Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms
Abstract
:1. Introduction
1.1. Hydrolase Enzymes
1.2. Catalytic Process of Esterase Enzyme
2. Importance of Esterase in Bioeconomy
Sustainable Sources of Esterases
3. Specific Characteristic-Esterases for Cost-Effective Catalysis
S. No. | Required Characteristics | Producer Strain | References |
---|---|---|---|
1 | Methanol-stable esterase | Geobacillus subterraneus DSM13552 | Cai et al., 2020 [61] |
2 | Organic-solvent tolerance from a halotolerant isolate | Salimicrobium sp. LY19 | Xin et al., 2013 [62] |
3 | Thermostable carboxyl-esterase | Geobacillu kaustophilus HTA426 | Montoro-García et al., 2009 [63] |
4 | Thermostable esterase | Geobacillus thermoleovorans YN | Soliman et al., 2007 [64] |
5 | Highly thermostable esterase | Geobacillus sp. JM6 | Zhu et al., 2015 [65] |
6 | Esterase AhEst | Acetomicrobium hydrogeniformans | Kumagai et al., 2018 [66] |
7 | Cold-active esterase, (EstLiu) | Overexpressed in E. coli BL21 cloned from marine bacterium Zunongwangia profunda | Rahman et al., 2016 [67] |
8 | Cold-active esterase (Est11), solvent and salt tolerant | Marine bacterium Psychrobacter pacificensis, expressed in Escherichia coli | Wu et al., 2015 [68] |
9 | Cold-adapted and salt-tolerant esterase | Psychrotrophic bacterium Psychrobacter pacificensis | Wu et al., 2013 [69] |
10 | Cold-adaptation and salt-tolerance | Psychrotrophic bacterium Psychrobacter celer 3Pb1 | Wu et al., 2013 [70] |
11 | Cold-adapted esterase, 90% of its max activity at 0–5 °C (EstPc) | Psychrobacter cryohalolentis K5(T) over-expressed in E. coli BL21 | Novototskaya-Vlasova, et al., 2012 [71] |
12 | Cold-active esterase EstPc | Psychrobacter cryohalolentis K5(T). Expression of AT877 gene in E. coli BL21(DE3)pLysS | Petrovskaya, 2015 [72] |
13 | Cold-active esterase | Photobacterium sp. MA1-3 expressed in E. coli BL21 (DE3) | Kim et al., 2013 [73] |
14 | Cold-adapted esterase | Salinisphaera sp. P7-4 expressed in E. coli BL21 (DE3) | Kim et al., 2011 [74] |
15 | Cold-active esterase EstC | Streptomyces coelicolor A3(2) expressed in E. coli BL21 | Brault et al., 2012 [75] |
16 | EstA esterase 3HP4 | Psychrotrophic strain of Pseudoalteromonas sp. 643A | Brzuszkiewicz et al., 2009 [76] |
17 | Cold-active and Salt-tolerant esterase | Lactobacillus plantarum WCFS1 | Esteban-Torres et al., 2014 [77,78] |
18 | Cold-adapted esterase 4AO6 | Sourced from an Arctic intertidal metagenomic library | Fu et al., 2013 [79] |
19 | Cold-active esterase with improved Thermostability | Serratia sp. by directed evolution | Jiang et al., 2016 [80] |
20 | Cold-adapted esterase | Acinetobacter venetianus V28 expressed in E. coli BL21 | Kim, 2012 [81] |
21 | Cold-adapted Recombinant esterase | Pseudomonas mandelii expressed in E. coli BL21 | Lee et al., 2013 [82] |
22 | Cold-adapted esterase, MtEst45 | Microbulbifer thermotolerans DAU221 expressed in E. coli BL21 | Lee, 2016 [83] |
23 | Cold-active and anion-activated carboxyl esterase OLEI01171 3I6Y,3S8Y | Oleispira antarctica | Lemak et al., 2012 [84] |
24 | Cold-active GDSL-esterase | Pseudomonas sp. S9 expressed in E. coli TOP10 pBAD/Myc-HisA | Wicka et al., 2016 [58] |
25 | Cold-adapted esterase | Rhodococcus sp. AW25M09 expressed in E. coli BL21 | De Shanti et al., 2014 [85] |
26 | Cold-active 4V2I | Thalassospira sp. GB04J01 expressed in E. coli BL21 | De Shanti et al., 2016 [86] |
27 | Cold-adapted esterase | Alkalibacterium sp. SL3 | Wang et al., 2016 [87] |
28 | Temperature-sensitive esterase | Chaperone-based Escherichia coli | Ferrer et al., 2004 [88] |
29 | Extremophilic esterases | Sourced from Library of metagenomics | López-López et al., 2014 [89] |
30 | Cold-adapted Esterase | Pseudomonas mandelii EstK | Truongvan et al., 2016 [90] |
31 | Esterase with high activity and enantioselectivity | Escherichia coli | Godinho et al., 2011 [23] |
32 | Expressed in E. coli Rosetta-gami (DE3) pLysS | Photobacterium sp. Strain J15 | Shakiba et al., 2016 [91] |
33 | Cold-active pectin methyl esterase | Penicillium chrysogenum expressed in P. pastoris | Pan et al., 2014 [92] |
34 | Thermostable esterase | Thermo-acidophilic archaeon Sulfololeus tokodaii | Suzuki (2004) [60] |
4. Contribution of Esterase Enzyme to Bioeconomy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahiya, D.; Nigam, P.S. An overview of three biocatalysts of pharmaceutical importance synthesized by microbial cultures. AIMS Microbiol. 2021, 7, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patil, A.B.; Salgaonkar, P.N.; Shrivastava, S.; Nigam, P.S.N. Screening of Bacterial Isolates from Seafood-Wastes for Chitin Degrading Enzyme Activity. Chem. Eng. Proc. Techniq. 2020, 5, 1–8. [Google Scholar]
- Nigam, P.S. Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules 2013, 3, 597–611. [Google Scholar] [CrossRef]
- Chirumamilla, R.R.; Muralidhar, R.; Marchant, R.; Nigam, P. Improving the quality of industrially important enzymes by directed evolution. Mol. Cell. Biochem. 2001, 224, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Manuel, J.V.; Nigam, P.S. An Overview of Bioprocesses Employing Specifically Selected Microbial Catalysts for γ-Aminobutyric Acid Production. Microorganisms 2021, 9, 2457. [Google Scholar] [CrossRef]
- Drosos, A.; Boura, K.; Dima, A.; Karabagias, I.K.; Nigam, P.S.; Kanellaki, M.; Koutinas, A.A. Consolidated bioprocessing of starch based on a bilayer cell factory without genetic modification of yeast. Environ. Technol. Innov. 2021, 24, 101844. [Google Scholar] [CrossRef]
- Drosos, A.; Boura, K.; Dima, A.; Soupioni, M.; Nigam, P.S.; Kanellaki, M.; Koutinas, A. A cell-factory model of Saccharomyces cerevisiae based on bacterial cellulose without GMO for consolidated bioprocessing of starch. Food Bioprod. Process. 2021, 128, 202–214. [Google Scholar] [CrossRef]
- Kalogeropoulou, A.; Plioni, I.; Dimitrellou, D.; Soupioni, M.; Nigam, P.S.; Kanellaki, M.; Koutinas, A.A. Biosynthesis of fuel-grade ethanol from cellobiose by a cell-factory of non-GMO Saccharomyces cerevisiae/starch-gel-cellulase. Fuel 2021, 313, 122986. [Google Scholar] [CrossRef]
- Panagopoulos, V.; Dima, A.; Boura, K. Cell factory models of non-engineered Saccharomyces cerevisiae containing lactase in a second layer for lactose fermentation in one batch. Enz. Microb. Technol. 2021, 145, 109750. [Google Scholar] [CrossRef]
- Panagopoulos, V.; Boura, K.; Dima, A.; Karabagias, I.K.; Bosnea, L.; Nigam, P.S.; Kanellaki, M.; Koutinas, A.A. Consolidated bioprocessing of lactose into lactic acid and ethanol using non-engineered cell factories. Bioresour. Technol. 2021, 345, 126464. [Google Scholar] [CrossRef]
- Muralidhar, R.; Chirumamilla, R.R.; Nigam, P. Racemic resolution of RS-Baclofen using lipase from Candida cylindraceae. Proc. Forum. Appl. Biotechnol. 2001, 66, 227–232. [Google Scholar]
- Muralidhar, R.; Chirumamilla, R.; Ramachandran, V.; Marchant, R.; Nigam, P. Resolution of (RS)-Proglumide using Lipase from Candida cylindraceae. Bioorganic Med. Chem. 2001, 10, 1471–1475. [Google Scholar] [CrossRef]
- Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 2002, 26, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Faiz, O.; Colak, A.; Saglam, N.; Canakçi, S.; Beldüz, A.O. Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4. J. Biochem. Mol. Biol. 2007, 40, 588–594. [Google Scholar] [CrossRef][Green Version]
- Chirumamilla, R.R.; Marchant, R.; Nigam, P. Captopril, its synthesis from chiral intermediates. J. Chem. Technol. Biotechnol. 2001, 76, 123–127. [Google Scholar] [CrossRef]
- Kim, G.J.; Choi, G.S.; Kim, J.Y.; Lee, J.B.; Jo, D.H.; Ryu, Y.W. Screening, production and properties of a stereospecific esterase from Pseudomonas species-34 with high selectivity to (S)-ketoprofen ethyl ester. J. Mol. Catal. B Enzym. 2002, 17, 29–38. [Google Scholar] [CrossRef]
- Cushman, D.W.; Ondetti, M.A. Inhibitors of angiotensin-converting enzyme for treatment of hypertension. Biochem. Pharmacol. 1980, 29, 1871–1877. [Google Scholar] [CrossRef]
- Cushman, D.W.; Ondetti, M.A. Design of angiotensin converting enzyme inhibitors. Nat. Med. 1999, 5, 1110–1112. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, L.; Nagar, S.; Raina, C.; Parshad, R.; Gupta, V.K. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. J. Microbiol. Biotech. Res. 2012, 4, 1763–1770. [Google Scholar]
- Kumar, D.; Kumar, L.; Nagar, S.; Raina, C.; Parshad, R.; Gupta, V.K. Isolation, production, and application of lipase/esterase from Bacillus sp. strain DVL43. J. Microbiol. Biotech. Res. 2012, 2, 521–528. [Google Scholar]
- Henke, E.; Bornscheuer, U.T.; Schmid, R.D.; Pleiss, J. A Molecular Mechanism of Enantiorecognition of Tertiary Alcohols by Carboxylesterases. ChemBioChem 2003, 4, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Bhardwaj, K.K.; Gupta, R. Immobilization and applications of esterases. Biocatal. Biotransformation 2021, 40, 153–168. [Google Scholar] [CrossRef]
- Godinho, L.F.; Reis, C.R.; Tepper, P.G. Discovery of an Escherichia coli esterase with high activity and enantioselectivity towards 1, 2-O-Isopropylideneglycerol esters. Appl. Environ. Microbiol. 2011, 77, 6094–6099. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Finer, Y.; Jaffer, F.; Santerre, J. Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials 2003, 25, 1787–1793. [Google Scholar] [CrossRef] [PubMed]
- Panda, T.; Gowrishankar, B.S. Production and applications of esterases. Appl. Microbiol. Biotechnol. 2005, 67, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, R.; Gaspari, F.; Franzetti, L.; Molinari, F. Hydrolytic and synthetic activities of esterases and lipases of non-starter bacteria isolated from cheese surface. Ann. Microbiol. 2000, 50, 183–189. [Google Scholar]
- Ranjitha, P.; Karthy, E.; Mohankumar, A. Purification and Partial Characterization of Esterase from Marine Vibrio fischeri. Mod. Appl. Sci. 2009, 3, p73. [Google Scholar] [CrossRef][Green Version]
- Fan, X.; Liu, X.; Huang, R.; Liu, Y. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb. Cell Factories 2012, 11, 33. [Google Scholar] [CrossRef][Green Version]
- Degrassi, G.; Okeke, B.C.; Bruschiand, C.V. Purification and characterization of an acetyl xylan esterase from Bacillus pumilis. Appl. Environ. Microbiol. 1998, 64, 789–792. [Google Scholar] [CrossRef][Green Version]
- Meghji, K.; Ward, O.P.; Araujo, A. Production, purification, and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL365. Appl. Environ. Microbiol. 1990, 56, 3735–3740. [Google Scholar] [CrossRef][Green Version]
- Li, G.; Wang, K.; Liu, Y.H. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb. Cell Factories 2008, 7, 38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koseki, T.; Furuse, S.; Iwano, K.; Sakai, H.; Matsuzawa, H. An Aspergillus awamori acetylesterase: Purification of the enzyme, and cloning and sequencing of the gene. Biochem. J. 1997, 326, 485–490. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Politino, M.; Tonzi, S.M.; Burnett, W.V.; Romancik, G.; Usher, J.J. Purification and characterization of a cephalosporin esterase from Rhodosporidium toruloides. Appl. Environ. Microbiol. 1997, 63, 4807–4811. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Higerd, T.B.; Spizizen, J. Isolation of Two Acetyl Esterases from Extracts of Bacillus subtilis. J. Bacteriol. 1973, 114, 1184–1192. [Google Scholar] [CrossRef][Green Version]
- Higerd, T.B. Isolation of acetyl esterase mutants of Bacillus subtilis 168. J. Bacteriol. 1977, 129, 973–977. [Google Scholar] [CrossRef][Green Version]
- Shao, W.; Wiegel, J. Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl. Environ. Microbiol. 1995, 61, 729–733. [Google Scholar] [CrossRef][Green Version]
- Khalameyzer, V.; Fischer, I.; Bornscheuer, U.T.; Altenbuchner, J. Screening, nucleotide sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. 1999, 65, 477–482. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.-J.; Choi, G.-S.; Kim, S.-B.; Yoon, G.-S.; Kim, Y.-S.; Ryu, Y.-W. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr. Purif. 2006, 45, 315–323. [Google Scholar] [CrossRef]
- Aurilia, V.; Rioux-Dubé, J.-F.; Marabotti, A.; Pézolet, M.; D’Auria, S. Structure and Dynamics of Cold-Adapted Enzymes as Investigated by FT-IR Spectroscopy and MD. The Case of an Esterase from Pseudoalteromonas haloplanktis. J. Phys. Chem. B 2009, 113, 7753–7761. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.Y.; Lin, Y.F. Purification and characterization of an extracellular esterase from a moderately halophilic bacterium, Halobacillus sp. strain LY5. Afr. J. Biotechnol. 2012, 11, 6327–6334. [Google Scholar]
- Chen, M.B.; Liu, H.; Zhen, D.; Fang, S. Research on the esterification property of esterase produced by Monascus sp. Afr. J. Biotechnol. 2011, 10, 5166–5172. [Google Scholar]
- Rumbold, K.; Biely, P.; Mastihubová, M.; Gudelj, M.; Gübitz, G.; Robra, K.-H.; Prior, B.A. Purification and Properties of a Feruloyl Esterase Involved in Lignocellulose Degradation by Aureobasidium pullulans. Appl. Environ. Microbiol. 2003, 69, 5622–5626. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kaiser, P.; Raina, C.; Parshad, R.; Johri, S.; Verma, V.; Andrabi, K.I.; Qazi, G.N. A novel esterase from Bacillus subtilis (RRL 1789): Purification and characterization of the enzyme. Protein Expr. Purif. 2005, 45, 262–268. [Google Scholar] [CrossRef]
- von der Haar, B.; Schrempf, H. Purification and characterization of a novel extracellular Streptomyces lividans 66 enzyme inactivating fusidic acid. J. Bacteriol. 1995, 177, 152–155. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bannerman, E.N.; Nicolet, J. Isolation and characterization of an enzyme with esterase activity from Micropolyspora faeni. Appl. Environ. Microbiol. 1976, 32, 138–144. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lopes, J.L.S.; Yoneda, J.S.; Martins, J.M.; Demarco, R.; Jameson, D.M.; Castro, A.M.; Bossolan, N.R.S.; Wallace, B.A.; Araujo, A.P.U. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst). PLoS ONE 2016, 11, e0158146. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Torres, S.; Baigorí, M.D.; Swathy, S.L.; Pandey, A.; Castro, G.R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 2009, 42, 454–460. [Google Scholar] [CrossRef]
- Dong, H.; Secundo, F.; Xue, C.; Mao, X. Whole-Cell Biocatalytic Synthesis of Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter hemolyticus. J. Agric. Food Chem. 2017, 65, 2120–2128. [Google Scholar] [CrossRef]
- Gao, W.; Wu, K.; Chen, L.; Fan, H.; Zhao, Z.; Gao, B.; Wang, H.; Wei, D. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microb. Cell Factories 2016, 15, 41. [Google Scholar] [CrossRef][Green Version]
- Lehmann, S.C.; Maraite, A.; Steinhagen, M.; Ansorge-Schumacher, M.B. Characterization of a novel Pseudomonas stutzeri li-pase/esterase with potential application in the production of chiral secondary alcohols. Adv. Biosci. Biotechnol. 2014, 5, 1009. [Google Scholar] [CrossRef][Green Version]
- Kim, H.K.; Na, H.S.; Park, M.S.; Oh, T.K.; Lee, T.S. Occurrence of ofloxacin ester-hydrolyzing esterase from Bacillus niacini EM001. J. Mol. Catal. B Enzym. 2004, 27, 237–241. [Google Scholar] [CrossRef]
- Kim, Y.H.; Cha, C.J.; Cerniglia, C.E. Purification and characterization of an erythromycin-resistant Pseudomonas sp. GD 100. FEMS Microbiol. Lett. 2002, 210, 239–244. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Choi, Y.-J.; Lee, B. Culture conditions for the production of esterase from Lactobacillus casei CL96. Bioprocess Biosyst. Eng. 2001, 24, 59–63. [Google Scholar] [CrossRef]
- Dufour, J.P.; Bing, Y. Influence of yeast strain and fermentation conditions on yeast esterase activities. Brew. Dig. 2001, 76, 44–47. [Google Scholar]
- Topakas, E.; Kalogeris, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production and partial characterization of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation. Proc. Biochem. 2003, 38, 1539–1543. [Google Scholar] [CrossRef]
- Fernandez, J.; Mohedano, A.F.; Fernandez-Garcia, E. Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, Micrococcus sp. INIA 528. Int. Dairy J. 2004, 14, 135–142. [Google Scholar] [CrossRef]
- Sehgal, A.; Kelly, R. Strategic Selection of Hyper thermophilic Esterases for Resolution of 2-Arylpropionic Esters. Biotechnol. Prog. 2003, 19, 1410–1416. [Google Scholar] [CrossRef]
- Wicka, M.; Wanarska, M.; Krajewska, E.; Pawlak-Szukalska, A.; Kur, J.; Cieśliński, H. Cloning, expression, and biochemical characterization of a cold-active GDSL-esterase of a Pseudomonas sp. S9 isolated from Spitsbergen island soil. Acta Biochim. Pol. 2016, 63, 117–125. [Google Scholar] [CrossRef]
- Ewis, H.E.; Abdelal, A.T.; Lu, C.-D. Molecular cloning and characterization of two thermostable carboxylesterases from Geobacillus stearothermophillus. Gene 2004, 329, 187–195. [Google Scholar] [CrossRef]
- Suzuki, Y.; Miyamoto, K.; Ohta, H. A novel thermostable esterase from the thermo-acidophilic archaeon Sulfololeus tokodaii strain 7. FEMS Microbiol. Lett. 2004, 236, 97–102. [Google Scholar] [CrossRef]
- Cai, X.; Lin, L.; Shen, Y.; Wei, W.; Wei, D.-Z. Functional expression of a novel methanol-stable esterase from Geobacillus subterraneus DSM13552 for biocatalytic synthesis of cinnamyl acetate in a solvent-free system. BMC Biotechnol. 2020, 20, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Hui-Ying, Y. Purification and characterization of an extracellular esterase with organic solvent tolerance from a halotolerant isolate, Salimicrobium sp. LY19. BMC Biotechnol. 2013, 13, 108. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Montoro-García, S.; Martínez-Martínez, I.; Navarro-Fernández, J.; Takami, H.; García-Carmona, F.; Sánchez-Ferrer, A. Characterization of a novel thermostable carboxy-lesterase from Geobacillus kaustophilus HTA426 shows the existence of a new carboxylesterase family. J. Bacteriol. 2009, 191, 3076. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Soliman, N.A.; Knoll, M.; Abdel-Fattah, Y.R.; Schmid, R.D.; Lange, S. Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem. 2007, 42, 1090–1100. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, W.; Ni, H. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. J. Basic Microbiol. 2015, 55, 1219–1231. [Google Scholar] [CrossRef]
- Kumagai, P.S.; Gutierrez, R.F.; Lopes, J.L.S.; Martins, J.M.; Jameson, D.M.; Castro, A.M.; Martins, L.F.; DeMarco, R.; Bossolan, N.R.S.; Wallace, B.A. Characterization of esterase activity from an Acetomicrobium hydrogeniformans enzyme with high structural stability in extreme conditions. Extremophiles 2018, 22, 781–793. [Google Scholar] [CrossRef][Green Version]
- Rahman, M.A.; Culsum, U.; Tang, W.; Zhang, S.W.; Wu, G.; Liu, Z. Characterization of a novel cold-active and salt-tolerant esterase from Zunongwangia profunda. Enz. Microb. Technol. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, X.; Wei, L.; Wu, G.; Kumar, A.; Mao, T.; Liu, Z. A cold-adapted, solvent, and salt-tolerant esterase from marine bacterium Psychrobacter pacificensis. Int. J. Biol. Macromol. 2015, 81, 180–187. [Google Scholar] [CrossRef]
- Wu, G.; Wu, G.; Zhan, T.; Shao, Z.; Liu, Z. Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles 2013, 17, 809–819. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, S.; Zhang, H.; Zhang, S.; Liu, Z. A novel esterase from a psychrotrophic bacterium Psychrobacter celer 3Pb1 showed cold-adaptation and salt-tolerance. J. Mol. Catal. B Enzym. 2013, 98, 119–126. [Google Scholar] [CrossRef]
- Novototskaya-Vlasova, K.; Petrovskaya, L.; Yakimov, S.; Gilichinsky, D. Cloning, purification, and characterization of a cold-adapted esterase produced by Psychrobacter cryohalolentis K5T from Siberian cryopeg. FEMS Microbiol. Ecol. 2012, 82, 367–375. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petrovskaya, L.E.; Novototskaya-Vlasova, K.A.; Kryukova, E.A.; Rivkina, E.M.; Dolgikh, D.A.; Kirpichnikov, M. Cell surface display of cold-active esterase EstPc with the use of a new autotransporter from Psychrobacter cryohalolentis K5T. Extremophiles 2014, 19, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.O.; Heo, Y.L.; Nam, B.H.; Kim, D.G.; Jee, Y.J.; Lee, S.J.; An, C.M. Molecular cloning, purification, and characterization of a cold-adapted esterase from Photobacterium sp. MA1-3. Fish. Aquat. Sci. 2013, 16, 311–318. [Google Scholar]
- Kim, Y.-O.; Park, I.-S.; Kim, H.-K.; Nam, B.-H.; Kong, H.J.; Kim, W.-J.; Kim, D.-G.; Kim, K.-K.; Lee, S.-J. A novel cold-adapted esterase from Salinisphaera sp. P7-4: Gene cloning, overproduction, and characterization. J. Gen. Appl. Microbiol. 2011, 57, 357–364. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brault, G.; Shareck, F.; Hurtubise, Y.; Lépine, F.; Doucet, N. Isolation and Characterization of EstC, a New Cold-Active Esterase from Streptomyces coelicolor A3(2). PLoS ONE 2012, 7, e32041. [Google Scholar] [CrossRef][Green Version]
- Brzuszkiewicz, A.; Nowak, E.; Dauter, Z.; Dauter, M.; Cieśliński, H.; Długołęcka, A.; Kur, J. Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009, 65, 862–865. [Google Scholar] [CrossRef][Green Version]
- Esteban-Torres, M.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R. Characterization of a Cold-Active Esterase from Lactobacillus plantarum Suitable for Food Fermentations. J. Agric. Food Chem. 2014, 62, 5126–5132. [Google Scholar] [CrossRef][Green Version]
- Esteban-Torres, M.; Santamaría, L.; de las Rivas, B.; Muñoz, R. Characterization of a cold-active and salt-tolerant esterase from Lactobacillus plantarum with the potential application during cheese ripening. Int. Dairy J. 2014, 39, 312–315. [Google Scholar] [CrossRef][Green Version]
- Fu, J.; Leiros, H.K.S.; de Pascale, D.; Johnson, K.A.; Blencke, H.M.; Landfald, B. Functional and structural studies of a novel cold-adapted esterase from an Arctic in-tertidal metagenomic library. Appl. Microbiol. Biotechnol. 2013, 97, 3965–3978. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, S.; Gao, H.; Hu, N. Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution. BMC Biotechnol. 2016, 16, 7. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.-O. Gene Cloning and Characterization of a Cold-Adapted Esterase from Acinetobacter venetianus V28. J. Microbiol. Biotechnol. 2012, 22, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.; Hong, S.; Goo, B.; Lee, S.; Jang, S.-H. Cloning, Expression, and Characterization of a Recombinant Esterase from Cold-Adapted Pseudomonas mandelii. Appl. Biochem. Biotechnol. 2012, 169, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S. Isolation and Characterization of a Novel Cold-Adapted Esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front. Microbiol. 2016, 7, 218. [Google Scholar] [CrossRef] [PubMed]
- Lemak, S.; Tchigvintsev, A.; Petit, P.; Flick, R.; Singer, A.U.; Brown, G.; Evdokimova, E.; Egorova, O.; Gonzalez, C.F.; Chernikova, T.N. Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica. Biochem. J. 2012, 445, 193–203. [Google Scholar] [CrossRef][Green Version]
- De Santi, C.; Tedesco, P.; Ambrosino, L.; Altermark, B.; Willassen, N.P.; De Pascale, D. A New Alkaliphilic Cold-Active Esterase from the Psychrophilic Marine Bacterium Rhodococcus sp.: Functional and Structural Studies and Biotechnological Potential. Appl. Biochem. Biotechnol. 2014, 172, 3054–3068. [Google Scholar] [CrossRef] [PubMed]
- De Santi, C.; Leiros, H.-K.S.; Di Scala, A.; de Pascale, D.; Altermark, B.; Willassen, N.-P. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles 2016, 20, 323–336. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Q.; Lin, X.; Ng, T.B.; Yan, R.; Lin, J.; Ye, X. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci. Rep. 2016, 6, 19494. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Chernikova, T.N.; Timmis, K.N.; Golyshin, P.N. Expression of a Temperature-Sensitive Esterase in a Novel Chaperone-Based Escherichia coli Strain. Appl. Environ. Microbiol. 2004, 70, 4499–4504. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lopez-Lopez, O.; Cerdán, M.E.; Siso, M.I.G. New Extremophilic Lipases and Esterases from Metagenomics. Curr. Protein Pept. Sci. 2014, 15, 445–455. [Google Scholar] [CrossRef]
- Truongvan, N.; Jang, S.-H.; Lee, C. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK. Biochemistry 2016, 55, 3542–3549. [Google Scholar] [CrossRef]
- Shakiba, M.H.; Ali, M.S.M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Leow, T.C.; Leow, A.C. Cloning, expression and characterization of a novel cold-adapted GDSL family esterase from Photobacterium sp. strain J15. Extremophiles 2015, 20, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Tu, T.; Wang, L.; Luo, H.; Ma, R.; Shi, P.; Meng, K.; Yao, B. A novel low-temperature-active pectin methylesterase from Penicillium chrysogenum F46 with high efficiency in fruit firming. Food Chem. 2014, 162, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; Meng, K.; Bai, Y.; Shi, P.; Luo, H.; Wang, Y.; Yang, P.; Zhang, Y.; Zhang, W.; Yao, B. High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem. 2013, 141, 2974–2981. [Google Scholar] [CrossRef] [PubMed]
- Grajales-Hernández, D.A.; Ruiz, M.A.A.; Contreras-Jácquez, V.; Mateos-Díaz, J.C. Biotransformation of phenolic acids from by-products using heterogeneous biocatalysts: One more step toward a circular economy. Curr. Opin. Green Sustain. Chem. 2021, 32, 100550. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef][Green Version]
- Paulino, B.N.; Sales, A.; Felipe, L.; Pastore, G.M.; Molina, G.; Bicas, J.L. Recent advances in the microbial and enzymatic production of aroma compounds. Curr. Opin. Food Sci. 2020, 37, 98–106. [Google Scholar] [CrossRef]
- Felipe, L.D.O.; de Oliveira, A.M.; Bicas, J.L. Bioaromas—Perspectives for sustainable development. Trends Food Sci. Technol. 2017, 62, 141–153. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Delattre, M.; Haon, M.; Thibault, J.F.; Ceccaldi, B.C.; Brunerie, P.; Asther, M. A two-step conversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 1996, 50, 107–113. [Google Scholar] [CrossRef]
- Kroon, P.A.; Williamson, G.; Fish, N.M.; Archer, D.B.; Belshaw, N.J. A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur. J. Biochem. 2000, 267, 6740–6752. [Google Scholar] [CrossRef]
- Abualhasan, M.N.; Masri, M.Y.A.; Manasara, R.; Yadak, L.; Abu-Hasan, N.S. Anti-Inflammatory and Anticoagulant Activities of Synthesized NSAID Prodrug Esters. Scientifica 2020, 2020, 9817502. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Yu, X.; Ma, L.; Li, Y.; Sun, Y. Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase. Bioconjugate Chem. 2018, 29, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Jangi, S.R.H.; Akhond, M. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters. Process Biochem. 2022, 120, 138–155. [Google Scholar] [CrossRef]
S. No. | Enzyme | Producer Microbial-Strain | References |
---|---|---|---|
1 | Pyrethroid-hydrolysing enzyme | Recombinant E. coli | Fan et al., 2012 [28] |
2 | Acetyl xylan esterase | Bacillus pumilis | Degrassi et al., 1998 [29] |
3 | Carboxyl-esterase I and II | Bacillus subtilis NRRL 365 | Meghji et al., 1990 [30] |
4 | Pyrethroid-hydrolysing esterase | Metagenome | Li et al., 2008 [31] |
5 | Acetylesterase | Aspergillus awamori | Koseki et al., 1997 [32] |
6 | Esterases with hydrolytic and synthetic activities | Bacterial isolates from cheese surfaces | Gandolfi et al.,2000 [26] |
7 | Cephalosporin esterase | Rhodosporidium toruloides | Politino et al., 1997 [33] |
8 | Acetyl esterase | Bacillus subtilis | Higerd and Spizizen, 1973 [34] |
9 | Acetyl esterase | Mutants of Bacillus subtilis | Higerd, 1977 [35] |
10 | Acetyl xylan esterase I and II | Thermoanaero-bacterium sp. Strain JW/SL-YS485 | Shao and Wiegel, 1995 [36] |
11 | Esterase | Pseudomonas fluorescens | Khalameyzer et al., 1999 [37] |
12 | Esterase | E. coli EPI300 TM-T1R | Kim et al., 2005 [38] |
13 | Esterase | Anoxybacillus gonensis A4 | Faiz et al., 2007 [14] |
14 | Esterase | Pseudoalteromonas haloplanktis | Aurilia et al., 2009 [39] |
15 | Esterase | Halobacillus sp. strain LY5 | Li et al., 2012 [40] |
16 | Esterase | Monascus species | Chen et al., 2011 [41] |
17 | Feruloyl esterase | Aureobasidium pullulans | Rumbold et al., 2003 [42] |
18 | Esterase | Vibrio fischeri | Ranjitha et al., 2009 [27] |
19 | Esterase | Bacillus subtilis (RRL 1789) | Kaiser et al., 2006 [43] |
20 | Esterase | Bacillus sp. DVL2 | Kumar et. al., 2012 [19] |
21 | Esterase | Bacillus sp. DVL43 | Kumar et. al., 2012 [20] |
22 | Esterase | Streptomyces lividans 66 | von der Haar and Schrempf, 1995 [44] |
23 | Esterase | Micropolyspora faeni | Bannerman and Nicolet, 1976 [45] |
24 | Esterase (PmEst) | Petrotoga mobilis | Lopes et al., 2016 [46] |
25 | Esterase producing banana flavour in reaction | Bacillus licheniformis S-86 | Sebastián et al., 2009 [47] |
26 | Novel Esterase | From the DNA Library of Acinetobacter hemolyticus | Dong et al., 2017 [48] |
27 | Novel esterase | From a marine mud metagenomic library | Gao et al., 2016 [49] |
28 | Esterase for chiral secondary alcohols | Pseudomonas stutzeri | Lehman et al., 2014 [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahiya, D.; Singh Nigam, P. Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. Sustainability 2022, 14, 8673. https://doi.org/10.3390/su14148673
Dahiya D, Singh Nigam P. Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. Sustainability. 2022; 14(14):8673. https://doi.org/10.3390/su14148673
Chicago/Turabian StyleDahiya, Divakar, and Poonam Singh Nigam. 2022. "Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms" Sustainability 14, no. 14: 8673. https://doi.org/10.3390/su14148673