [31–33]. Furthermore, in comparison
with FRP bars, steel bars emit more CO2 into the environment [34]. This is contrary to the
durability and sustainability of reinforced concrete structures, which are a popular topic
nowadays, as such non-durable structures can cause vast economic and environmental
problems, especially for infrastructures [5,35,36]. There are several methods to address the
steel corrosion problem in reinforced concrete structures, such as using a hybrid system in
which steel and composite bars are used simultaneously in the reinforced concrete section,
enhancing the properties of concrete elements to decrease their permeability [37,38], and
by employing carbon nanotubes to reduce rebar corrosion [39–43].

Another viable approach to dealing with the aforementioned issues is by using fiber-
reinforced polymer (FRP) bars. This is due to their appropriate mechanical behavior, such
as their tensile strength, durability, and anti-corrosion performance resistance [44–55]. Sup-
planting FRP bars with conventional steel bars can preserve the mechanical behavior of
reinforced concrete elements [56]. There are several different FRP bars, some of the most
applicable of which are glass fiber-reinforced polymer (GFRP), aramid-fiber reinforced
polymer (AFRP), carbon fiber-reinforced polymer (CFRP), and basalt-fiber reinforced poly-
mer (BFRP) [57,58] bars. However, the usage of FRP bars in reinforced concrete elements
has some downsides as well. One of the major problems is the sudden failure of these
types of bars under tensile force. This can give rise to the sudden collapse of concrete
structures when they are subjected to dynamic loads [59]. To improve the ductility of FRP
bars in tensile loads, scholars have introduced the hybridization process [47]. The concept
of this innovative process is gradually failing by selecting different fibers that rupture
under different ultimate strains. Only a limited number of investigations have been carried
out on the effects of the different solutions on the mechanical properties of FRP bars and
hybrid FRP bars [60]. The aim of this study was to summarize the current research on the
mechanical behavior of FRP and hybrid FRP bars, their bonding and tensile strength in
particular, under harsh environmental conditions.

2. Materials Properties for Fabricating FRP Bars
2.1. Composite Fibers

Many types of fibers are used to develop FRP bars, including glass, aramid, carbon,
and basalt fibers. Composite fibers play an essential role in the mechanical properties
of FRP bars. Each type of fiber has different properties. Table 1 reports the mechanical
properties of different fibers [49].

Table 1. Typical properties of fibers for FRP composites.

Fiber Type Density
(kg/m3)

Tensile Strength
(MPa)

Young Modulus
(GPA)

Ultimate Tensile
Strain (%)

Thermal Expansion
Coefficient
(10−6/◦C)

Poisson’s
Coefficient

E-glass 2500 3450 72.4 2.4 5 0.22
S-glass 2500 4580 85.5 3.3 2.9 0.22

Alkali resistant glass 2270 1800–3500 70–76 2.0–3.0 - -
ECR 2620 3500 80.5 4.6 6 0.22

Carbon (high modulus) 1950 2500–4000 350–650 0.5 −1.2–0.1 0.20
Carbon (high strength) 1750 3500 240 1.1 −0.6–0.2 0.20

Aramid (Kevlar 29) 1440 2760 62 4.4 −2.0 longitudinal
59 radial 0.35

Aramid (Kevlar 49) 1440 3620 124 2.2 −2.0 longitudinal
59 radial 0.35

Aramid (Kevlar 149) 1440 3450 175 1.4 −2.0 longitudinal
59 radial 0.35

Aramid (Technora H) 1390 3000 70 4.4 −6.0 longitudinal
59 radial 0.35

Aramid (SVM) 1430 3800–4200 130 3.5 - -
Basalt (Albarrie) 2800 4840 89 3.1 8 -
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According to other research [9,61], the use of E-glass, basalt, and carbon is more
common for fabricating FRP bars. Table 1 shows that the use of carbon fibers leads to higher
elastic modulus and tensile strength in fabricated composite bars, compared to E-glass
and basalt fibers. However, in comparison with other fibers, carbon fibers are the most
expensive ones. This can be a stumbling block to the widespread use of such fibers in
manufacturing composite bars.

2.2. Resin

Thermosetting matrices are not only used to maintain fibers and conserve the surface
of the fibers, but also to help prevent the propagation of cracks in FRP bars. Furthermore,
different types of resins have different extents of ability in protecting the fibers against
different environmental conditions [62]. Table 2 outlines the mechanical properties of some
thermosetting matrices [49].

Table 2. Typical properties of thermosetting matrices.

Property
Matrix

Polyester Epoxy Vinyl Ester

Density (kg/m3) 1200–1400 1200–1400 1150–1350
Tensile strength (MPa) 34.5–104 55–130 73–81

Longitudinal modulus (GPa) 2.1–3.45 2.75–4.10 3.0–3.5
Poisson’s coefficient 0.35–0.39 0.38–0.40 0.36–0.39

Thermal expansion coefficient (10−6/◦C)) 55–100 45–65 50–75
Moisture content (%) 0.15–0.60 0.08–0.15 0.14–0.30

With regards to Table 2, in terms of elastic modulus, epoxy resins have a higher elastic
modulus in comparison with other resins. Furthermore, considering tensile strength, vinyl
ester resins have higher tensile strength compared to other resins.

In addition, the types of resin play a pivotal role in the long-term performance of
fabricated FRP bars. Benmokrane et al. [63] investigated the effects of different resins,
namely vinyl ester, polyester, and epoxy, on the durability of GFRP bars. They found that
the use of vinyl ester and epoxy for fabricating FRP bars, unlike polyester, presented the
lowest degradation level in terms of physical and mechanical behavior after exposure to an
alkaline solution. In other research caried out by Benmokrane et al. [64,65], the effects of
vinyl ester and epoxy resin were investigated regarding the durability of BFRP and GFRP
bars. They observed that glass–vinyl ester FRP bars had the best long-term performance in
the alkaline solution, in comparison with basalt–epoxy and basalt–vinyl-ester FRP bars.

3. Different Simulated Environments and Their Effects on the Mechanical Properties
of FRP Bars

The degradation of FRP bars occurs when free hydroxyl ions (OH-) scatter through the
matrices of FRP bars [66]. The interface between the fiber and matrix is a nonhomogeneous
and thin region. This layer is also prone to deterioration. Chen et al. [66] classified
this deterioration into three mechanisms, namely matrix osmotic cracking, interfacial
debonding, and delamination. Moisture diffusion into FRP composites could be influenced
by the material’s anisotropic and heterogeneous character. In addition, wicking through
the fiber–matrix interface in the fiber direction could be the predominant mechanism of
moisture ingress. Nonvisible dissociation between the fibers and matrix could lead to
rapid losses of interfacial shear strength. Unfortunately, limited attention has been paid
to the effect of the resin system type on the physical and mechanical properties or the
durability characteristics of GFRP bars. Furthermore, the types of resin play a crucial role
in the degradation of FRP bars. The more ester groups there are, the more likely FRP
bars are to degrade. As polyester has more ester groups than vinyl ester, with polyester
being more prone to hydrolysis [50,67,68], polyester-based FRP bars are less durable than
epoxy- and vinyl ester-based FRP bars. Another significant factor involved in degrading
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FRP bars is the type of fiber, such as basalt, carbon, glass, and aramid fibers. Different
environmental conditions have different effects on the level of degradation in the FRP bars.
The combination of sodium hydroxide (NaOH), potassium hydroxide (KOH), and calcium
hydroxide (Ca(OH)2), with pH values of 13.6 and 12.7, leads to simulating an alkaline
solution with normal- and high-strength concrete environments, respectively [69,70]. To
simulate seawater, sodium chloride (NaCl) is combined with (Na2SO4) [66,71].

The tensile strength and bonding behavior of FRP bars that experience harsh en-
vironmental conditions can be determined according to ASTM D7205 [72] and ASTM
D7913 [73], respectively.

3.1. Behavior of FRP Bars under Tension

Much research has been conducted to investigate the tensile behavior of FRP bars,
ranging from GFRP [50] and CFRP [66], to BFRP [74,75] and AFRP [76]. The FRP bars do
not exhibit any plastic behavior under tensile loading and remain linearly elastic until
their ultimate strain [77,78]. Since fibers play a significant role in tensile strength, it can be
stated that bars with the same diameter, appearance, and processing may have different
strengths, depending on their fiber to matrix ratio [79]. The effects of harsh environmental
conditions on the tensile behavior of FRP bars have been investigated by different scholars.
Rifai et al. [80] tested FRP bars in alkaline solutions and concrete environments, along with
different durations and temperatures. They showed that the degradation level of FRP bars
was more sensitive to the conditioned temperature than to the duration.

Table 3 summarizes the tensile behavior of GFRP, CFRP, and BFRP bars, based on the
bars’ diameter, different environmental conditions, and time.

Table 3. Tensile behavior of FRP bars, based on different solutions, diameters, and time.

Type Bar Diameter
(mm) Solution Days Tensile Strength

(MPa) Ref. Retention
(%)

GFRP 9.53 Seawater 70 754 [66] 98
GFRP 9.53 Alkaline 60 482 [66] 52
GFRP 6 High-performance seawater sea sand concrete 63 1036 [81] 97.9
GFRP 6 Normal seawater sea sand concrete 42 728 [81] 68.7
GFRP 19 - - 633.8 [82] 98
GFRP 19 - - 535.7 [82] 83
GFRP 12.7 Saline solution 60 781 [50] 99
GFRP 12.7 Saline solution 365 702 [50] 89

GFRP 6 High-performance seawater sea sand
concrete/20% 42 988 [83] 93.7

GFRP 6 High-performance seawater sea sand
concrete/20% 63 617 [83] 58.6

GFRP 8 Alkaline 45 1359.8 [84] 96.4
GFRP 8 Alkaline 90 1061.4 [84] 75.3
GFRP 8 Alkaline 135 994.7 [84] 70.5
GFRP 8 Alkaline 180 974.8 [84] 69.1
GFRP 8 Seawater 45 1402.6 [84] 99.5
GFRP 8 Seawater 90 1298.1 [84] 92.09
GFRP 8 Seawater 135 1275.2 [84] 90.4
GFRP 8 Seawater 180 1152.9 [84] 81.7
BFRP 6 High-performance seawater sea sand concrete 21 1341 [81] 99.3
BFRP 6 Normal seawater sea sand concrete 63 352 [81] 26
BFRP 6 Alkaline 21 1385 [74] 99.1
BFRP 6 Alkaline 63 852 [74] 60.9
BFRP 6 Deionized water 42 1320 [74] 94.4
BFRP 6 Salt 42 1320 [74] 94.4
BFRP 6 Acid 42 1301 [74] 93.1
BFRP 7 Alkaline 42 1012 [75] 60.2
BFRP 8 Alkaline 30 1409 [75] 89.9
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Table 3. Cont.

Type Bar Diameter
(mm) Solution Days Tensile Strength

(MPa) Ref. Retention
(%)

BFRP 6 Alkaline 63 802 [85] 60.58
BFRP 12 Alkaline 21 1036 [85] 95.18

BFRP 6 High-performance seawater sea sand
concrete/20% 42 1276 [83] 94

BFRP 6 High-performance seawater sea sand
concrete/40% 63 586 [83] 43.2

BFRP 8 Alkaline 45 1194.7 [84] 91.9
BFRP 8 Alkaline 90 1148.9 [84] 88.4
BFRP 8 Alkaline 135 1078.5 [84] 82.9
BFRP 8 Alkaline 180 1008.6 [84] 77.6
BFRP 8 Seawater 45 1095.2 [84] 84.2
BFRP 8 Seawater 90 1028.5 [84] 79.1
BFRP 8 Seawater 135 998.7 [84] 76.8
BFRP 8 Seawater 180 984.8 [84] 75.7
CFRP 3 Alkaline 70 2476 [66] 96
CFRP 8 Alkaline 45 2059 [84] 99.03
CFRP 8 Alkaline 90 1966.6 [84] 94.5
CFRP 8 Alkaline 135 1928.8 [84] 92.7
CFRP 8 Alkaline 180 1720.5 [84] 82.7
CFRP 8 Seawater 45 1894.9 [84] 91.1
CFRP 8 Seawater 90 1758.7 [84] 84.5
CFRP 8 Seawater 135 1692.5 [84] 81.4
CFRP 8 Seawater 180 1638.3 [84] 78.8

Figure 1 depicts the retention of different FRP bars in different environmental solutions.
According to Table 3 and Figure 1, CFRP bars, regardless of the period, showed the highest
resistance to the alkaline environment, compared to BFRP and GFRP bars, in terms of
tensile strength. Contrary to saline and seawater solutions, GFRP bars, regardless of the
duration, were more durable in comparison with other types of FRP bars.
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Figure 1. Mean retention of different FRP bars in different environmental solutions, based on data 
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Figure 2 demonstrates the trendlines of the different FRP bars in different environ-
mental solutions. According to Figure 2, all types of FRP bars, under different environ-
mental conditions, experienced a downward trend. The trendlines of the BFRP bars’ re-
tention in alkaline and seawater solutions showed the lowest slope during the period. 
Contrary to BFRP bars in alkaline and seawater solutions, GFRP bars in seawater solutions 
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Figure 1. Mean retention of different FRP bars in different environmental solutions, based on data in
Table 3: (a) retention value of GFRP bars, (b) retention value of BFRP bars, and (c) retention value of
CFRP bars.

Figure 2 demonstrates the trendlines of the different FRP bars in different environmen-
tal solutions. According to Figure 2, all types of FRP bars, under different environmental
conditions, experienced a downward trend. The trendlines of the BFRP bars’ retention in
alkaline and seawater solutions showed the lowest slope during the period. Contrary to
BFRP bars in alkaline and seawater solutions, GFRP bars in seawater solutions showed the
biggest downward trend during the period.
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Figure 2. Scatter plot of tensile strength retention of different FRP bars in different environmental
solutions and their trendlines, based on data in Table 3.

3.2. Bonding of FRP Bars to the Concrete

The mechanical properties and the durability of FRP bars depends on the long-term
bond properties of the FRP bar and the concrete interface [1]. Furthermore, some critical
factors play a central role in the bond behavior, including the concrete strength, concrete
cover, and the concrete confinement provided by stirrup [51,86–89].

El Refai et al. [45] conducted an experiment to evaluate the bond behavior of BFRP bars
compared to GFRP bars. The experiment indicated that BFRP bars have 75% of the bond
behavior of GFRP bars, on average. Sharaky et al. [90] tried to assess the factors that play
an essential role in the bond behavior of near-surface-mounted FRP bars, experimentally.
The results showed that the capacity and the mode of failure of the specimens were
affected by the adhesive properties, the FRP bar’s size, and the bar surface treatment.
El-Nemr et al. [71] investigated the bearing of the bond-dependent coefficient of GFRP and
CFRP bars on standard- and high-strength concrete. It seems that the compressive strength
of concrete would not directly or significantly affect the bonding between non-steel bars
and concrete [91–93].

Apart from the bonding behavior of FRP bars under normal conditions, only a few
investigations have been carried out to evaluate the effects of environmental conditions on
the mechanical properties of FRP bars. El Refai et al. [94] investigated the bond strength
of BFRP bars under five different environmental conditions, namely, tap water, seawater,
elevated temperature, elevated temperature followed by tap water, and elevated temper-
ature followed by seawater. The tests showed that elevated temperature, up to 80 ◦C,
has infinitesimal effects on the bond strength of FRP bars, regardless of the fiber material.
Abed et al. [95] evaluated the effects of sunlight followed by seawater and sunlight alone
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on the bond strength of FRP bars. Investigations indicated that these conditions had no
effect on the bonding behavior of FRP bars and concrete.

Table 4 summarizes the results of the different environmental conditions on the bond
strength of FRP bars. Furthermore, Figure 3 indicates the mean value of the bond strengths
of different FRP bars, under different environmental conditions.
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Figure 3. Mean retention of different FRP bars in different environmental solutions, based on data in
Table 4: (a) retention value of GFRP bars, (b) retention value of BFRP bars, and (c) retention value of
CFRP bars.
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Table 4. Bonding behavior of FRP bars in different solutions.

FRP Type Bar Diameter (mm)
and Sizing Shape Solution Temperature Days Mean Value of Bond

Strength (MPa) Ref.

GFRP 10, Sand coating Seawater 23 60 14.73 [96]
GFRP 10, Sand coating Seawater 40 60 18.44 [96]
GFRP 10, Sand coating Seawater 60 60 16.29 [96]
GFRP 10, Sand coating Seawater 23 120 15.7 [96]
GFRP 10, Sand coating Seawater 40 120 14.7 [96]
GFRP 10, Sand coating Seawater 60 120 15.85 [96]
GFRP 10, Helical wrap Seawater 23 60 16.26 [96]
GFRP 10, Helical wrap Seawater 40 60 16.84 [96]
GFRP 10, Helical wrap Seawater 60 60 18.17 [96]
GFRP 10, Helical wrap Seawater 23 120 19.9 [96]
GFRP 10, Helical wrap Seawater 40 120 19.63 [96]
GFRP 10, Helical wrap Seawater 60 120 17.15 [96]
GFRP 10, Lugs Seawater 23 60 18.62 [96]
GFRP 10, Lugs Seawater 40 60 20.71 [96]
GFRP 10, Lugs Seawater 60 60 20.59 [96]
GFRP 10, Lugs Seawater 23 120 21.2 [96]
GFRP 10, Lugs Seawater 40 120 19.68 [96]
GFRP 10, Lugs Seawater 60 120 19.93 [96]
GFRP 12, Ribbed Seawater 60 30 18.46 [97]
GFRP 12, Ribbed Seawater 60 60 18.22 [97]
GFRP 12, Ribbed Seawater 60 90 16.44 [97]
GFRP 12, Ribbed Alkaline 60 30 18.74 [97]
GFRP 12, Ribbed Alkaline 60 60 18.3 [97]
GFRP 12, Ribbed Alkaline 60 90 18.17 [97]
GFRP 12, Ribbed Acid 60 30 20 [97]
GFRP 12, Ribbed Acid 60 60 17 [97]
GFRP 12, Ribbed Acid 60 90 13.74 [97]
BFRP 12, Deformed surface Alkaline 40 45 16.48 [98]
BFRP 12, Deformed surface Alkaline 50 45 21.4 [98]
BFRP 12, Deformed surface Alkaline 60 45 20.37 [98]
BFRP 12, Deformed surface Alkaline 40 90 10.64 [98]
BFRP 12, Deformed surface Alkaline 50 90 20.59 [98]
BFRP 12, Deformed surface Alkaline 60 90 20.78 [98]
BFRP 12, Deformed surface Alkaline 40 180 15.72 [98]
BFRP 12, Deformed surface Alkaline 50 180 19.24 [98]
BFRP 12, Deformed surface Alkaline 60 180 21.81 [98]
BFRP 12, Sand-coated Tap water 80 60 29.4 [97]
BFRP 12, Sand-coated Seawater 60 30 29.4 [97]
BFRP 12, Sand-coated Seawater 60 60 25.6 [97]
BFRP 12, Sand-coated Seawater 60 90 23.9 [97]
BFRP 12, Sand-coated Alkaline 60 30 26.2 [97]
BFRP 12, Sand-coated Alkaline 60 60 26.53 [97]
BFRP 12, Sand-coated Alkaline 60 90 24.3 [97]
BFRP 12, Sand-coated Acid 60 30 23.22 [97]
BFRP 12, Sand-coated Acid 60 60 22.92 [97]
BFRP 12, Sand-coated Acid 60 90 22.74 [97]
BFRP 8, Sand-coated Seawater 40 15 9.54 [99]
BFRP 8, Twined Artificial seawater 40 60 20.8 [100]
BFRP 8, Twined Artificial seawater 40 90 17.8 [100]
BFRP 13, Ribbed Artificial seawater 50 270 8.6 [99]
CFRP 8, Ribbed Seawater 25 30 24.56 [99]
CFRP 8, Ribbed Seawater 25 45 24.01 [99]
CFRP 8, Ribbed Seawater 40 15 26.24 [99]
CFRP 8, Ribbed Seawater 40 30 28.9 [99]
CFRP 8, Ribbed Seawater 40 45 31.25 [99]
CFRP 8, Ribbed Seawater 55 30 25.64 [99]
CFRP 8, Ribbed Seawater 55 45 23.13 [99]
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According to Table 4 and Figure 3, in terms of CFRP bars, the alkaline solution had a
greater effect on the bond strength of these types of bars, in comparison with the seawater
solution. In addition, the bond strength of BFRP bars in alkaline and seawater solutions
was almost equal to approximately 20 MPa, which was lower than the bond strength of
these types of bars in acid solutions. As for the GFRP bars, they were more resistant to
the alkaline solutions, compared to the seawater and acid solutions. Figure 4 displays
the scatter plot of the bond strengths of the different FRP bars in different environmental
solutions and their trendlines.
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Based on Figure 4, all types of FRP bars, under different environmental conditions,
experienced a downward trend. The trendlines of the GFRP bars in the seawater solutions
showed the lowest slope during the period. Contrary to the GFRP bars in seawater solutions,
the GFRP bars in acid solutions showed the most upward trend during the period.

4. Influence of Hybridization on Mechanical Properties of Composite Bars

The concept of the hybridization process refers to applying different materials in one
cross-section of an FRP bar to exert a pseudo-ductile behavior on fabricated hybrid FRP bars.
As the different materials used for fabricating hybrid FRP bars have a different ultimate
tensile strain, this leads to the ductility of fabricated FRP bars under tensile stress [44,101].
Research has shown that the use of steel materials for the fabrication of hybrid composite
bars can lead to better ductility, in comparison with fabricating hybrid composite bars by
only using different composite materials in one section of each hybrid composite bar. This
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is due to the ductile behavior of steel fibers [102]. The application of such a ductile material
for fabricating hybrid FRP bars affects the final behavior and ductility of the fabricated FRP bars.

4.1. Hybrid Effect on the Tensile Strength of FRP Bars

In tensile loading, FRP bars do not show plastic behavior. Composite yarns play an im-
portant role in the tensile strength of composite rebar. Wu et al. [103] found that composite
yarns with different yarn-to-resin proportions have different strengths. Ma et al. [47] com-
pared composite hybrid bars that were made of basalt fibers and steel bars that had seven
glass fiber-reinforced plastic bars, to investigate their tensile strength [47]. They observed
that the hybridized bars allowed a more balanced tensile behavior, which improved the
ultimate tensile strength by 47%, in comparison with steel rebar. You et al. [104] tested three
types of hybrid bars. E-glass fibers and carbon fibers were used to develop hybrid bars.
The results indicated that the ultimate tensile strength increased by up to 5.4%. Cui and
Tao [105] developed a new core-shell model of the hybrid composite bar. In this section,
steel and glass fibers were randomly dispersed across the cross-section of the core, where
Twaron and carbon fibers were placed within the shell. This specimen revealed a tensile
strength of 628 MPa, which was 156% of that of steel bars. Seo et al. [102] developed three
types of hybrid bars. The tensile performance of the recently developed hybrid bar was
experimentally evaluated. The test indicated that the hybrid bar had 85% of the tensile
strength of the GFRP bar. Won et al. [106] developed three types of hybrid bars, in which
aramid fibers, glass fibers, and carbon fibers were utilized as yarn. Table 5 summarizes
the effects of the hybridization process on the tensile behavior of FRP bars and shows the
improvement of the tensile strength compared to the steel ST37 bar.

According to Table 5, the volume of the steel materials used for the fabrication of
the hybrid composite bars had an adverse effect on the ultimate tensile strength of the
fabricated hybrid composite bars. This was due to the lower tensile strength of the steel
materials in comparison with the composite fibers.

Figure 5 demonstrates the effects of the hybridization process in improving the tensile
strength, in comparison with steel bars. This was due to the use of high-tensile strength
composite fibers, as opposed to steel material, for fabricating hybrid FRP bars. Considering
this figure, the effectiveness of this process in increasing the tensile strength was the most
evident when glass fiber and steel wire were combined. On the other hand, the combination
of steel bars and basalt fibers resulted in the least improvements in terms of tensile strength.

Sustainability 2022, 14, 8834 13 of 21 
 

 
Figure 5. Mean value of improvement in tensile strength by hybridization process, based on data in 
Table 5, compared with steel bars. 

4.2. Hybrid Effect on the Modulus of Elasticity of FRP Bars 
One of the disadvantages of composite bars is their low modulus of elasticity. At high 

stresses, the low elasticity modulus in these bars (approximately 70GPa for GFRP, which 
is approximately 33% of steel) has shown high strains too, which causes early concrete 
failure in the compression block of the flexural members. This section explores the effects 
of the hybrid process on the modulus of elasticity in composite bars. 

There are three methods to measure the elastic modulus of hybrid bars. The first 
method uses Equation (1) to measure this property for hybrid composite bars [101], as 
follows: 𝐸 = (𝑃1−𝑃2)(𝜀1−𝜀2)𝐴𝑅𝑒𝑏𝑎𝑟  (1)

where 𝐸  is the elastic modulus of the hybrid bar (Pa), 𝑃  and 𝑃  represent the ap-
plied loads at 50% and 25% of the ultimate load, respectively (N); 𝜀  and 𝜀  denote the 
strains at 50% and 25% of the ultimate load, respectively; and 𝐴   is the cross-sec-
tional area of the specimen (m2). 

The second method for measuring the elastic modulus of hybrid bars, which have 
been fabricated from steel and composite fibers, is by calculating the first slope of the 
stress–strain curve of hybrid composite bars [103]. 

The third method is not only utilized to estimate the tensile elastic modulus of hybrid 
composite bars but also to estimate the stress–strain relationship of these types of bars, 
which is obtained from Equation (2) [113], as follows: 𝐸 = 𝐸11,𝑓𝑖𝑖 𝑉𝑓𝑖 + 𝐸𝑚𝑉𝑚  (2)

where E11 is Young’s modulus of fibers along the longitudinal axis; Vfi is the volume frac-
tion of fibers; Em is Young’s modulus of the matrix; and Vm is the volume fraction of the 
matrix. 

Ma et al. [47] compared the mechanical behavior of the hybrid composite bars made 
from basalt fibers and steel with full GFRP bars. The results showed that the hybridization 
process enhanced the modulus of elasticity of the bars, in comparison with the glass fiber-
reinforced plastic bars by up to 169%. 

You et al. [104] tested three different cross-sections of hybrid composite bars with 
two full composite sections of glass or carbon fiber. Two types of saturated vinyl ester and 
polyester resins were made for each of the hybrid bars. The results revealed that, 

0

50

100

150

200

250

Im
pr

ov
m

en
t i

n 
Te

ns
ile

 st
re

ng
th

 (%
)

Dufferent combinations of Steel-FRP bars

Steel bar-Glass fiber Steel wire-Glass fiber Steel bar-Basalt fiber

Steel Wire-Basalt Fiber Steel Bar-Carbon fiber

Figure 5. Mean value of improvement in tensile strength by hybridization process, based on data in
Table 5, compared with steel bars.



Sustainability 2022, 14, 8834 12 of 20

Table 5. Effects of hybridization process on the tensile and elastic modulus of FRP bars.

Materials Steel to
FRP Ratio

Diameter
Tensile

Strength
(MPa)

Improvement
in Tensile
Strength

Elastic
Modulus

(GPa)

Reduction
in Elastic
Modulus

Ref.
Core Crust

Steel rod Glass 9.2 13 1122.7 203.43 76.5 −61.75 [107]
Steel rod Glass 29.2 13 1269.7 243.16 94.9 −52.55 [107]
Steel rod Glass 51 13 1258.8 240.22 111.2 −44.4 [107]
Steel rod Glass 76.2 13 833.9 125.38 148.2 −25.9 [107]
Steel wire Glass 9.8 13 1150.3 210.89 62.6 −68.7 [107]
Steel wire Glass 31.8 13 1245.4 236.59 99.8 −50.1 [107]
Steel wire Glass 57 13 1323.2 257.62 126.9 −36.55 [107]
Steel wire Glass 70.3 13 1156.4 212.54 157.3 −21.35 [107]
Steel rebar Glass 57.2 13 669.5 80.95 110.1 −44.95 [107]
Steel wire Glass 10.9 16 1232.7 233.16 58.5 −70.75 [107]
Steel wire Glass 36.9 16 1238.6 234.76 97.2 −51.4 [107]
Steel wire Glass 60.2 16 1283.1 246.78 143.3 −28.35 [107]
Steel wire Glass 70.1 16 1361.8 268.05 155.1 −22.45 [107]
Steel rebar Glass 36.6 16 779.5 110.68 100.4 −49.8 [107]
Steel rebar GFRP 63.2 16 596.5 61.22 146.8 −26.6 [107]

Steel–Glass Carbon–
Twaron - 10 628 69.73 142.11 −28.945 [105]

Glass Carbon - 9.5 1191 221.89 - - [108]
Steel rebar Glass 9.5 13 762.1 105.97 53.7 −73.15 [101]
Dispersed
Steel wire Glass 30.8 13 688.2 86.00 98.3 −50.85 [101]

Steel rebar Glass 47.9 13 715.4 93.35 133.2 −33.4 [101]
Steel wire Glass 25 19 1217.9 229.16 90.8 −54.6 [102]
Steel wire Glass 42.3 19 1197.2 223.57 123.2 −38.4 [102]
Steel wire Glass 66.3 19 781.8 111.30 118.5 −40.75 [102]
Steel rebar Glass 24.7 19 899.6 143.14 88.8 −55.6 [102]
Steel rebar Glass 45.9 19 537.7 45.32 120.7 −39.65 [102]
Steel rebar Glass 67.9 19 466.6 26.11 148.2 −25.9 [102]

Carbon Glass - 12.7 1281 246.22 80.4 −59.8 [104]
Glass Carbon - 12.7 1083 192.70 78.9 −60.55 [104]

Dispersed
Carbon Glass - 12.7 1045 182.43 62.4 −68.8 [104]

Steel Glass 33.3 4 705.1 90.57 81.1 −59.45 [109]
Steel Glass 66.6 4 699.53 89.06 99.4 −50.3 [109]
Steel Basalt 66.6 4 779.66 110.72 110.4 −44.8 [109]
Steel Basalt 76 12 492.8 33.19 129.17 −35.415 [47]

Carbon Aramid - - 800 116.22 63 −68.5 [47]
Carbon Glass - - 550 48.65 43 −78.5 [47]
Carbon Aramid–Glass - - 503 35.95 37 −81.5 [47]

Steel bar Basalt 56.2 10 798.6 115.84 88 −56 [44]
Steel wire Basalt 28.2 10 1027 177.57 55 −72.5 [44]

Carbon Basalt - 10 869.7 135.05 106 −47 [44]
Steel Glass 56.2 10 798.6 115.84 96.41 −51.795 [59]
Steel Carbon - 10 950 156.76 129 −35.5 [110]
Steel Carbon - 14 825 122.97 132 −34 [110]
Steel Glass - 10 662 78.92 92 −54 [110]
Steel Carbon - 12 716 93.51 112 −44 [110]
Steel Carbon - 14 706 90.81 119 −40.5 [110]
Steel Glass - 12 623 68.38 77 −61.5 [110]
Steel Carbon - 16 700 89.19 118 −41 [110]
Steel Basalt - 12.5 480.9 29.97 97.8 −51.1 [111]
Steel Basalt - 15 718 94.05 108.9 −45.55 [112]

4.2. Hybrid Effect on the Modulus of Elasticity of FRP Bars

One of the disadvantages of composite bars is their low modulus of elasticity. At high
stresses, the low elasticity modulus in these bars (approximately 70GPa for GFRP, which is
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approximately 33% of steel) has shown high strains too, which causes early concrete failure
in the compression block of the flexural members. This section explores the effects of the
hybrid process on the modulus of elasticity in composite bars.

There are three methods to measure the elastic modulus of hybrid bars. The first
method uses Equation (1) to measure this property for hybrid composite bars [101], as follows:

Ehybrid =
(P1 − P2)

(ε1 − ε2)ARebar
(1)

where Ehybrid is the elastic modulus of the hybrid bar (Pa), P1 and P2 represent the applied
loads at 50% and 25% of the ultimate load, respectively (N); ε1 and ε2. denote the strains at
50% and 25% of the ultimate load, respectively; and Ahybrid bar is the cross-sectional area of
the specimen (m2).

The second method for measuring the elastic modulus of hybrid bars, which have
been fabricated from steel and composite fibers, is by calculating the first slope of the
stress–strain curve of hybrid composite bars [103].

The third method is not only utilized to estimate the tensile elastic modulus of hybrid
composite bars but also to estimate the stress–strain relationship of these types of bars,
which is obtained from Equation (2) [113], as follows:

EHybrid = ∑
i

E11, f iVf i + EmVm (2)

where E11 is Young’s modulus of fibers along the longitudinal axis; Vfi is the volume
fraction of fibers; Em is Young’s modulus of the matrix; and Vm is the volume fraction of
the matrix.

Ma et al. [47] compared the mechanical behavior of the hybrid composite bars made
from basalt fibers and steel with full GFRP bars. The results showed that the hybridization
process enhanced the modulus of elasticity of the bars, in comparison with the glass
fiber-reinforced plastic bars by up to 169%.

You et al. [104] tested three different cross-sections of hybrid composite bars with two
full composite sections of glass or carbon fiber. Two types of saturated vinyl ester and
polyester resins were made for each of the hybrid bars. The results revealed that, depending
on the resin used for fabricating the hybrid FRP bars, the hybrid process increased the
modulus of elasticity of the bars from 0.4% to 4.2%.

Cui et al. [105] conducted some research on hybrid bars, including steel. In these
experiments, three types of fibers, namely Twaron, glass, and carbon fibers, including steel,
were used to make the bars. The hybrid bars had 71% of the elasticity modulus of steel bars.

Seo et al. [101,102] conducted extensive research on comparing three types of hybrid
bars with different cross-sections (a total of 140 samples) made from steel and glass fibers.
The results indicated that the hybrid process could increase the modulus of elasticity of
composite bars by up to 250%.

Won et al. [106] carried out extensive research on hybrid bars using carbon, aramid,
and glass fibers and compared the results of the tensile test on these hybrid bars with those
of the GFRP bars. The results showed an increase in the elastic modulus of all three types
of composite bars, compared to GFRP bars, by up to 40%.

Hwang et al. [107] tested hybrid bars with 13 mm and 16 mm diameters, where
0.5, 1, and 2 mm steel wires were used. Note that the volume of steel wire in the sections
of the hybrid bars was 10%, 30%, 50%, and 70%. One of the essential results of this paper
was that increasing the steel volume in the cross-sections improved the overall elasticity
modulus of the hybrid composite bars. Table 5 outlines the effects of the hybridization
process on the elastic modulus of FRP bars.

Figure 6 demonstrates the effects of the hybridization process on the reduction in the
elastic modulus, compared to steel bars. Considering this figure, the reduction in the elastic
modulus by this process is maximized when basalt fibers and steel wire are combined.
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This behavior can be attributed to the low elastic modulus of basalt fibers in comparison
with other fibers. On the other hand, the combination of steel bars and carbon fibers
experienced the least reduction in terms of the elastic modulus. This may be due to the
high elastic modulus of carbon fibers compared to other fibers. Thus, the larger the volume
of composite materials used for fabricating hybrid composite bars, the more reduction will
occur in the ultimate elastic modulus of fabricated hybrid composite bars. This is due to
the lower elastic modulus of composite fibers, in comparison with steel materials. Thus,
the volume of the composite fibers has an adverse effect on the elastic modulus of hybrid
FRP bars.
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4.3. Effects of Environmental Conditions on Hybrid Bars

As mentioned in the previous sections, one of the significant disadvantages of steel
bars is their corrosion vulnerability. Corrosion in steel bars reduces the bonding of the
bars to the concrete, which lowers the mechanical performance of the concrete. To resolve
this problem, composite bars are being discussed. However, one of the barriers to the
usage of non-steel bars in construction is their sensitive and variable behavior against
environmental conditions. Previous research has shown that composites, especially GFRPs,
have the potential to be degraded regarding their mechanical properties under various
environmental conditions. To apply these materials as structural members, it is necessary
to conduct detailed studies on their behavior and alter their mechanical properties when
exposed to different environmental conditions.

Cui et al. [105] conducted a study on the corrosion of hybrid bars in an alkaline
environment and compared it with composite glass bars. As noted in the previous section,
one of the significant disadvantages of composite glass bars is their low resistance to
alkaline environments. The results of the hybrid rebar showed that these bars could retain
93.1% of their tensile strength after eight weeks in an alkaline environment, while GFRP
bars could maintain only 73.62% of their tensile strength.

Won et al. [60] performed extensive research on the durability of hybrid bars using
glass, aramid, and carbon fibers in physically and chemically aggressive environmental
conditions. Thus, to obtain the parameter to evaluate the durability of these bars under
aggressive environmental conditions, they used tensile and interfacial shear stress (ISS)
tests. The results of this paper indicate that bars made of carbon fiber and aramid have
higher resistance in aggressive environments than bars made of glass fibers.
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5. Conclusions and Research Needs

Using FRP materials as an alternative to steel bars is becoming more widespread,
especially in marine and coastal areas. This is due to their acceptable mechanical behavior,
such as their tensile strength, durability, and sustainability. A comprehensive review of the
effects of harsh environmental conditions and hybridization processes on the tensile, bond,
and elastic modulus of FRP bars have been discussed in this paper. Related conclusions
and further research are needed in this area and are proposed in the following sections.

5.1. Conclusions

1. In terms of tensile strength, CFRP bars are more resistant to alkaline solutions, in com-
parison to different FRP bars. Moreover, considering seawater and saline solutions,
GFRP bars show more durability.

2. Alkaline solutions have a greater effect on the bond strength of CFRP bars than
seawater solutions. In addition, the bond strength of BFRP bars in alkaline and
seawater solutions was almost equal to approximately 20 MPa, which was less than
their bond strength in acid solutions. As for GFRP bars, they were more resistant to
alkaline solutions than to seawater and acid solutions.

3. When fabricating hybrid composite fibers, the type of fibers used highly affects the
elastic modulus. For a high elastic modulus, carbon fibers are recommended; however,
for a low elastic modulus, glass and basalt are preferred.

4. Using the hybridization process can improve the tensile strength of fabricated hybrid
FRP bars by up to approximately 210%, in comparison with steel bars (ST37). On the
other hand, this process has an adverse effect on the elastic modulus of fabricated
hybrid FRP bars and can reduce this mechanical behavior by up to approximately 70%,
compared with steel bars’ (ST37) elastic modulus.

5. When it comes to hybrid composite bars made up of steel, the volume of the steel
material has a great influence on the final mechanical behavior. The more steel used,
the greater the ductility of the hybrid composite bars, as observed under tensile tests.
Using steel material for fabricating hybrid composite bars generally has a positive
effect on the elastic modulus of these bars. This behavior stems from the high elastic
modulus of steel materials in comparison with composite fibers.

6. Steel materials can have an adverse effect on the ultimate tensile strength of hy-
brid composite bars because composite fibers have a higher tensile strength than
steel material.

7. Tensile tests in the literature indicate that hybridization can improve the ductility of
composite bars. Such an increase in their ductility can be attributed to using different
materials in one cross-sectional area of the hybrid composite bars. Furthermore,
hybridization improves the elastic modulus of composite bars and when steel is used
the elastic modulus is linearly proportional to the steel’s volume.

8. Hybrid composite bars that were fabricated by steel materials show great pseudo-
ductile behavior, in comparison to hybrid composite bars composed of composite
fibers only. However, the former group shows lower durability compared to the latter
group because of the presence of steel in their cross-sectional area.

9. In the case of resin, epoxy and vinyl ester resins have a higher elastic modulus and
tensile strength, respectively. Current data also denotes that vinyl ester and epoxy
have better performance regarding their degradation level.

5.2. Research Needs

1. Only a limited number of studies have investigated the effects of different environ-
mental conditions on the compressive behavior of different FRP bars.

2. The performance of FRP bars in cyclic loads, along with harsh environmental condi-
tions remains obscure.

3. The effects of the bar size and diameter on the bond and tensile behavior of FRP bars
subjected to different solutions remains unclear.
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4. The influence of different fibers, such as aramid fibers, on the mechanical behavior of
hybrid FRP bars remains unclear.

5. The effects of the steel bars and steel wire diameter on the elastic and the tensile
strength of hybrid FRP bars have not been completely investigated.

6. The effects of environmental solutions on the durability of hybrid FRP bars are
still obscure.

7. The mechanical behaviors of FRP bars are deeply influenced by the types of fibers, the
manufacturing process, and the types of resin, etc. These agents cause uncertainties
in the final mechanical behavior of FRP bars. More research should be conducted to
produce FRP bars with the same mechanical behavior. Using probabilistic models and
machine learning methods can accommodate these uncertainties and provide further
insight into the behavior of FRP bars that are subjected to simulated environmental
conditions [114,115].
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