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Abstract: Understanding the causes of poverty and identifying the transformation characteristics
of poverty is the basis for achieving poverty eradication. In order to clarify the availability of
construction land for poverty assessment, this paper explores the spatio-temporal synergy between
urban built-up areas and poverty transformation in Tibet. The following conclusions are drawn:
(1) the built-up areas in Tibetan counties have been growing from 2013 to 2019; (2) the proportion
of counties with very low and low levels of relative poverty have decreased significantly, and the
overall spatial characteristics of poverty are “high in the center and low in the surroundings”;
(3) the overall coupling-coordination level between the built-up areas and the relative poverty level is
gradually improving from the initial antagonism, and the relative-poverty index shows a significant
negative correlation with coupling coordination (correlation coefficient of −0.63); and (4) the built-up
area has a strong explanatory power for the spatial distribution of regional relative-poverty transfer
compared to temperature, precipitation, elevation, and slope. The results of the study prove that the
built-up area cannot be directly used as an indicator factor when constructing the multidimensional
relative-poverty model and, instead, should use urban built-up areas by region to participate in
poverty-estimation models based on regional economic development.

Keywords: Tibet; urban built-up area; relative poverty; coupling coordination; spatio-temporal synergy

1. Introduction

Poverty is a long-term problem facing human society, and it is closely related to the
economy, education, health care, the environment, and sustainable development. Under-
standing the causes of poverty and identifying the spatial characteristics of poverty are the
basis for achieving poverty eradication [1–3]. The Chinese government has been committed
to accelerating economic development for the benefit of the people, with poverty eradi-
cation as its key mission [4]. As the only contiguous and large-scale state-level extremely
impoverished region in China, Tibet has achieved remarkable results in poverty eradication
in recent years. Insisting on the combination of relocation and urban–rural integration is
one of the strategies for poverty eradication in Tibet, which has injected momentum into
the elimination of absolute poverty and solved the difficult problem of poverty eradication
in Tibet. By the end of 2019, 74 previously poor counties in Tibet have been removed from
the list. However, poverty is long-term and intergenerational in nature, so it is easy to
get rid of poverty or return to poverty in a short period of time. The research group of
Research on Tibetan Urban Poverty Population and Countermeasures explores the poverty
characteristics of the Tibetan urban population from the perspectives of historical change,
class, and family type, believing that there is a vicious cycle of poverty in Tibet [5–7]. Thus,
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exploring the main factors affecting poverty and formulating effective policies are the keys
to eliminating poverty.

The spatial characteristics of poverty eradication in different regions are also inconsis-
tent, and many new features of the Tibetan poverty problem are the result of the interaction
of complex factors such as the prominent manifestation of relative poverty, the unequal
distribution of the poor masses and the advantaged masses in terms of structure and
resources, market-consumption concepts, and the environment. Due to the specificity of
Tibet’s geographical location, the problem that “the local natural resources and environ-
ment cannot afford to feed its inhabitant” exists in the region, so the Chinese government
takes “relocating poor people from inhospitable areas” as a key measure to implement
the strategy of precise poverty alleviation [8]. The built-up areas of Tibetan towns and
cities have been accelerated by the relocation policy, and their development status is closely
related to the economy, environment, ecology, and human life in the region. Many scholars
have explored the potential of using spatial, spectral, and textural characteristics of built-up
areas, derived from remote-sensing imagery, to measure poverty. The research has shown
the usefulness of built-up-area changes for monitoring local-poverty transfers, especially
in exploring slums, the informal and formal settlements that are closely associated with
poverty [9–12]. Different built-up areas have different unique spatial and textural char-
acteristics (geometry, pattern, orientation, and spatial variability), so monitoring the area
and spatial changes of them can be important for regional-development planning, risk
assessment, and environmental nature management [13,14]. However, the small size of a
region’s built-up areas does not indicate that the living standards of the region’s residents
are poor, and it is unclear to what extent spatial and temporal variations in built-up areas
affect the poverty levels of the region and whether there are regional specificities in this
relationship. Clarifying the relationship between built-up areas and relative-poverty levels
in Tibet is important for identifying and monitoring regional-poverty shifts.

The definition of poverty has shifted from the single dimension of economic and
consumption level to multiple dimensions that encompass human development and the
natural environment, which reflect the close and complex relationship between poverty
eradication and other issues [15–17]. Up to now, there has been little research on the
pattern of geographical differentiation of poverty at home and abroad, and most previous
studies have focused on the causes of poverty from the economic and sociological per-
spectives, specifically from the perspectives of transaction costs, environmental changes,
and natural-resource data [18–20]. As of 2019, the 18 poverty measures mainly rely on
survey data, including related to income, consumption, health, education, and housing [21],
but obtaining such survey data is time-consuming and labor-intensive, has poor data
continuity, lacks spatial-distribution information, and is highly subjective, especially for
the Tibet Autonomous Region, where comprehensive identification and analysis cannot
be conducted [22]. Remote-sensing data have the advantages of being large-scale, with
multiple temporal resolutions, to achieve long-term and large-scale studies at low cost. The
rapid development of remote-sensing technology has provided an effective way to identify
and monitor poor areas. How to use remote-sensing data to capture economic, income,
health, and housing conditions to reflect poverty has become a hot topic of research [23–25].
Nighttime-light data have been widely used in the extraction of built-up areas. However,
whether the built-up areas extracted from remote-sensing images can be used to explore
poverty in Tibetan areas is a problem that has not been well addressed by the existing
research. In order to help construct a multidimensional poverty model by remote sens-
ing means realizing low-cost, large-scale, and long-time-series poverty remote-sensing
monitoring afterwards, so this paper extracts built-up areas based on remote-sensing data
combined with the Linear Spectral Mixture Model (LSMM) and the lighting-threshold
method, and then explores the spatio-temporal-coordination effect of urban built-up areas
and poverty transformation.

To explore the relationship between built-up areas and poverty, this paper selects
Tibet as the study area by using remote-sensing images to extract built-up areas and then
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carrying out correlation analysis with poverty transformation, to obtain the temporal and
spatial synergy between the two. This article analyzes the spatial- and temporal-variation
characteristics of the built-up area from 2013 to 2019, using a linear-regression-analysis
model based on Landsat8 data and nighttime-light data, Annual VNL V1 of NPP-VIIRS.
Subsequently, a multidimensional relative-poverty model was constructed and its spatial-
and temporal-variation characteristics were analyzed using regression models. Finally, the
spatio-temporal synergistic effects of urban built-up areas and poverty transformation are
analyzed by coupled coordination-degree models and geographic probes.

2. Materials and Methods
2.1. Study Areas and Data

The Tibet Autonomous Region is located on the world’s largest and highest plateau,
in southwestern China, with an average altitude of over 4000 m and a total area of
1,202,200 km2, known as “the roof of the world” and the “third pole of the earth”. Due to
the extremely fragile plateau ecosystem, the carrying capacity of Tibet for human activities
is much lower than that of other regions. The complex and diverse topography, landscape,
and ethnic culture have led to very scattered inhabitants and relatively backward infras-
tructure in most areas of Tibet, which greatly limit the sustainability of the livelihoods
of Tibetan farmers and herders and make it difficult to consolidate the effect of poverty
alleviation in the long run. As of 2015, the total population of Tibet is 3,239,700, and there
are 74 national-level poverty-stricken counties, with the poor population mainly distributed
in Changdu city, the Rikaze region, and the Naqu region [26]. According to the difficulty of
information surveying, data processing, and the shaking off of poverty, 36 counties in five
regions (Lasa, Rikaze, Naqu, Shannan, and Linzhi) that are out of poverty were selected as
the study area, and the study period is 2013 to 2019. The spatial distribution is shown in
Figure 1.
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Figure 1. Study area: Tibet.

The research data are divided into two parts, statistical data are one part and remote-
sensing data are the other part. The statistical data are obtained from the China County
Statistical Yearbook, China Urban Construction Statistical Yearbook, Tibet Provincial Statis-
tical Yearbook, Statistical Bulletin of Tibet Province, and annual statistics of counties in the
CEInet statistics database. The remote-sensing data include nighttime-light data, named
Annual VNL V1 of NPP-VIIRS andLandsat8 data, which were obtained from the National
Oceanic and Atmospheric Administration (NOAA) and the United States Geological Sur-
vey (USGS), respectively. In addition, the time frame is from 2013 to 2019. The annual
average nighttime-light data with a spatial resolution of 500 m is selected for this paper.
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Landsat 8 data are with a spatial resolution of 30 m and a return period of 16 d, and the
auxiliary-validation data are Google Earth high-resolution remote-sensing images with a
spatial resolution of 1 m or 0.5 m. The data of county-level administrative-area divisions
are obtained from the China Basic Geographic Information Data.

2.2. Research Methodology

In order to explore the spatio-temporal coordination effect of urban built-up area and
poverty transfer, this paper has to extract the area of urban built-up area and construct
the poverty index first. Therefore, the research methodology of this study is divided into
three modules (Figure 2): (1) built-up-areas’ extraction module (based on the combination
of LSMM and nighttime-lighting-threshold method to extract spatial information of built-
up areas in Tibetan towns); (2) multidimensional relative-poverty model-construction
module (using Game Theory (GT) combined with Analytical Hierarchy Process (AHP) and
Entropy Value Method (EVM) for subjective and objective assignment, adding time-series
weighting method to construct multidimensional relative-poverty model); (3) analysis
module (based on linear-regression models to analyze the spatial- and temporal-variation
characteristics of urban built-up areas and relative poverty and to explore the spatial- and
temporal-coordination effects of urban built-up areas and poverty transformation using
coupling-coordination-degree model and geographical detector).

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 23 
 

Geological Survey (USGS), respectively. In addition, the time frame is from 2013 to 2019. 
The annual average nighttime-light data with a spatial resolution of 500 m is selected for 
this paper. Landsat 8 data are with a spatial resolution of 30 m and a return period of 16 
d, and the auxiliary-validation data are Google Earth high-resolution remote-sensing im-
ages with a spatial resolution of 1 m or 0.5 m. The data of county-level administrative-area 
divisions are obtained from the China Basic Geographic Information Data. 

2.2. Research Methodology 
In order to explore the spatio-temporal coordination effect of urban built-up area and 

poverty transfer, this paper has to extract the area of urban built-up area and construct 
the poverty index first. Therefore, the research methodology of this study is divided into 
three modules (Figure 2): (1) built-up-areas’ extraction module (based on the combination 
of LSMM and nighttime-lighting-threshold method to extract spatial information of built-
up areas in Tibetan towns); (2) multidimensional relative-poverty model-construction 
module (using Game Theory (GT) combined with Analytical Hierarchy Process (AHP) 
and Entropy Value Method (EVM) for subjective and objective assignment, adding time-
series weighting method to construct multidimensional relative-poverty model); (3) anal-
ysis module (based on linear-regression models to analyze the spatial- and temporal-var-
iation characteristics of urban built-up areas and relative poverty and to explore the spa-
tial- and temporal-coordination effects of urban built-up areas and poverty transfor-
mation using coupling-coordination-degree model and geographical detector). 

 
Figure 2. Flowchart of the proposed method. 

2.2.1. Urban Built-Up-Areas Extraction Module 
Nighttime-lighting data are widely used for the extraction of built-up areas, but there 

are problems of low resolution, ‘light spillover’, and susceptibility to scattering from road 
lights and water surfaces [27,28]. Building composition index (BCI), normalized difference 
impervious surface index (NDISI), etc., are more convenient to extract buildings, but bare 
soil and water bodies are confused with buildings, and the overall classification accuracy 

Figure 2. Flowchart of the proposed method.

2.2.1. Urban Built-Up-Areas Extraction Module

Nighttime-lighting data are widely used for the extraction of built-up areas, but there
are problems of low resolution, ‘light spillover’, and susceptibility to scattering from road
lights and water surfaces [27,28]. Building composition index (BCI), normalized difference
impervious surface index (NDISI), etc., are more convenient to extract buildings, but bare
soil and water bodies are confused with buildings, and the overall classification accuracy
is not high [29–31]. LSMM solves the problem of mixed-image elements by obtaining
the end-element components and can solve the problem of confusing water bodies with
buildings. However, due to the similar composition of bare soil and building end elements
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cannot be well distinguished [32]. This paper proposes to combine the LSMM with the
nighttime-lighting-threshold method to extract the built-up area, which solves the problems
of low resolution and confusion between bare soil and building end elements. The specific
method is as follows:

(1) Linear Spectral Mixture Model (LSMM)

LSMM can obtain information on the abundance of substances in multispectral or
hyperspectral images based on the spectral characteristics of the substance, solving the
problem of feature mixing [33,34]. LSMM assumes that the reflectivity of each pixel in
the image is a linear combination of the reflectivity of each substance in the pixel or the
endmember spectrum [35,36]. This is expressed as:{

Riλ = ∑n
k =1 fkirkλ + ξiλ

∑m
k =1 fki = 1

0 ≤ fki ≤ 1 (1)

where Riλ is the spectral reflectance of the i-th pixel in the λ band; rkλ is the spectral
reflectance of the k-th basic component in the λ band; fki is the abundance of the k-th end
element in the i-th pixel; n is the number of end elements; and ξiλ is the residual error
value.

(2) Nighttime-lighting-threshold method

The extraction of urban built-up areas with nighttime-lighting data focuses on ob-
taining the best threshold and segmenting the nighttime-lighting data with this thresh-
old [37]. According to the accuracy, convenience, and automation of the method, the
spatial-comparison method based on statistical data is selected in this paper, and the me-
dian interannual mean of the light values is taken as the threshold value for extraction, and
the extracted area is corrected with the actual area until the difference between the two is
minimized, at which point the threshold value is the best threshold value (Table 1).

Table 1. Nighttime-lighting-data thresholds.

Year Threshold

2013 0.2569
2014 0.1525
2015 0.3289
2016 0.3992
2017 0.1874
2018 0.3556
2019 0.1935

LSMM was modified to make it suitable for Landsat data type. Matlab language was
changed into Javascript language supported by Google Earth Engine (GEE) platform. The
study area was divided into four land use categories: buildings, vegetation, water bodies
and others. The distribution map of building coverage in the study area was obtained
(taking the Sangzhuzi District of Rikaze as an example, Figure 3a). As shown in Figure 3a,
the mixing of buildings and bare soil was serious. Therefore, the LSMM was combined
with the Nighttime lighting threshold method to reduce the influence of bare soil on the
extraction of buildings by using the characteristics of nighttime-lighting data. The results
are shown in Figure 3b.
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2.2.2. Multidimensional Relative-Poverty-Construction Module

The “Outlines of the China Rural Poverty Alleviation and Development Program
(2011–2020)” requires scientificity, importance, comparability, typicality, data availability,
and policy orientation for precise poverty alleviation [38,39]. The selection of the multi-
dimensional poverty dimension refers to the multidimensional poverty-indicator system
proposed by Wang Yanhui et al. [6,16,40] and the existing main factors (natural and socio-
economic factors) affecting poverty. Economic, social, and natural factors play a key role in
the sustainable development of human and land resources [41], so select three dimensions:
economic [18,42–44], social [6,16,42,43], and natural [6,45,46]. In addition, based on the
research objectives and data accessibility, three dimensions were combined with regional
poverty-reduction policies to construct a multidimensional relative-poverty-index system
containing a total of 18 indicators in 8 vectors, as shown in Table 2.

Table 2. Multidimensional poverty-evaluation-index system.

Dimension Orientation Indicator Description AHP
Weights

EVM
Weights

GT
Weights

Economic
dimension

Economic
development

Per capita Gross Domestic Product
(GDP) (RMB)

Reflecting the macroeconomic
situation of the region [44] 0.1461 0.0844 0.0439

Residents’ deposits (RMB) Reflecting the economic sustainability
of rural households [47] 0.0962 0.0305 0.0603

Investment and
consumption

Per capita local budget income
(RMB)

Measuring the revenue capacity and
level of government [18] 0.0273 0.0366 0.0231

Industrial
structure

Second industrial output (RMB)
Reflecting the economic income of the

county’s processing and
manufacturing industry [42]

0.0559 0.0461 0.1578

Output of the tertiary industry
(RMB)

Reflecting the income of the county’s
service economy 0.0559 0.0426 0.0715

Number of industries above scale
(RMB)

The greater the number of factories,
the greater the economic dynamics [43] 0.0314 0.0414 0.0578
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Table 2. Cont.

Dimension Orientation Indicator Description AHP
Weights

EVM
Weights

GT
Weights

Social
dimension

Social security

Number of social service
institutions (pcs)

Service coverage of the poor in favor
of poverty reduction [16] 0.0264 0.0552 0.0332

Proportion of employed persons
to total population (%)

Increasing the number of employed
persons can improve people’s

livelihood [42]
0.0264 0.0708 0.1100

Number of fixed telephone users
(person)

Number of durable goods reflecting
the poor [16] 0.0121 0.0308 0.0595

Number of street offices (pcs) Service security for the poor energy
[43] 0.0121 0.2612 0.0328

Infrastructure

Agricultural machinery power(w) The higher the mechanical power, the
lower the poverty level [48] 0.0264 0.0381 0.0612

Per capita facility agriculture area
(km2)

Increasing the area of facility
agriculture and the efficiency of

agricultural production [45]
0.0664 0.0432 0.1018

Health and
medical

community

Number of beds per capita in
health institutions (berth) Reflecting the level of medical care [42] 0.0264 0.0365 0.0525

Educational
level

Number of primary and secondary
school students (person) Reflecting Education Resources [43] 0.1320 0.0411 0.0433

Natural
dimension

Resource
endowment

Per capita output of grain (kg)

The material resources of the
population, which play a crucial role
in the ability to withstand economic
shocks at the population level [46]

0.0629 0.0461 0.0862

Per capita oil production (kg) Same as above 0.0629 0.0315 0.0439

Per capita meat production (kg) Same as above 0.0629 0.0312 0.0603

Total area of crop sowing per
capita (km2) Same as above 0.0629 0.0314 0.0231

To make the indicators comparable across different units, the extreme difference
normalization was used to normalize the indicators of different dimensions, the formula is:
X = (xmax−x)

(xmax−xmin)
, where x is the value of each indicator. Each indicator of all counties in a

fixed year is calculated according to the normalization formula and obtain the standardized
values of 18 indicators from 2013 to 2019. The fixed-index values of all counties are in the
range of 0–1, so the index values between counties are comparable, but the data between
different years are lack of comparability. In order to solve this problem, indicators are
assigned weights using a time series weighting approach to make them comparable.

The processed dimensionless indicators, are assigned to construct a multidimensional
relative-poverty-index model. First, AHP and EVM are used to calculate the weights and
combine the results of them using GT (Table 2), and then the normalized index value is
weighted by time-series weight, so that the years are comparable (Table 3). Finally, the
multidimensional relative-poverty model (Equation (10)) is used to multiply the processed
indicators and GT weights to obtain the multidimensional relative-poverty index. In order
to better demonstrate the spatial- and temporal-variation characteristics of relative poverty,
K-means clustering analysis was used to classify relative poverty degree into five levels,
according to the relevant literature [23,49,50]: non-poverty (0.0–0.1), slight poverty (0.1–0.2),
mild poverty (0.2–0.4), moderate poverty (0.4–0.6), and severe poverty (0.6–1). The weights
in Tables 2 and 3 are the example of Sangzhuzi district, and the calculation method is
the same for the remaining 35 counties and districts. The specific process is divided into
5 steps.
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Table 3. Time-series weights.

Year Time Series Weights

2013 0.2025
2014 0.1625
2015 0.1530
2016 0.2592
2017 0.2228
2018 0.1954
2019 0.2025

The first step is EVM, which is an analytical method to determine the weights of
indicators based on the degree of variation of each indicator value [51,52]. Assuming that
there are m indicators and n samples in the evaluation, where the contribution of the i-th
indicator Ai is under the j -th sample, Pij is shown in Equation (2):

Pij =
xij

∑m
i=1 xij

(2)

Use Ej to express the total contribution Ej of all scenarios to attribute Xj, as shown in
Equation (3):

Ej =
−∑m

i=1 Pij ln
(

Pij
)

ln m
(3)

In Equation (3), Ej tends to 1 when the contribution of each program is for an attribute
that converges; in particular, when all are equal, the weight of the attribute is 0. Therefore,
the size of the difference in the attribute values determines the size of the weight coefficient.

The attribute weights WJ are calculated, as in Equation (4):

WJ =
1− Ej

∑m
j =1 dj

(4)

The second step is the analytical hierarchy process (AHP), where the basic idea is to
build a judgment matrix from the scalar values obtained by comparing the importance
between two adjacent indicators in the sequence, so as to obtain the weights of each
evaluation indicator of AHP. This paper uses a 1–9 scale to construct the judgment matrix
of each layer [53].

The specific application process of AHP is as follows: first, construct a judgment matrix
A (the scale is based on Table 4), according to the established hierarchy, and normalize
the judgment matrix by columns to obtain aij, where aij=aij/ ∑n

k=1 akj(i, j = 1, 2, 3 · · · n);
then the normalized judgment matrix is summed by the row direction to obtain wi, the
vector wi is normalized according to the formula Wi=wi/ ∑n

k=1 wki(i = 1, 2, 3 · · · n) to obtain
Wi, and Wi is the AHP weight. Finally, in order to check the consistency of the matrix,
the consistency index is needed to calculate CI = λmax−n

n−1 , where the largest eigenroot

λmax = ∑n
j=1

(AW)i
nWi

. The closer the CI is to 0, the higher the consistency. To determine
priority of each variable, we need a judgment from an expert. The process of determining
the weights of indicators takes the top-level indicators as an example (as shown in Table 5),
and the weights of other layers are obtained in the same way.

Table 4. The scale of the judgment matrix and its meaning.

Scale Meaning

1 Both factors have the same importance when compared

3 The former is slightly more important than the latter, when compared to the two
factors
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Table 4. Cont.

Scale Meaning

5 The former is significantly more important than the latter, when compared to the
two factors

7 The former is more strongly important than the latter, when compared to the two
factors

9 The former is more extremely important than the latter, when compared to the two
factors

2, 4, 6, 8 The middle value of the above adjacent judgments

Countdown
If the ratio of the importance of factor i to factor j as aij then the ratio of the

importance of factor j to factor i is aji =
1
aij

Table 5. Determination method of index AHP weight.

Dimension Economic Social Natural Weights

Economic 1 1 2 0.4126
Social 1 1 1 0.3275

Natural 1/2 1 1 0.2599

The third step is GT-combination assignment, which is a mathematical theory and
method for studying phenomena with a struggle or competition nature [54]. The basic
principle is as follows: assume that there are L methods of assigning weights to evaluation
indicators, the corresponding set of basic weight vectors is wk =

{
wk1, wk2, . . . , wkj

}
,

(K = 1, 2, . . . , L) and the combination-weight coefficients are β = {β1, β2, . . . , βL}, if
L weight vectors are arbitrarily linearly combined as:

Wj = ∑L
k=1 βkWkj

T (5)

In order to seek consistency and compromise between different weights, the calculation
takes the minimization of the deviation of Wj and Wkj as the goal and optimizes the L
linear-weight-combination coefficients βk in Equation (5) to obtain the optimal weights Wj.
According to the matrix differential property, the most optimized linear-equation system
with the first-order-derivative condition is:W1W1

T · · · W1WL
T

...
. . .

...
WLW1

T · · · WLWL
T


β1

...
βL

 =

W1W1
T

...
WLWL

T

 (6)

Normalizing the optimal combination coefficient βk obtained by processing
Equation (6), we get β ∗k = βk/∑L

k =1 βk, and the corresponding j-indicator game-theoretic
combination assignment of the combination weights is:

W∗j = ∑L
k=1 β∗kWkj

T (7)

where the value of L is 2, W1 is EVM weight, and W2 is AHP weight.
The fourth step is to assign time-series weights, the socio-economic level of each city

varies significantly in different years, so the introduction of time-factor weights can make
the data comparable between years. The calculation is as follows:

GDPt =
gdpt

Gdp
(8)

Wt =
GDPt

∑ GDPt
(9)
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where Gdp is the total growth rate of Tibetan region from 2013 to 2019; gdpt is the annual
GDP growth rate; and the share of GDP growth rate as time-weight Wt.

The fifth step is to obtain the relative -poverty index by multiplying the indicator
weights derived from the game-theory-combination assignment with the indicator values.

F = ∑n
i yijW∗j (10)

where F is the relative-poverty index, the larger the F value is, the higher the poverty degree.
yij is the value of the j th indicator of county i; W∗j is the weight of the indicator; and n is
the number of county units.

2.2.3. Analysis Module

(1) Linear-regression model

The linear-regression model was used to analyze the spatial-temporal-variation char-
acteristics of urban built-up areas and multidimensional relative poverty. The regression
slope K is calculated using the least squares method.

K =
∑n

i=1

(
xi − 1

n ∑n
i=1 xi

)(
yi − 1

n ∑n
i =1 yi

)
∑n

i=1(xi − x)2 (11)

where, x is the time variable, y is the dependent variable representing the built-up area
or relative poverty, and n is the study period. K > 0 represents an increasing trend; K < 0
represents a decreasing trend.

(2) Coupling-coordination-degree model

To analyze the degree of interaction between built-up areas and relative-poverty
levels in poor counties, a coupling-coordination-degree model of urban built-up areas
and relative-poverty levels is constructed based on the concept of capacity coupling in
physics [55,56]. The coupling-coordination degree is used to analyze the level of coordi-
nated development of things, which can characterize whether the two systems are mutually
reinforcing or constraining each other at different levels [57,58]. For a better presentation
of the results, this paper refers to the study of related scholars and is combined with the
actual situation of this study [59–61], the middle-index-segmentation method is used to
classify the degree of coupled and coordinated development into six classes: serious imbal-
ance (0–0.2), moderate imbalance (0.2–0.4), mild imbalance (0.4–0.5), primary coordination
(0.5–0.6), moderate coordination (0.6–0.8), and good coordination (0.8–1.0). To calculate the
coupling-coordination degree, the coupling degree is first calculated with the following
equation:

C = 2 ∗
{

f (x)× f (y)

[ f (x) + f (y)]2

} 1
2

(12)

In Equation (12), C is the coupling degree between the built-up area of the town and
the relative-poverty level. The coupling-coordination degree is then presented with the
following equation to define the system’s overall-development level of them, the coupling-
coordination degree is then introduced with the following equation:

D =
√

C× T (13)

T = α× f (x) + β× f (y) (14)

In Equations (13) and (14), D is the coupled-coordinated-development degree, T is
the integrated-development index of built-up area and relative-poverty level, α and β are
defined as the weight values of built-up area and relative-poverty level, respectively, and
added together equal 1. Since built-up area and relative-poverty level are two independent
systems, take α = β = 0.5, respectively.
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(3) Geographical detector

Geographical detector can explore the spatial heterogeneity of a single variable or
detect whether the spatial distribution of two variables tends to be the same [62], and
are widely used in regional spatial heterogeneity and the evolution of spatial patterns of
geographic factors. The geographic detector has strong robustness and can identify the
driving degree of the combination of two factors by q-value. Since the average altitude of
Tibetan plateau is above 4000 m, and most of the deep-poverty areas are in areas with poor
natural conditions and fragile ecological environment. Despite the previous adoption of
various capital operation and anti-poverty measures, some of the population in the region
still cannot get rid of poverty. Even if we ignore economic and social factors such as system,
policy, education, and resources, the impact of natural geography on poverty is still a major
problem that cannot be avoided. This paper selects the built-up area and four factors that
can represent the physical geography to analysis the mutual driving effects of two factors
on relative poverty as shown in Table 6. Referring to previous studies, the relative poverty
is taken as the dependent variable (Y), while the independent variables are composed of
the built-up area per capita (X1), temperature (X2), precipitation (X3), elevation (X4), and
slope (X5).

Table 6. Selection of geographic-detector factors.

Variables Name Meaning Classification Criteria

Y Relative poverty The relative poverty of each county

Classification according to the
natural discontinuity

taxonomy

X1 Built-up area per capita Built-up area per capita of each county
X2 Temperature The annual average temperature of each county
X3 Precipitation The total annual precipitation of each county

X4 Elevation The average elevation of each county based on the zoning
statistics tool

X5 Slope Calculation of slope from focus statistics

The degree of influence of different influencing factors on regional differences in
poverty is measured by factor probes [63], and the driver of poverty heterogeneity q is
introduced, and q is calculated as in Equation (15):

q = 1− 1
n∂2

L

∑
h=1

nh∂2
h (15)

where L is the stratification of the independent variable X, n is the total number of samples
in the study area, and nh is the number of samples in stratum h; ∂2

h is the variance of
stratum h poverty; ∂2 is the variance of poverty in the study area, and the value range of
q is [0, 1], but the closer the value is to 1, the greater the influence of the factor on the spatial
differentiation of poverty; when the value of q is 0, the factor X is independent of poverty.

3. Results
3.1. Evaluation of the Spatial and Temporal Patterns of Urban Built-Up Area

The linear-regression model is used to regress the area of built-up areas in Tibetan
cities and towns from 2013–2019 to derive the trend values (K) of the change in the area
of built-up areas in Tibet between those years, as seen in Figure 4a. From Figure 4a, the
results show that the built-up areas of counties in Tibet as a whole are growing (K > 0), and
the top five counties with faster growth are Sagya county (1.7168), Gangba county (0.9984),
Sangzhuzi district (0.8848), Bayi district (0.7512), and Karuo district (0.5302). The spatial
distribution of Figure 4b shows that most of the cities with faster development are in the
city of Rikaze (red part), but the built-up surrounding areas are developing more slowly
(blue area). The cities of Changdu and Nagqu have developed slowly. On the whole, the
growth trend of built-up area in the eastern region is more obvious and shows a trend of
aggregation.



Sustainability 2022, 14, 8773 12 of 22

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 23 
 

in the city of Rikaze (red part), but the built-up surrounding areas are developing more 
slowly (blue area). The cities of Changdu and Nagqu have developed slowly. On the 
whole, the growth trend of built-up area in the eastern region is more obvious and shows 
a trend of aggregation. 

 
Figure 4. Trend values of built-up area from 2013 to 2019: (a) statistical map of county trend value; 
(b): distribution map of county trend value. 

3.2. Spatial- and Temporal-Evolution Characteristics of Multidimensional Relative Poverty in 
Tibet 

The temporal-evolution characteristics of the relative-poverty level in Tibetan coun-
ties are shown in Figure 5. Overall, the percentage of counties with severe poverty and 
moderate poverty significantly decreased between 2013 and 2019. The inter-annual trend 
value (K) is −0.20 in counties with severe poverty and −3.27 in counties with moderate 
poverty. The proportion of counties with mild poverty increased significantly (K = 3.08). 
The proportion of slight-poverty and non-poverty counties increased slightly, and the an-
nual-variation-trend value is 0.1 and 0.3, respectively. These all indicate that the relative 
poverty level of Tibetan counties is increasing. 

Figure 4. Trend values of built-up area from 2013 to 2019: (a) statistical map of county trend value;
(b) distribution map of county trend value.

3.2. Spatial- and Temporal-Evolution Characteristics of Multidimensional Relative Poverty in Tibet

The temporal-evolution characteristics of the relative-poverty level in Tibetan counties
are shown in Figure 5. Overall, the percentage of counties with severe poverty and moderate
poverty significantly decreased between 2013 and 2019. The inter-annual trend value (K) is
−0.20 in counties with severe poverty and −3.27 in counties with moderate poverty. The
proportion of counties with mild poverty increased significantly (K = 3.08). The proportion
of slight-poverty and non-poverty counties increased slightly, and the annual-variation-
trend value is 0.1 and 0.3, respectively. These all indicate that the relative poverty level of
Tibetan counties is increasing.
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value.

From the perspective of spatial divergence (Figure 6), there is a decreasing trend of
poverty in adjacent counties of non-poverty counties, indicating that the counties with
better economy can drive the development of the surrounding counties. In 2019, the
counties in slight poverty and non-poverty include Sangzhuzi district and Bayi district,
and no county is in severe poverty. However, there are still 38.89% of counties in moderate
poverty, including Suo county, Leiwuqi county, Baqing county, etc. Besides, the relative-
poverty level showd aggregation characteristics, with the central region showing mild
poverty and slight poverty, while most of the surrounding counties show moderate poverty.
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3.3. Spatio-Temporal Synergy between Urban Built-Up Area and Relative-Poverty Transformation

In this paper, the coupling-coordination model is used to calculate the coordinated-
development degree of the two systems. From the temporal time dimension (Figure 7a),
the median, mean, minimum, and maximum values of coupling coordination between
urban built-up areas and relative poverty are increasing from 2013 to 2019. For instance, the
minimum value rose from 0.10 to 0.22, and the percentage of seriously imbalanced counties
is 0.00% from 2018 onwards. The proportion of mild imbalance showed a downward trend
(the inter-annual trend value is −0.69). The proportion of primary coordination, moderate
coordination, and good coordination showed an upward trend, with annual trend values of
0.69, 0.60, and 0.30, respectively, indicating that the overall level of coupling coordination
in Tibetan counties is gradually moving from the initial antagonism toward improvement.
By the end of 2019, the proportion of counties with primary coordination and above was
47.22%, but more than 50% counties were still faced with an imbalance between the urban
built-up areas and relative-poverty levels (Figure 7b).
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From the spatial dimension (Figure 8), the coupled coordination between urban built-
up areas and relative poverty in the counties in southwestern Tibet is significantly better
than in the counties of northeastern Tibet, among which the top-ranked counties are Gangba
county, Sangzhuzi district, Bayi district, Dingjie county, and Sagya county, showing a trend
of aggregation in the spatial location. The counties around Rikaze city have gradually
shifted from a moderate imbalance towards the coordination level. However, the coupling
coordination of Changdu city in the east is poor, and it has been in a state of imbalance, so
the change is not obvious, including for Jiangda county, Mangkang county, and Zuogong
county, which indicates that the area of urban built-up areas and the relative-poverty level
in some counties are still in a low level of mutual restriction.

Comparing the poverty-level map (Figure 6) with the coupled-coordination map
(Figure 8), the spatial-distribution characteristics are highly similar, where the poverty
levels of counties in coordination are roughly for mild poverty, slight poverty, and non-
poverty, so most of the counties in discoordination are in severe poverty and moderate
poverty. Linear-regression analysis is used to explore the relationship between the relative-
poverty index and the coupling-coordination degree. It can be seen from Figure 9 that the
fitting curve shows a downward trend, and the correlation coefficient is −0.6281. Therefore,
the relative-poverty index and the coupling-coordination degree are significantly negatively
correlated. It shows that the poverty level and coupling coordination interact to some extent,
and, overall, it shows that the poorer the region is, the worse the coupling coordination.
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3.4. The Degree of Influence of the Association between Urban Built-up Area and Relative Poverty

The q of the geographic detector is the explanatory power of the factor, and a larger
q value represents the stronger explanatory power of the spatial distribution of the cor-
responding variable for that silver. From the perspective of a single factor, the per
capita built-up area (q = 0.3103) is more powerful than the annual average temperature
(q = 0.1207), the annual total precipitation (q = 0.0066), the average altitude (q = 0.0170), and
the slope (q = 0.1221). From the perspective of double-factor interaction, the influence of
double-factor interaction is significantly higher than that of a single factor. The combination
of the built-up area (X1) and the remaining three factors (county average annual tempera-
ture X2, county total annual precipitation X3, and county slope X5) all influence regional
relative poverty in a strong, synergistic manner (Table 7). Among them, the built-up area
per capita and county average elevation (X1 ∩ X4, 0.5551), built-up area per capita and



Sustainability 2022, 14, 8773 16 of 22

slope (X1 ∩ X5, 0.5460), and built-up area per capita and precipitation (X1 ∩ X3, 0.5397).
The combination of countywide average annual temperature and countywide total annual
precipitation, as well as countywide average elevation and countywide slope, had little
effect on regional relative poverty. Thus, the per capita building area has a strong explana-
tory power for the spatial distribution of regional relative-poverty transfer, compared to
temperature, precipitation, elevation, and slope.

Table 7. Degree of synergy between explanatory variables and relative poverty.

Interaction Degree of the Relationship (q)

Temperature ∩ Precipitation 0.2227
Elevation ∩ Slope 0.2440

Built-up area per capita ∩ Temperature 0.4870
Built-up area per capita ∩ Precipitation 0.5397

Built-up area per capita ∩ Elevation 0.5551
Built-up area per capita ∩ Slope 0.5460

Precipitation ∩ Elevation 0.2483
Temperature ∩ Elevation 0.2054

Precipitation ∩ Slope 0.0170
Temperature ∩ Slope 0.2328

4. Discussion

Poverty eradication is a common task of human society and a difficult problem facing
China’s social and economic development at present. The outline of “China Rural Poverty
Alleviation and Development Program (2011–2020)” states that China will achieve the goal
of building a moderately prosperous society by 2020 [64], with the focus on the central
and western regions and the difficulty in the contiguous poverty-stricken zones. From
2013 to 2019, the socio-economic conditions in Tibet have significantly improved: there were
74 national poverty counties and 5369 poor villages in 2013, but the 628,000 people who
have been documented in poverty are all out of poverty, so the incidence of poverty was
reduced to zero by the end of 2019. As the only large-scale and contiguous poverty-
stricken region in China, Tibet has made remarkable achievements in poverty eradication
during these seven years, but there is still a lack of relevant studies on the Tibetan regions,
and there is a lack of sufficient theoretical support to describe poverty identification and
monitoring in the Tibetan regions, so this paper selects 2013–2019 as the research period to
analyze the spatial- and temporal-response mechanisms of urban built-up areas to poverty
transformation and discussion.

4.1. Combinatorial Weighting Method Based on Time-Series Weights

When constructing poverty models, most scholars utilize one or more methods for
analysis. AHP is the most widely used, as it combines qualitative and quantitative analysis,
but it is subjective and arbitrary [65,66]. EVM is more objective than AHP, but it ignores
the opinions of decision makers [67]. The processing results obtained by the integrated
grey evaluation method and data-envelopment analysis are susceptible to data extremes
and require avoidance of linearity between input variables before use [68,69]. Game
theory integrates the relationship between indicators, takes into account both subjective
and objective weights, and enables the optimization of weights [67]. However, these
related studies rarely involve long time-series poverty monitoring. The formation and
development of poverty is a long-term process, so long time-series poverty monitoring
can help to understand the causes of poverty and formulate corresponding policies to
eliminate poverty. Based on this, this paper proposes to use long time-series data for
analysis that can reflect the trajectory of poverty transfer, and the introduction of time series
weights can enhance the comparability of data between years, which can extend the study
of the problem from the static domain to the dynamic domain and make the results more
reasonable. Therefore, it is of great practical significance to explore poverty-development
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differences based on long time-series data to achieve regional-poverty eradication and
sustainable development.

4.2. Comparison of Urban Built-Up Area Results and Product Data

How to extract the spatial information of built-up areas accurately and quickly has
been a hot issue in remote sensing and urban planning. In this paper, LSMM and the light-
threshold method are combined to extract the urban-building area. In order to verify the
reliability of the results, we make a qualitative comparison between the results of this paper
and a global 30 m impervious-surface-map (MSMT_IS30) product, which was obtained
from the National Earth System Science Data Center, National Science and Technology
Infrastructure of China (Figure 10). The overall accuracy is 95.10%, the a kappa coefficient
is 0.90 for this product data [70]. Since the product data are only extracted from the
impervious surface of the world in 2015, the urban built-up area of Sangzhuzi district in
2015 is selected to compare the results. It can be seen from the diagram that the abundance
map of the urban built-up area calculated by us is basically consistent with the product
data. In addition, compared with the product data (Figure 10b), the results of this paper
(Figure 10a) are the percentage of single-pixel (30× 30 m2) buildings, so the results are
more in line with the actual situation. Since the focus of this paper is not to explore how
to extract buildings more accurately, there is no quantitative evaluation of the accuracy of
building extraction. The subsequent study will extract long time series of built-up areas of
Tibetan towns, based on the current method combined with the multi-source data.
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4.3. Analysis of the Spatio-Temporal Synergy between Urban Built-Up Areas and Poverty
Transformation

Regional poverty is inextricably linked to the development condition of county areas,
due to ties between the economics, environment, ecology, and health. Urban built-up areas’
extraction can spatially describe the traces of urban development, while built-up areas’
growth is tied to regional population increase as well as corresponding changes in economic,
social, and environmental factors [13,71]. Identifying changes in county built-up areas has
important implications for poverty monitoring and identification. Previous studies have
focused on the impact of commercial buildings and infrastructure on poverty. Yang et al.
concluded that POI cost distance closely related to social and economic prosperity is one of
the main factors leading to poverty in Chongqing, and that POI cost distance is negatively
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correlated with poverty [17]. Ren et al. (2018a) showed that regional infrastructure has a
significant impact on poverty in China, and the improvement of infrastructure is positively
related to the living standard of residents [42]. However, few studies have explored the
overall built-up area, housing conditions, road construction, etc., which can also affect
people’s living standards and economic status. It is unclear what the impact of the overall
urban built-up area is on poverty, so the built-up area cannot be used directly as a factor to
construct the poverty index. Based on this, this paper discusses the spatial and temporal-
synergistic effect between urban built-up areas and poverty transformation.

By extracting the built-up area, the results show that the built-up area of Tibetan
counties shows a continuous increase from 2013 to 2019. From 2016 to 2020, Tibet will
implement a cumulative investment of RMB 15.95 billion in the construction of relocation
projects to alleviate poverty, for the construction of resettlement houses and supporting the
infrastructure in resettlement areas [8]. The implementation of the policy has accelerated
the expansion of built-up areas in Tibetan regions. In addition, the proportion of counties
with relatively severe poverty and moderate poverty in Tibet is decreasing year by year,
and significant achievements have been made in the fight against poverty and historic
elimination of absolute poverty [72].

The overall level of coupling coordination between urban built-up areas and relative
poverty is gradually better from the initial opposition. However, there are still counties in
uncoordinated state, which implies that the coordination phenomenon is not stable and may
delay the effect due to urban construction. In addition to the fact that poverty is influenced
by a variety of factors, it is closely related to economic growth, environmental protection,
ecological restoration, and sustainable use of resources [48]. Analysis of the impact of
built-up areas on poverty is by geographic detector, and we find that the influence of the
interaction of two factors is significantly higher than that of the single factor, where the built-
up area per capita and elevation are more influential than temperature and precipitation
on the spatial distribution of regional poverty. Relevant scholars have discussed the main
reasons for the differences in poverty in Tibet, including physical capital poverty and social
capital poverty. The poverty caused by physical capital includes regional differences and
natural conditions. Tibet has complex terrain, high altitude, inconvenient transportation,
and a closed market, which lead to the lack of obvious regional advantages in development.
Poverty caused by social capital includes urban development, rural-housing construction,
industrial parks, and transportation facilities, which are the main factors driving the
expansion of construction land. Industrial development and economic growth brought
about by the expansion of good construction land have largely promoted the transformation
of urban and rural development and poverty alleviation [12,73–75]. In addition, the inter-
annual variation characteristics of built-up areas based on time-series data have a greater
impact on poverty transformation than natural factors.

However, the corresponding relationship between the change in built-up area and
poverty cannot be described simply by a linear relationship, and the coupling coordi-
nation between the built-up area of urban areas and the relative poverty level, in up
to 50% of counties in Tibet by the end of 2019, is still in a state of disorder. Studies
have also shown that the impact of land expansion in built-up areas on poverty may be
dynamic [9–12]. By analyzing the spatial distribution relationship between relative poverty
and the coupling coordination, we find that the relative-poverty index is significantly
negatively correlated with the coupling coordination. The higher the relative-poverty level,
the worse the coupling coordination of the corresponding counties. This shows that the
expansion of county built-up areas with better development has a positive impact to some
extent, while the rapid expansion of county-construction land with higher poverty has little
impact on regional development.

4.4. Research Limitations and Future Work

Although regional built-up areas have a high impact on relative-poverty levels, poverty
is a complex and diverse system involving multiple dimensions, including not only natural
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and socio-economic development but also the willingness of farmers to struggle and the
organizational and managerial capacity of the government; so, in this study, it is difficult to
determine the extent of the specific impact of built-up areas on poverty relative compared
to other factors. Since 2007, Tibet’s fiscal spending efforts are much higher than the national
average and are five percentage points more than in 2014. For Tibet, with a more backward
economy and a single industrial structure, the finance is bound to increase the efforts to
support regional development. However, based on the perspective of policy paradox,
we believe that “policies such as national main functional areas and ecological barrier
construction will reduce development opportunities in Tibet and lead to the formation
of policy-based poverty, while compensation and subsidies can only play a short-term
and temporary role”. In order to prevent the return of poverty after being lifteed out of
poverty, it is necessary to monitor poverty dynamics on a large scale using time-series data
and develop innovative pathways. According to the conclusions of this paper, the next
research plan is based on the county’s economic development and thesub-regional county
built-up area, as one factors to build the long-term sequence of Tibet’s multidimensional
poverty map.

5. Conclusions

This paper attempts to established the relationship between urban built-up areas
obtained by remote-sensing images and regional poverty, to clarify the availability of built-
up areas in poverty assessment. Taking Tibet as the study area, the change of the built-up
areas was monitored from 2013 to 2019, and it was found that the built-up areas present an
overall growth trend. Among them, the built-up area of Rikaze city has increased faster
than Changdu city and Naqu city. Subsequently, the multidimensional relative-poverty
index was constructed, and the result shows that the proportion of counties with severe
poverty (trend value is −0.2) and moderate poverty (trend value is −3.27) decreased in the
region. The poverty level shows the aggregation characteristics of a lower poverty level
in the central counties and a higher poverty level in the surrounding counties. In order to
have a contrast between urban built-up areas and relative poverty, coupling-coordination
analysis was used. In general, the level of coupling coordination between urban built-up
areas and relative poverty is gradually improving from the initial opposition, and the
relative-poverty index has a significant negative correlation with the coupling coordination
(the correlation coefficient is −0.63). The results of geographical detector also showed that
the factor groups that had a significant effect on relative poverty were the built-up areas
per capita and elevation (q = 0.5551), built-up areas per capita and slope (q = 0.5460), and
built-up areas per capita and precipitation (q = 0.5397). The combination of temperature,
precipitation, elevation, and slope have a small effect on regional relative poverty. The
interannual variability characteristics of built-up areas (q = 0.31) have a greater impact
than natural factors on poverty transformation. Although the built-up areas in Tibet have a
significant impact on relative poverty, they cannot be directly used as an indicator factor
when constructing a multidimensional relative poverty model. The subsequent study
should construct the model by region, according to the economic-development status of
the regions.
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