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Abstract: The sustainable design and construction of highways is indispensable for the economic
growth and progress of any region. Highway pavements are one of the core transportation infras-
tructures that require energy efficient materials with durability and an optimized lifecycle. Recent
research has proven that warm-mix asphalt pavements prepared with renewable bio-binders are
less susceptible to distresses. This study aims to investigate the resilience characteristics (load time,
deformation time) of soybean oil modified and unmodified warm-mix asphalts. Aggregates, asphalt
binders and asphalt mixes were characterized in accordance with the Superpave Mix Design Criteria.
The resilient modulus tests were performed as per ASTM D7369. The test results indicated that
the soybean-modified warm asphalt mix samples showed a 20% to 32% reduction in load-carrying
capacity than unmodified warm asphalt mixes. The values of the horizontal and vertical recoverable
deformations observed in the soybean-modified mixes were found to be 3% to 7% more than in the
unmodified mixes. A slight variability (up to 7%) was also observed in the time-response spectra, i.e.,
peak load, unload and rest periods, in the soybean-modified mixes compared with the unmodified
mixes. The Pearson correlation coefficient showed a significant trend between the resilient modulus
test parameters for the soybean-modified warm asphalt mixes, i.e., load deformation, load time
and deformation time. Soybean oil showed sustainable behavior as a bio-binder, particularly in the
deformation-time response for the warm asphalt mixes. However, the effect of soybean in terms of
the reduction of the load-carrying capacity from a sustainability perspective needs to be investigated.

Keywords: transportation infrastructures; sustainable pavements; durable pavements; warm-mix
asphalts; bio-binders; lifecycle

1. Introduction

Highway infrastructures have a significant influence on the socioeconomic devel-
opment of countries [1]; therefore, the investment in these infrastructures provides op-
portunities for the economic growth [2,3] and development of a region [4,5]. The lack
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of transport infrastructure in developing countries is one of the major hinderances to
accessing international markets [6], which highlights the global significance of transport
infrastructure [7]. Non-conventional and environmentally friendly materials are benefi-
cial for sustainable construction in the highway industry [8]. The use of these materials
enhances the quality of environmental control measures and the development of durable
transport infrastructures [9,10]. The sustainable construction of highways is indispensable
for the transportation of people and goods [11]. Researchers have taken the motivation of
using renewable resource-derived materials and utilized it in the modification of asphalt
binders. The asphalt mixes produced using these modified binders exhibit merits over
unmodified binders, such as emerging cost, environmental issues and the short supply
of materials based on nonrenewable resources [12,13]. The properties of asphalt binders
have a considerable effect on the performance of asphalt mixes [14]; therefore, to cope with
the evolving issues related to pavement distresses, the modification of asphalt binders is
indispensable. The utilization of bio-oils in asphalt binders reduces the stiffness of asphalt
mixes, and thereby lessens the cracks that develop in the pavements [15–17]. Soybean-
derived oil-based asphalt modification improves the mechanical properties of the asphalt
binders [18–22].

The asphalt mixes (wearing and base) used in pavement surfacing primarily comprise
asphalt binder and aggregates [23–28]. These asphalt mixes, termed as warm asphalt
mixes, are generally prepared between temperatures of 140 ◦C and 160 ◦C [18]. The key
objective of the warm asphalt mix design is to obtain the optimum combination of different
constituents of the mix [29]. The asphalt mixes exhibit viscoelastic, viscoplastic, and time-
and stress-dependent behavior when subjected to repeated loadings [23,30–34]. Therefore,
pavement surface courses face different distresses during their service life, such as rutting,
fatigue and thermal cracking. For the assessment of the viscoelastic behavior of asphalt
mixes, the resilient modulus test can be performed [35,36].

This study aims to evaluate the effects of soybean as a bio-binder on the resilient
modulus of warm asphalt mixes. The objectives of this research were: (1) to determine the
effects of soybean oil on the load time and deformation time behavior of warm-mix asphalt
during resilient modulus tests, (2) to compare the resilient modulus of soybean-modified
and unmodified warm asphalt mixes, and (3) to assess the correlation dependency trends
of different parameters (on each other) obtained in soybean-modified warm-mix asphalts’
resilient modulus tests and compare these with unmodified warm-mix asphalt trends.

2. Materials and Methods

Commercially available soybean was processed to extract the soybean oil used in this
study. The unmodified and soybean oil-based asphalt binders were selected in accordance
with the details reported by Tarar et al. [37]. Two unmodified asphalt binders, PG 64-16
and PG 64-22, were labeled as A and B, whereas the two soybean oil (5% by weight
of binder)-modified asphalt binders, PG 52-22 and PG 52-28, were categorized as Ao
and Bo, respectively. The binders’ characteristics such as high and low temperatures,
performance grade, viscosity, mass change, penetration, softening point, ductility, flash
and fire point were evaluated in laboratory based on respective American Association of
State Highway and Transportation Officials (AASHTO)/American Society for Testing and
Materials (ASTM) standards.

Two crushed aggregate sources, i.e., Sargodha (S) and Margalla (M), were used. The
properties of the aggregates such as soundness, water absorption, Los Angeles abrasion
(C131), elongation and flakiness index, fractured faces, uncompacted voids and sand
equivalent were determined in the laboratory as per prevailing ASTM standards.

The Superpave (Sup-1 and Sup-2) and National Highway Authority (NH-A and NH-B)
gradations were used. The wearing and base course mixes were designated as W1 to W24
and B1 to B8, respectively. The test matrix of the mixes is summarized in Table 1.
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Table 1. Summary of the test matrix of warm asphalt mixes.

Mix ID
Asphalt Binders Aggregates

Gradations
A Ao S M

W1
√

-
√

-

SUP-1
W2

√
- -

√

W3 -
√ √

-

W4 -
√

-
√

W5
√

-
√

-

NH-A
W6

√
- -

√

W7 -
√ √

-

W8 -
√

-
√

B Bo S M

W9
√

-
√

-

SUP-1
W10

√
- -

√

W11 -
√ √

-

W12 -
√

-
√

W13
√

-
√

-

NH-A
W14

√
- -

√

W15 -
√ √

-

W16 -
√

-
√

B Bo S M

B1
√

- -
√

SUP-2
B2 -

√
-

√

B3
√

- -
√

NH-A
B4 -

√
- -

Note: W = wearing course, B = base course, S = Sargodha aggregate, M = Margalla aggregate, Sup = Superpave,
NH = National Highway Authority.

To determine the optimum binder contents (OBC), the mixes were tested according
to the Marshall Mix test (ASTM D6926). The mixing and compaction temperatures of the
binders were determined using a rotational viscometer (RV) test at 135 ◦C to 165 ◦C before
the mix preparation. The binders were mixed with aggregate in a controlled mechanical
mixer at 145 ◦C. The Superpave gyratory compactor (SGC) was used to compact the
samples while keeping the air voids at 7 ± 0.5%. The indirect tensile strength and modulus
of resilience test specimens were fabricated at 101.6 mm (4 inches) in diameter and 63.5 mm
(2.5 inches) in thickness.

Modulus of resilience (MR) describes the mechanical properties of asphalt mixes
subjected to dynamic (traffic) loading. The asphalt mixes were tested according to ASTM
D6931 for indirect tensile strength determination before MR testing. The MR tests were
performed according to ASTM D7369 using an environmentally controlled universal testing
machine: Cooper Research Technology HYD25 II.

The test temperature was set at 25 ◦C. The load was applied in the form of a haversine
shape, i.e., (1− cos θ)/2, as shown in Figure 1.
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Figure 1. Typical load-time cycles with rest periods during MR tests.

The instantaneous deformation, total deformation, Poisson’s ratio and MR were calcu-
lated according to the equations below.

Y = a + bx, (1)

where Y is deformation value, x is time and a and b are regression constants.

Y = a +
b
x

(2)

where Y is deformation value, x is time and a and b are regression constants.

µ =
I4 − I1 ×

(
δv
δh

)
I3 − I2 ×

(
δv
δh

) , (3)

where µ is Poisson’s ratio, I1, I2 I3 and I4 are constants and δv and δh are vertical and
horizontal recoverable deformations, respectively.

MR =
PCyclic

δht
(I1 − I2δ) , (4)

where MR is resilient modulus, PCyclic is the cyclic load applied to the specimen and t is the
thickness of the specimen.

3. Results and Discussion

The physical properties of the soybean oil are summarized in Table 2a. The properties
of the asphalt binders are shown in Table 2b.



Sustainability 2022, 14, 8832 5 of 13

Table 2. (a) Soybean oil physical properties [22]. (b) Summary of unmodified and soybean oil-
modified asphalt binders’ properties [22].

(a)

Description Soybean Oil

Flash point (◦C), ASTM D93 320
Fire point (◦C), ASTM D93 354

Carbon residue (%), ASTM D189 0.37
Dynamic viscosity @ 25 ◦C(Pa.S), AASHTO T-316 0.062

Cloud point (◦C), ASTM D5551 −9
Melting point (◦C), ASTM D5440 0.5

(b)

Test Description Type of Asphalt Binder

A Ao B Bo

Original asphalt binder (high temperature ◦C)AASHTO T315 68.9 54.1 65.3 53.6
BBR (low temperature), AASHTO T313 −17 −24 −23 −29

Performance grades (PG), AASHTO M320 64–16 52–22 64–22 52–28
Viscosity (Pa.s) at 135 ◦C, AASHTO T316 0.462 0.250 0.445 0.242
Viscosity (Pa.s) at 165 ◦C, AASHTO T316 0.116 0.125 0.110 0.115

VTS −3.557 −1.890 −3.381 −2.053
Mass change (%), AASHTO T240 0.078 0.083 0.056 0.068

Penetration (1/10th mm), ASTM D5 43 49 65 68
Softening point (◦C), ASTM D36 54 47.1 48 45.6

Ductility (cm), ASTM D113 100+ 100+ 100+ 100+
Flash and fire point (◦C), ASTM D113 300 317 307 315

By the addition of soybean oil in binders A and B, few properties showed a decrease,
i.e., high and low temperatures, viscosity at 135 ◦C and softening point, while others
showed an increase, i.e., viscosity at 165 ◦C, mass change, penetration, flash and fire point,
viscosity temperature susceptibility (VTS). The performance grade after the addition of
soybean oil altered from 64–16 to 52–22 in one sample and 64–22 to 52–28 in another.
However, overall, the penetration grade of the asphalt binder remained unchanged with
the addition of the soybean oil to the asphalt binders. Soybean oil blended into the asphalt
binder proved to have significant potential as a bio-binder.

The physical properties of the aggregates are summarized in Table 3.

Table 3. Summary of aggregate physical properties [11].

Description
Type of Aggregate

Standards
S M

Water absorption (%) 0.95 0.93 ASTM C 127
Soundness (fine) (%) 3.8 4.5 ASTM C 88

Soundness (coarse) (%) 4.65 6.98 ASTM C 88
Los Angeles aberration (%) 23 24.5 ASTM C 131

Elongation index (%) 7 3 ASTM D 4791
Flakiness index (%) 9 5 ASTM D 4791
Fractured faces (%) 100 100 ASTM D 5821

Uncompacted voids (fine) (%) 45 44 ASTM C 1252
Sand equivalent (%) 71 74 ASTM D 2419

Note: S = Sargodha aggregate, M = Margalla aggregate.

The aggregates S and M have water absorption values of 0.95% and 0.93% respectively.
The water content in the aggregates affects the performance of the asphalt mixes [38–41].
The optimum binder content is affected by the higher water absorption of the aggre-
gates [42]. The soundness values of S and M are 3.8 and 4.5, respectively. The soundness
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value signifies the resistance of the aggregates against weathering. The Los Angeles abra-
sion values of S and M are 23 and 24.5, respectively, which specifies that the M aggregate
source has higher abrasive resistance than S. The long-term performance of the pavement
exposed to traffic loadings depends upon the abrasion resistance of the aggregates [43–45].
The elongation indices values of S and M are 7 and 3. The flakiness index values of S
and M are 9 and 5. Researchers have reported that higher values of elongated and flaky
particles reduce the strength of asphalt mixes [42,46,47]. The morphological properties of
the aggregates affect the performance of asphalt mixes [48–51]. The aggregate gradation
can also affect the modulus of resilience [52]. The uncompacted voids of S and M are 45
and 44, and the sand equivalents are 71 and 74, respectively. The engineering properties
of both M and S aggregates qualify the acceptable limits for possible use in warm asphalt
mixes. The consistency in the engineering properties of the aggregates is desirable, as it
influences the resilient modulus of sustainable pavement structures [53,54]. The resilient
modulus value affects the service life of the material and its resistance against pavement
damage [55,56]. The energy absorption of soybean-modified mixes can be calculated based
on the hysteresis loop response of samples under repeated loads [57]. This can be used as a
potential advantage of soybean-modified mixes by researchers in the future.

The results in Table 4 show a summary of the different parameters obtained in the
resilient modulus test, as illustrated in Figures 1 and 2.

Table 4. Summary of load, deformation and their corresponding time parameters obtained during
the resilient modulus tests.

Mix
ID

Load
(kN) Tm (s) T1 (s) T2 (s) Tc (s) T55 (s) TD (s) Te (s) Tf (s) δh

(mm)
δv

(mm)
δtotal
(mm)

W1 1198.29 0.11000 0.09900 0.09240 0.06600 0.05280 0.02310 0.02750 0.01870 0.00140 0.08550 0.08690
W2 1165.23 0.11100 0.09980 0.09310 0.06650 0.05320 0.02330 0.02770 0.01880 0.00141 0.08620 0.08760
W3 939.72 0.11900 0.10700 0.09970 0.07120 0.05700 0.02490 0.02970 0.02020 0.00145 0.09230 0.09380
W4 907.75 0.11900 0.10700 0.10000 0.07160 0.05730 0.02510 0.02980 0.02030 0.00146 0.09280 0.09430
W5 1222.13 0.11100 0.09980 0.09310 0.06650 0.05320 0.02330 0.02770 0.01880 0.00139 0.08620 0.08760
W6 1210.35 0.11100 0.09990 0.09320 0.06660 0.05330 0.02330 0.02770 0.01890 0.00140 0.08630 0.08770
W7 954.65 0.11200 0.10100 0.09420 0.06730 0.05390 0.02360 0.02810 0.01910 0.00144 0.08720 0.08860
W8 923.15 0.11600 0.10400 0.09700 0.06930 0.05540 0.02430 0.02890 0.01960 0.00145 0.08980 0.09120
W9 1096.39 0.11600 0.10400 0.09710 0.06940 0.05550 0.02430 0.02890 0.01970 0.00143 0.08990 0.09130

W10 1067.33 0.11600 0.10500 0.09790 0.06990 0.05590 0.02450 0.02910 0.01980 0.00144 0.09060 0.09200
W11 913.52 0.11900 0.10700 0.09980 0.07130 0.05700 0.02490 0.02970 0.02020 0.00147 0.09240 0.09390
W12 889.45 0.11900 0.10700 0.10000 0.07140 0.05710 0.02500 0.02980 0.02020 0.00148 0.09250 0.09400
W13 1132.23 0.11100 0.09990 0.09320 0.06660 0.05330 0.02330 0.02770 0.01890 0.00140 0.08630 0.08770
W14 1109.35 0.11700 0.10500 0.09790 0.07000 0.05600 0.02450 0.02920 0.01980 0.00141 0.09070 0.09210
W15 852.65 0.11600 0.10400 0.09700 0.06930 0.05540 0.02430 0.02890 0.01960 0.00144 0.08980 0.09120
W16 823.15 0.11700 0.10500 0.09790 0.07000 0.05600 0.02450 0.02920 0.01980 0.00145 0.09070 0.09210
B1 584.45 0.11600 0.10400 0.09700 0.06930 0.05540 0.02430 0.02890 0.01960 0.00146 0.09060 0.09200
B2 494.87 0.11900 0.10700 0.09980 0.07130 0.05700 0.02490 0.02970 0.02020 0.00149 0.09250 0.09400
B3 623.25 0.11700 0.10500 0.09790 0.07000 0.05600 0.02450 0.02920 0.01980 0.00147 0.08720 0.08860
B4 514.34 0.11700 0.10500 0.09790 0.07000 0.05600 0.02450 0.02920 0.01980 0.00151 0.08610 0.08760

Note: peak load time (Tm), straight portion of unloading path between points T1 and T2, 40% rest period (Tc), 55%
rest period (T55), 90% rest period (Td), time for 85% rest period (Te), time for 95% rest period (Tf) in measurement
units of second (s).

It is evident that the soybean-modified mixes took lesser loads (20% to 32%) than
unmodified mixes in both wearing and base-course samples. In addition, the peak load
time (Tm) was observed to be higher (2% to 7%) in the soybean-modified mixes than in the
unmodified mixes. The straight portion of the unloading path T1 and T2 values were lower
(2% to 7%) in the unmodified samples than in the soybean-modified samples. The time
spectra of the rest periods (Tc, T55, Td, Te and Tf) were also noted to be higher (2% to 7%) in
the soybean-modified samples than in the unmodified mixes. The soybean-modified mixes
exhibited improved horizontal (3% to 6%) and vertical (6% to 7%) recoverable deformations
in comparison to the unmodified mixes.
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Figure 2. Typical load-time and deformation-time plots for a single cycle with time parameter ex-
planation during MR tests, as per ASTM D7369. 
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Figure 2. Typical load-time and deformation-time plots for a single cycle with time parameter
explanation during MR tests, as per ASTM D7369.

The MR values for all wearing and base-course mixes were determined using Equation (4),
as shown in Figures 3–5.

The MR value of S for the Superpave and NH gradations was higher than for M.
Figure 3 shows that the MR values of S and M for the Superpave gradation and asphalt
binder A were 7049 MPa and 6802 MPa, respectively, while the soybean oil-modified
asphalt binders with Superpave gradations showed MR values of 5063 MPa and 4751 MPa,
respectively. The NH gradation exhibited an MR value for the asphalt binder A and S and
M of 7350–7224 MPa. On the other hand, the MR values for the Ao and NH gradation were
5086–4850 MPa.

Figure 4 indicates that the MR values of S and M for the Superpave gradation and B
asphalt binder were 6344 and 6129 MPa, respectively, while the Bo asphalt binders with
Superpave gradations showed MR values of 4823 and 4665 MPa, respectively. The NH
gradation exhibited MR values for the B asphalt binder and S and M of 6708 and 6512 MPa,
respectively. On the other hand, the MR values for the Bo asphalt binders and NH gradation
were 4538 and 4349 MPa, respectively.
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Figure 5 shows that the MR values of M for the Superpave gradation and B asphalt
binder were in the range of 3068 MPa, while the soybean oil-modified asphalt binders with
Superpave gradations exhibited MR values in the range of 2545 MPa. The NH gradation
exhibited an MR value for the asphalt binder B and M of 2911 MPa. On the other hand, the
MR value of the Bo asphalt binder with NH gradation was shown to be 2619 MPa.

Figures 3–5 show that the addition of soybean oil decreased the MR values of both
the wearing and base-course asphalt mixes.

Table 5 shows a summary of the statistical analysis carried out using the Origin
software from OriginLab®. The different parameters (load, Tm, T1, T2, . . . ) obtained in the
MR tests were correlated with each other to assess the trend and possible dependency. The
Pearson correlation and the respective significance values are summarized in Table 5. The
values of the Pearson correlation indicate the strength of the relationship (linear) between
the different variables. A positive Pearson correlation value indicates that two parameters
have a direct relationship—if one parameter increases, then the other increases, and vice
versa, while a negative Pearson correlation value indicates that both of the parameters have
an inverse relationship—if one parameter increases, then other decreases, and vice versa.
It can be seen from Table 5 that the load deformation, load time and deformation time
showed reasonable significance (shaded regions) for both the modified and unmodified
mixes, in line with typical trends, as shown in Figures 1 and 2.

Soybean oil showed sustainable behavior as bio-binder, particularly in the deformation-
time response for warm asphalt mixes. However, the effect of soybean in the reduction of
the load-carrying capacity from a sustainability perspective needs to be investigated. The
minimal requirement of MR for asphalt mixes was reported in ASTM 7369. An MR obtained
with the 5% addition of soybean as an asphalt binder falls well within the optimal acceptable
stiffness range, especially for pavements subjected to light to medium traffic loading.



Sustainability 2022, 14, 8832 10 of 13

Table 5. Summary of the statistical analysis on MR test parameters using Origin software
from OriginLab®.

Load
(kN) Tm (s) T1 (s) T2 (s) Tc (s) T55 (s) TD (s) Te (s) Tf (s) δh

(mm)
δv

(mm)
δtota
(mm)

Load(kN)
Pearson

Corr. 1 −0.37007 −0.35666 −0.35665 −0.35684 −0.35421 −0.36084 −0.36444 −0.34458 −0.88334 −0.34865 −0.35739

Sig. – 0.02631 0.03274 0.03275 0.03265 0.03405 0.03062 0.02887 0.03959 9.88321
× 10−13 0.03716 0.03236

Tm (s)
Pearson

Corr. −0.37007 1 0.99595 0.99612 0.99626 0.9957 0.99507 0.99679 0.99267 0.55234 0.9961 0.99579

Sig. 0.02631 – 0 0 0 0 0 0 0 4.78096
× 10−4 0 0

T1 (s)
Pearson

Corr. −0.35666 0.99595 1 0.9994 0.99893 0.99854 0.99748 0.99876 0.99733 0.54857 0.99885 0.99881

Sig. 0.03274 0 – 0 0 0 0 0 0 5.32052
× 10−4 0 0

T2 (s)
Pearson

Corr. −0.35665 0.99612 0.9994 1 0.9997 0.99944 0.99876 0.9992 0.9982 0.55396 0.99967 0.99966

Sig. 0.03275 0 0 – 0 0 0 0 0 4.5638
× 10−4 0 0

Tc (s)
Pearson

Corr. −0.35684 0.99626 0.99893 0.9997 1 0.99982 0.99922 0.99932 0.99856 0.55177 0.99987 0.99987

Sig. 0.03265 0 0 0 – 0 0 0 0 4.85904
× 10−4 0 0

T55 (s)
Pearson

Corr. −0.35421 0.9957 0.99854 0.99944 0.99982 1 0.99907 0.99919 0.99895 0.54864 0.99978 0.99978

Sig. 0.03405 0 0 0 0 – 0 0 0 5.3103
× 10−4 0 0

TD (s)
Pearson

Corr. −0.36084 0.99507 0.99748 0.99876 0.99922 0.99907 1 0.99882 0.99728 0.55504 0.99916 0.99893

Sig. 0.03062 0 0 0 0 0 – 0 0 4.42388
× 10−4 0 0

Te (s)
Pearson

Corr. −0.36444 0.99679 0.99876 0.9992 0.99932 0.99919 0.99882 1 0.99725 0.55563 0.99908 0.99898

Sig. 0.02887 0 0 0 0 0 0 – 0 4.34876
× 10−4 0 0

Tf (s)
Pearson

Corr. −0.34458 0.99267 0.99733 0.9982 0.99856 0.99895 0.99728 0.99725 1 0.54036 0.99856 0.9986

Sig. 0.03959 0 0 0 0 0 0 0 – 6.69006
× 10−4 0 0

δh
(mm)

Pearson
Corr. −0.88334 0.55234 0.54857 0.55396 0.55177 0.54864 0.55504 0.55563 0.54036 1 0.54437 0.55288

Sig. 9.88321
× 10−13

4.78096
× 10−4

5.32052
× 10−4

4.5638
× 10−4

4.85904
× 10−4

5.3103
× 10−4

4.42388
× 10−4

4.34876
× 10−4

6.69006
× 10−4 – 5.98648

× 10−4
4.70652
× 10−4

δv
(mm)

Pearson
Corr. −0.34865 0.9961 0.99885 0.99967 0.99987 0.99978 0.99916 0.99908 0.99856 0.54437 1 0.99982

Sig. 0.03716 0 0 0 0 0 0 0 0 5.98648
× 10−4 – 0

4. Conclusions

In this study, the effect of soybean oil on the resilient modulus of asphalt mixes was
evaluated using the ASTM D7369 procedure. The statistical analysis was performed to
check the correlations between the different parameters obtained in the MR tests. The
following conclusions can be drawn from the above findings:

1. The soybean-modified warm asphalt mixes showed a 20% to 32% reduction in load-
carrying capacity, i.e., for the resilient modulus than the unmodified warm asphalt mixes.

2. The values of the horizontal and vertical recoverable deformations remained comparable
(3% to 7%) in both the soybean-modified and unmodified warm asphalt mixes.

3. A slight variability (2% to 7%) was observed in the time-response spectra, i.e., peak,
unload, rest periods of loads and deformations during the resilient modulus tests
performed on the soybean-modified and unmodified warm asphalt mixes.

4. Each parameter obtained in the soybean-modified warm-mix asphalt resilient mod-
ulus test showed a reasonable correlation trend with the others, as depicted by the
Pearson coefficient. Hence, the trends of the soybean-modified and unmodified
warm-mix asphalt in resilient modulus tests are comparable.

5. Soybean oil showed sustainable behavior as bio-binder, particularly in the deformation-
time response for warm asphalt mixes. However, the effect of soybean in the reduction
of the load-carrying capacity from a sustainability perspective needs to be investigated.
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