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Abstract: The green open vehicle routing problem with time windows has been widely studied to
plan routes with minimal emissions in third-party logistics. Due to the NP-hardness, the performance
of the general heuristics significantly degrades when dealing with large-scale instances. In this paper,
we propose a membrane-inspired hybrid algorithm to solve the problem. The proposed algorithm
has a three-level structure of cell-like nested membranes, where tabu search, genetic operators, and
neighbourhood search are incorporated. In particular, the elementary membranes (level-3) provide
extra attractors to the tabu search in their adjacent level-2 membranes. The genetic algorithm in
the skin membrane (level-1) is designed to retain the desirable gene segments of tentative solutions,
especially using its crossover operator. The tabu search in the level-2 membranes helps the genetic
algorithm circumvent the local optimum. Two sets of real-life instances, one of a Chinese logistics
company, Jingdong, and the other of Beijing city, are tested to evaluate our method. The experimental
results reveal that the proposed algorithm is considerably superior to the baselines for solving the
large-scale green open vehicle routing problem with time windows.

Keywords: membrane computing; P system; open vehicle routing problem; carbon emission;
tabu search

1. Introduction

The vehicle routing problem (VRP) introduced by Dantzig and Ramser in 1959 [1] is
most commonly studied for route planning in logistics. It is defined as the determination
of the routes along which a fleet of freight vehicles fulfills the needs of a set of customers
(or nodes) at various locations, with the objective of optimising the total cost. Thereafter,
a number of VRP variants have been proposed and investigated [2]. Among them, the
vehicle routing problem with time windows (VRPTW) has been widely explored, as more
practical factors are considered [3]. In this problem, each customer has to be served within
their own prescribed time interval, which is named the time window constraint [4].

The open vehicle routing problem with time window (OVRPTW) is a variant of the
VRPTW [5]. Compared to the VRPTW, vehicles in the OVRPTW are not required to return
to the depot after fulfilling the delivery. This phenomenon is quite popular in many
real-world scenarios, where vehicles may not need to return to the depot if they directly
finish after serving the customers, especially when a third-party company is delivering.
Considering the benefits of higher operation efficiency and the resource utilisation rate,
outsourcing freight shipping to third-party logistics companies may have considerable cost
savings. Currently, due to the extensive concern about environmental pollution, the logistics
industry needs to reduce greenhouse gas emissions [6] to achieve green and sustainable
transportation. The OVRPTW is further extended to the green OVRPTW (GOVRPTW), i.e.,
the objective of the studied problem is to minimise the total greenhouse gas emissions.

Sustainability 2022, 14, 8661. https://doi.org/10.3390/su14148661 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14148661
https://doi.org/10.3390/su14148661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3405-3317
https://orcid.org/0000-0002-1434-3202
https://doi.org/10.3390/su14148661
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14148661?type=check_update&version=1


Sustainability 2022, 14, 8661 2 of 22

The first solution to the open vehicle routing problem (OVRP) was proposed by
Bodin et al. [7] in 1983. In that study, a variant of the Clarke and Wright algorithm was
designed to develop open routes for airplanes. From then on, various heuristics and
metaheuristics have been developed to solve the OVRP. The most widely used are based
on a search algorithm, e.g., the tabu search [8], the neighbourhood-based search [9], and
the threshold accepting algorithm [10]. Meanwhile, bioinspired and population-based
metaheuristics have also been developed, such as the particle swarm optimisation [11], the
ant colony optimisation [12], and genetic and evolutionary computing [13].

Recently, Ashtineh and Pishvaee [14] evaluated the economic and environmental im-
pacts of alternative fuels in the VRP through measurement and quantification of the effects
for the emitted pollutant. Yu et al. [15] considered a heterogeneous fleet of vehicles to re-
duce carbon emissions in the green vehicle routing problem with time windows (GVRPTW).
Wang and Lu [16] presented a memetic algorithm with competition (MAC) to solve the
capacitated green vehicle routing problem. We investigated the fuel consumption in route
planning while considering the third-party logistics company, which was formulated based
on a comprehensive modal emission model [17]. Specifically, a hybrid tabu search algo-
rithm integrated with several neighbourhood search strategies was leveraged to solve this
problem. Although desirable performance was achieved in [17], there is still much room
for improvement, especially given that the GOVRPTW is of strong NP-hardness, where the
computation becomes prohibitively intractable as the problem scales up.

As a promising branch of the bioinspired intelligent optimisation approach [18],
membrane computing has been identified as an effective distributed and parallel model,
which is also known as the P system [19]. The theory and applications of the P system and
its variants provide a theoretical possibility to solve NP-complete problems in polynomial
time [20] and have been widely studied in various fields [21], such as ecosystem and
pedestrian behaviour, engineering computing and optimising, and so on. Motivated by
those successful applications, we expect that more effective optimisation algorithms could
be derived based on the P system for solving GOVRPTW, especially when integrated with
evolutionary algorithms. In this paper, we exploit a membrane-inspired hybrid heuristic
algorithm to solve the large-scale GOVRPTW to improve the performance over [17], which
was based on a hybrid tabu search. The main contributions of this paper are summarised
as follows.

(1) A novel three-level nested membrane structure is designed with respective algorithms.
To be specific, the skin membrane acts as the first level, where a genetic algorithm
is mainly exploited to search for solutions to the routing problems. Six adjacent
inner membranes act as the second level, where different tabu search algorithms are
exploited to find tentative solutions. The elementary membrane in each level-2 mem-
brane acts as the third level, where neighbourhood search operations are exploited to
facilitate adjusting the search direction of the corresponding level-2 membrane.

(2) Communication channels between the level-2 membranes and their inner membranes
are designed to exchange solutions to favourably find better solutions. Communi-
cation channels also exist between the skin membrane and the level-2 membranes,
where the crossover operator in the genetic operators is leveraged to retain satisfactory
gene segments. In addition, the tabu search with different attractors is adopted to help
the genetic algorithm escape from the local optimum. The convergence curve cliffs
after each communication justify the effectiveness of the communication channels.

(3) Experiments are carried out on large-scale real-world problem instances, i.e., a Beijing
100-nodes set and a Jingdong 1000-nodes instance. The results demonstrate that our
method significantly outperformed the hybrid tabu search [17], tabu search, and
genetic algorithm, respectively. In particular, the computation time observed when
comparing the performance on the Jingdong 1000-nodes instances and the Beijing
100-nodes instances further demonstrates the superiority of our algorithm in solving
large-scale problems.
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2. Related Work
2.1. Algorithms for the OVRP

Various heuristics and metaheuristics have been developed to solve the OVRP. There
is much research on tabu search, neighbourhood-based search, and the threshold accept-
ing algorithm. Brando [8] presented a novel tabu search algorithm for the open vehicle
routing problem. Derigs et al. [22] proposed an attribute-based hill climber heuristic,
which was a parameter-free variant of the tabu search principle. Fu et al. [23] presented
a new tabu search heuristic for finding the routes that minimised two objectives while
satisfying three constraints. Russell et al. [24] proposed a tabu search metaheuristic to aid
in the coordination and synchronisation of the production and delivery of multiproduct
newspapers to bulk delivery locations. Fleszar et al. [9] proposed an effective variable
neighbourhood search heuristic. Pisinger et al. [25] presented a unified heuristic with
an adaptive large neighborhood search framework to solve five different variants of the
VRP. Salari et al. [26] proposed a heuristic improvement procedure based on integer linear
programming techniques. Zachariadis et al. [27] presented an innovative local search
metaheuristic, which examined wide solution neighbourhoods. Tarantilis et al. proposed
an annealing-based method that utilised a backtracking policy [28] and a single-parameter
metaheuristic method that exploited a list of threshold values to intelligently guide an
advanced local search [10].

Population-based metaheuristics have also been proposed. MirHassani et al. [11]
presented a real-value version of particle swarm optimisation for solving the OVRP.
Wang et al. [29] proposed a novel real number encoding method of particle swarm op-
timisation. Zhen et al. [30] proposed a novel particle swarm optimisation in which the
vehicle was mapped into the integer part of the real number. Li et al. presented an ant
colony system hybridised with local search [31] and an ant colony optimisation-based meta-
heuristic [12]. Pan et al. [32] presented a clonal selection algorithm. Repoussis et al. [13]
proposed a hybrid evolution strategy. Yu et al. [33] applied a novel hybrid algorithm
combining the genetic algorithm and the tabu search. The tabu search can help the genetic
algorithm circumvent the local optimum. In our previous work, a hybrid tabu search
algorithm was proposed to minimise the fuel consumption of the OVRPTW [17]. However,
the performance of the algorithms mentioned above always degrades when dealing with a
large-scale instance.

2.2. Membrane Algorithms

Membrane computing is a branch of natural computing. It is inspired by the struc-
ture and the function of living cells, tissues, and organs. It provides a distributed and
parallel framework for modelling and high-performance computation. Barbuti et al. [34]
proposed minimal probabilistic P systems as modelling notation for ecological systems.
Lucie et al. [35] summarised the most important results on P colonies. Niu et al. [36] pro-
posed a simulation model called an intelligence decision P system inspired by the process
of cell migration. Sakellariou et al. [37] used a population P system in the agent-based
simulation modelling of passengers boarding an underground station.

Nishida T. Y. [38] proposed the first membrane-inspired algorithm and proved its
efficiency in solving the travelling salesman problem (TSP). Zhang et al. [39] analysed and
optimised radar emitter signals by leveraging membrane algorithms. An optimisation
spiking neural P system was presented to approximately solve the general combinatorial
optimisation problems [40]. Zhang et al. [41] proposed a population–membrane-system-
inspired evolutionary algorithm, in which a population P system and a quantum-inspired
evolutionary algorithm were used. Membrane algorithms adopt rich and varied frame-
works, which facilitate the cooperation of multiple algorithms. It helps to design a hybrid
algorithm and use the respective advantages of different algorithms for large-scale NP-hard
problems. In this work, a novel three-level membrane algorithm was designed for the
large-scale GOVRPTW instances. It can also be considered an extension of the application
field of membrane algorithms.
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3. Problem Formulation

The problem studied in this paper takes into account practical factors such as vehicle
fuel consumption, greenhouse gas emissions, third-party logistics, and time window
constraints on the basis of the classical vehicle routing problem, which can be modelled as
a green open vehicle routing problem with time window (GOVRPTW). The GOVRPTW
could be defined on a complete and directed graph G = (N, A), where N is the node set
and A is the arc set. In particular, N = {0, . . . , n} includes n+1 entities, with 0 representing
the depot and N0 = N \ {0} representing the customer set. Each customer i has a positive
demand qi. The arc set A = {(i, j) : i, j ∈ N, i 6= j, j 6= 0} represents the connection between
the nodes. The goods delivery is considered as opposed to the goods pick-up problem. The
demand of any customer qi is assumed to be less than the vehicle capacity Q. In this work,
it is assumed that the traffic conditions on all roads are uncongested or free-flow such that
vehicle speeds can be optimised. The vehicles will finish after completing their service
to the customers rather than returning to the depot. The notations used in the problem
description are summarised in Notations part. We adopt the comprehensive emissions
model developed by Barth et al. [42], Barth et al. [43], and Scora et al. [44] to estimate
actual fuel consumption and gas emissions. The objective function of the GOVRPTW is
formulated as follows [17].

Minimise ∑
(i,j)∈A

λ fckNeVdij

R

∑
r=1

zr
ij/vr

ij (1)

+ ∑
(i,j)∈A

λ fcγαijdij(wxij + fij) (2)

+ ∑
(i,j)∈A

λ fcβγdij

R

∑
r=1

(vr
ij)

2zr
ij (3)

+ ∑
j∈N0

fdsj, (4)

where λ = ξ/κψ, γh = 1/1000nt f η and α = τ + gsinθ + gCrcosθ are constants; β = 0.5CdρA
is a vehicle-specific constant; the values of the parameter used in the formulation are given
in Table 1, and the reader can refer to Koc et al. [45] for more details. The length of arc
(i, j) ∈ A is denoted by dij; the total weight of a vehicle on arc (i, j) is calculated as w + fij,
with w being the weight of a vehicle and fij being the amount of freight flow on arc
(i, j) ∈ A; the binary variable xij equals 1 if a vehicle travels along the arc (i, j) ∈ A, and it
is 0 otherwise; and the binary variable zr

ij equals 1 if a vehicle r (r = 1, 2, . . . ) travels along
the arc (i, j) ∈ A at speed vr

ij, and it is 0 otherwise. The objective is to minimise the total
cost of three components: the fuel consumption, the CO2 emissions, and the total wage of
drivers. The cost induced by the fuel consumption and CO2 emissions is represented by
the first three terms in the objective. Specifically, term (1) describes the engine module cost,
term (2) computes the weight module cost, and term (3) reflects the speed module cost. The
cost of the driver wage is represented by the fourth term in the objective. The constraints of
the GOVRPTW are shown as follows.

∑
j∈N0

x0j ≤ |N0|, (5)

∑
i∈N

xij = 1, ∀j ∈ N0 (6)

∑
j∈N

xij ≤ 1, ∀i ∈ N0 (7)

n

∑
i=1

xi0 = 0, (8)
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∑
j∈N

fij − ∑
j∈N

f ji = qi, ∀i ∈ N0 (9)

qjxij ≤ fij ≤ (Q− qi)xij, ∀(i, j) ∈ A (10)

yi − yj + ti +
R

∑
r=1

dijzr
ij/vr

ij ≤ Mij(1− xij), ∀i ∈ N, j ∈ N0, i 6= j (11)

ai ≤ yi ≤ bi, ∀i ∈ N0 (12)

R

∑
r=1

zr
ij = xij, ∀(i, j) ∈ A (13)

xij ∈ {0, 1}, ∀(i, j) ∈ A (14)

zr
ij ∈ {0, 1}, ∀(i, j) ∈ A, r = 1, . . . , R (15)

fij ≥ 0, ∀(i, j) ∈ A (16)

yi ≥ 0, ∀i ∈ N0 (17)

si ≥ 0, ∀i ∈ N0 (18)

where ti is the time consumed for serving customer i ∈ N0; [ai, bi] is the time window of
customer i ∈ N0, within which the customer must be visited; yj is the actual starting time
for serving node j ∈ N0; if a vehicle arrives at a customer before its ai, it has to wait because
it can only start service at or after ai; sj is the total time cost of the route in which the
last visited customer is j ∈ N0. Moreover, constraint (5) defines the maximum number of
vehicles; constraints (6)–(8) ensure that every customer is served only once, and the vehicles
finish after delivery rather than returning to where they started; constraints (9) and (10)
together define the freight flows; the time window is described in constraints (11) and (12),
in which Mij = max{0, bi + ti + dij/vr

ij − aj}; constraint (13) imposes that each arc has only
one speed level; and constraints (14)–(18) define the range of the variables.

Table 1. Parameter values of a light-duty vehicle.

Notation Description Typical Value

η Diesel engine efficiency 0.45

Cr Rolling resistance coefficient 0.01

ρ Density of air (kg/m3) 1.2041

ψ
Conversion factor

(g/s to litre/s) 737

κ
Heating value of the typical

diesel fuel (kilojoule/g) 44

g Constant of gravitation (m/s2) 9.81

nt f Vehicle drive train efficiency 0.45

ξ Fuel-to-air mass ratio 1

τ Acceleration (m/s2) 0

θ Angle of the road 0

vu Highest speed (m/s) 27.8 (or 100 km/h)

vl Lowest speed (m/s) 5.5 (or 20 km/h)

fc
Cost of fuel and CO2
emissions (GBP/litre) 1.4

fd Cost of driver wage (GBP/s) 0.0022
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Table 1. Cont.

Notation Description Typical Value

Q Vehicle capacity (kg) 4000

w Vehicle curb weight (kg) 3500

f Vehicle fixed cost (GBP/day) 0

V Engine displacement (litre) 4.5

k Engine friction factor
(kilojoule/rev/litre) 0.25

Ne Engine speed (rev/s) 38.34

A Area of frontal surface (m2) 7.0

Cd Aerodynamics drag coefficient 0.6

4. The Proposed Method

In this section, a membrane-inspired hybrid heuristic algorithm is proposed to deal
with the GOVRPTW. As depicted in Figure 1, the MIHA has three levels of cell-like nested
membranes. To be specific, the skin membrane constitutes the first level. The second level
consists of six adjacent inner membranes (labelled as 1, . . . , 6). The elementary membrane
in each level-2 membrane constitutes the third level. The membranes of level-2 can provide
the tentative solutions to the skin membrane through unidirectional channels, while the
communication channels between the level-2 membranes and the corresponding level-3
membranes are bidirectional. In the membranes of level-3, the neighbourhood search
operations are leveraged to help adjust the search direction of the corresponding level-2
membranes. On the one hand, the GA operators in the skin membrane, especially the
crossover operator, are exploited to retain the desired gene segments. On the other hand,
the tabu search algorithms with different attractors in the level-2 membranes are leveraged
to help the GA algorithm escape from the local optimum.

The general framework of the MIHA is introduced in Algorithm 1. In the initialisation
stage, the preliminary solutions are generated by using six different operators. Afterwards,
a speed improvement strategy is exploited to determine the optimal speed on each route in
the solution. In this case, the initial population would be generated in the skin membrane.
The searching processes in the level-2 membranes are guided by the tabu search algorithm,
while the evolution in the skin membrane proceeds according to the genetic operators. After
every IMCA steps, the archive solutions of each level-2 membrane would be transferred to
the skin membrane to help update the current population. When the termination condition
is met, the final output is defined as the best solution found from all different membranes.

GA

TS TS TS

TS TS TS

0

1 2 3

4 5 6

7 8 9

10 11 12

Figure 1. The proposed membrane structure.
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Algorithm 1 Pseudo-code of MIHA

Require: maximum number of iterations Imax, iteration number before MCA IMCA
Ensure: xbest.

1: for m = 1 to 6 do
2: Generate initial solution xm

initial by using operator m
3: Send xm

initial to level-2 membrane m
4: Set xm

current = xm
initial

5: for i = 1 to Imax do
6: for m = 1 to 6 do
7: {xneighbors} = level2_search(xm

current)
8: update(archivem, {xneighbors})
9: Send {xneighbors} to the adjacent level3_membrane

10: {xneighbors} = level3_search({xneighbors})
11: update(archivem, {xneighbors})
12: if archivem \ tabu_listm 6= ∅ then
13: Set xm

current = the_best_of(archivem \ tabu_listm)
14: update(tabu_listm, xm

current)
15: if i mod IMCA == 0 then
16: MCA(skin_membrane, level2_membrane1−6)
17: Output the best solution xbest

The encoding approach of the solution has a significant impact on the quality of the
final result as well as the computational efficiency. In our method, a complete solution
consists of a number of routes, and the variable-length chromosomes [46] are adopted to
encode the routes, where a chromosome comprising the integer nodes represents a route.
Specifically, each vehicle departs from the first node and ends at the last node it serves;
the travel speed vr

ij between every two adjacent points i and j on the same path is to be
decided; the service start time yi of each point i can be calculated; a solution is feasible only
when it does not violate any constraints.

4.1. Initialisation

During initialisation, six unique operators were adopted to create different initial
solutions as shown in Figure 2. Then, the population of the skin membrane and the
archive solutions of the level-2 membranes were formed. Specifically, the six operators
were executed based on the following heuristics (or rules). Moreover, the pseudo-code is
given in Algorithm 2.

Figure 2. Six operators for initialising solutions.
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Algorithm 2 Pseudo-code of initialisation

Require: Operators: Random, NNH, mNNH, I1, EDF, SWTF
Ensure: Implement the initialisation of MIHA

1: operators = {Random, NNH, mNNH, I1, EDF, SWTF}
2: for m = 1 to 6 do
3: xm

initial = create_initial_solution(operator[m])
4: Send xm

initial to level2_membranem

5: {xm
neighbors} = level2_search(xm

initial)
6: Send {xm

neighbors} to skin_membrane

(1) Random heuristic: It randomly chooses routes that satisfy constraints (5)–(17).
(2) Nearest neighbourhood heuristic (NNH): It generates a set of routes according to the

distance from the current node. The nearest customer to the depot is chosen as the
start node x0 of the first route. Then it chooses an unassigned customer x1, who is
nearest to x0. It repeats the same procedure until no feasible candidate nodes for the
current route can be found. This also means that the current route is completed. Then,
it allocates a new vehicle for the next route and constructs the route in a similar way
until all customer nodes are assigned.

(3) Modified nearest neighbourhood heuristic (mNNH): It generates a set of routes accord-
ing to both the demand of the next customer and the distance from the current node.
During the shipping process, a vehicle can offload qi payload after servicing customer
i. The unit distance payload of customer j on arc (i, j) is defined as ∆ fij = qj/dij. The
mNNH creates a number of routes sequentially by considering the ∆ fij as an objective.
First, it chooses the customer c that satisfies c = argmaxc∈Nucs{|∆ f0c|}, where Nucs
represents the unassigned customer set, which includes the initial current node of the
first route. Next, the feasible customer nc that satisfies nc = argmaxnc∈Nucs{|∆ fc,nc|}
is selected as the next node c and added to the current route. Then, it repeats choosing
the next node and appending it to the current route. If no more feasible nodes can
be added, the current route is completed, and another route will be constructed in a
similar way until all customers have been assigned.

(4) Insert I1 heuristic: As first proposed by Solomon [47], the customer u∗ is chosen based
on the Equations (19) and (20) and then inserted to the route according to the insert I1
heuristics. Moreover, the feasible and desired position of the selected u∗ in the route is
decided by Equations (21) and (22) as follows, where yju is the new time for service
to begin at customer j, given that u is on the route. The main idea is to use several
criteria to insert a new customer into the current partial route at every iteration.

c2(i∗, u∗, j∗) = maximum[c2(i, u, j)], (19)

c2(i, u, j) = λd0u − c1(i, u, j), λ ≥ 0 (20)

c1(i∗, u, j∗) = min[c1(i, u, j)], (21)

c1(i, u, j) = α1(diu + duj − µdij) + α2(yju − yj), µ, α1, α2 ≥ 0, α1 + α2 = 1. (22)

(5) Earliest deadline first heuristic: It selects the customer with the earliest (or tightest)
deadline for service at each step.

(6) Shortest waiting time first heuristic: It selects the customer with the shortest waiting time.

4.2. GA in Skin Membrane

After the initialisation, the population in the skin membrane evolved according to
the rationale of GA. To select parent chromosomes for the crossover operator, the binary
tournament was implemented, while the chromosomes for the mutation operators were
randomly selected.
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This process was repeated several times to obtain sufficient parent chromosomes.
Route-exchange crossover [46] was used to retain the better gene segment. The routes in
one solution chromosome were reproduced and shared with others. In order to satisfy
the constraints, the duplicated nodes in a chromosome were removed if a new route was
inserted into it. The single point mutation was adopted as the mutation operator in the
skin membrane.

4.2.1. Crossover Operator

The performance of the genetic algorithm is highly affected by the crossover and muta-
tion operators. Using these operators, the search space can be more effectively explored and
better solutions can be exploited. In the literature of the genetic algorithm, many crossover
and mutation operators have been developed for different optimisation problems. In our
method, the route-exchange crossover proposed by [46] was adopted to retain the desir-
able gene segment. Different from the classical one-point crossover, which may produce
infeasible route sequences, the route-exchange crossover operator allows the favourable
sequences of routes or the genes in a chromosome to be shared with other chromosomes in
the evolving population. Firstly, we selected parents to perform the crossover operation by
binary tournament. Secondly, the route-exchange crossover was performed on the selected
parents, in which the best routes of the selected chromosomes were exchanged. To ensure
the feasibility of chromosomes after the crossover, duplicated customers were deleted from
the original routes, while the newly inserted route was left unchanged.

4.2.2. Mutation Operator

We adopted three mutation operators, i.e., random, split-longest, and merge-shortest
operators [46] to extend the search space. The corresponding operators are listed as follows.

(1) Random: This operation randomly removes a customer node from a given route and
inserts it into another feasible position of the origin route.

(2) Split-longest: This operation searches for the route with the highest total cost and
breaks the route into two parts at a random point.

(3) Merge-shortest: This operation searches for the two routes of the chromosome with
the smallest total cost and appends one to the other.

4.3. Tabu Search in Level-2 Membranes

After the initialisation, the tabu search was started in each level-2 membrane as
described in Figure 3 and Algorithm 3. First, the current solution was used to create the
neighbour solutions. If any neighbour solution was better than the solutions in the archive,
it replaced the most inferior one. Next, the level-3 membrane performed the neighbourhood
search and the corresponding result helped the archive to find better solutions. Then, the
best one was selected as the next solution from the archive rather than from the tabu list.
Finally, the current solution was added into the tabu list.

Figure 3. Level-2 membrane search.

Pertaining to the neighborhood search, three operators were exploited.

(1) Random operator: It randomly exchanges the position of two nodes of a given solution,
provided that no constraint is violated.

(2) High-cost-node operator: It removes a high-cost customer node defined as
u∗ = argmaxu∈N{diu + duj}, where i is the preceding customer and j is the succeeding
customer, and inserts the node into another position.

(3) Long-wait-time operator: It relocates the customer with a long wait time node defined
as u∗ = argmaxu∈N{au − eu}, where eu is the arrival time of customer u.
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Algorithm 3 Level-2 Membrane Search Algorithm

1: {xneighbors} = search_neighbors(xcurrent)
2: update_its_archive({xneighbors})
3: Send {xneighbors} to the adjacent level3_membrane for level-3 search
4: if archive \ tabu_list 6= ∅ then
5: Set xcurrent = the_best_of(archive \ tabu_list)
6: update_its_tabu_list(xcurrent)

4.4. Neighbourhood Search in Level-3 Membranes

In the level-3 membrane, the neighbourhood search was performed with a specific
probability, which is denoted as plevel3, to find the superior solutions and improve the
diversity of the archive solutions, as illustrated in Figure 4 and Algorithm 4. First, it
randomly selected a solution from the archive of the adjacent level-2 membrane. Next, it
used this solution as an input to perform the neighbourhood search. Finally, it sent the
output of the neighbourhood search back to its adjacent level-2 membrane. If the output
solutions were better than the ones in the archive of the level-2 membrane, they replaced
the inferior ones. This search procedure is expected to find superior solutions as well as
improve the diversity of archive solutions.

Figure 4. Level-3 membrane search.

Algorithm 4 Level-3 Membrane Search Algorithm

1: Randomly select a solution from the archive of adjacent level2_membrane, as xrandom
2: Send xrandom to current level3_membrane
3: {xneighbors} = search_neighbors(xrandom, plevel3)
4: Send {xneighbors} back to the level2_membrane
5: update(archivelevel2_membrane, {xneighbors})

4.5. Communications between the Level-2 Membrane and Skin Membrane

After a specific number of iterations each time, archive solutions in each level-2 mem-
brane were transported to the skin membrane, and the current population was updated.
We denote this number of iterations as IMCA and this communication as Membrane Com-
munication Algorithm (MCA) (described in Figure 5 and Algorithm 5). First, the archive
solutions of each level-2 membrane were merged with current individuals in the skin mem-
brane. Next, the best P solutions were selected and combined to form a new population.
Specifically, the GA operators implemented in the skin membrane, especially the crossover
operators, were used to retain the desirable gene segments of solutions found by the tabu
search in the level-2 membrane. Various solutions obtained by the tabu search algorithms
with different attractors facilitated the GA escaping from the local optimal solutions.

Algorithm 5 Membrane Communication Algorithm

1: for m = 1 to 6 do
2: Send archive solutions of level2_membrane[m] to skin_membrane
3: Select the best P solutions in skin_membrane
4: Rebuild the population of skin_membrane with those solutions
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Figure 5. Membrane communication.

4.6. Speed Optimisation

The speed of the vehicle in each arc has a significant impact on the fuel consump-
tion and the total cost. The process of determining the optimal speed of each route in a
solution is important to minimise the fuel consumption costs and driver wages. After
obtaining a solution that comprised a number of routes, we implemented the speed and
departure-time optimisation (SD-TOA) proposed by Karmer et al. [48] to compute the
optimal speed for each route. As shown in Algorithm 6, the SD-TOA was executed based
on a divide-and-conquer strategy. To be specific, the whole route was divided into several
subroutes by first ignoring the time window constraints, and then the sub-routes were
re-optimised recursively. If a resulting subroute satisfied all time window constraints, then
it was returned. Otherwise, the customer with the maximum time-window violation was
identified and its arrival time was set to the closest feasible value. Fixing this time window
failure created two subroutes, which were re-optimised recursively.

Algorithm 6 Speed and Departure-time Optimisation Algorithm (SDTOA)

1: Procedure SDTOA(s, e)
2: p← violation← maxViolation← 0
3: D ← ∑e−1

i=s di,i+1

4: T ← ∑e−1
i=s τi

5: if s = 1 and e = nσ then
6: t1 = a1

7: if e = nσ then
8: te = min{max{ae, ts + D/v∗FD + T}, be}
9: if s = 1 then

10: ts = min{max{as, te − D/v∗FD − T}, bs}
11: vREF ← D/(te − ts − T)
12: for i = s + 1...e do
13: ti = ti−1 + τi−1 + di−1,i/vREF
14: violation = max{0, ti − bi, ai − ti}
15: if violation > maxViolation then
16: maxViolation = violation
17: p = i
18: if maxViolation > 0 then
19: tp = min{max{ap, tp}, bp}
20: SDTOA(s, p)
21: SDTOA(p, e)
22: if s = 1 and e = nσ then
23: for i = 2...nσ do
24: vi−1,i = max{di−1,i/(ti − ti−1 − τi−1), v∗F}

5. Computational Results

In this section, we evaluate the proposed MIHA on two sets of real-life data set. The
presented algorithm was implemented in Matlab on a PC with an Intel Core i5-10400
processor, 16G RAM, and Microsoft Windows 10 operating system. The parameters used in
our algorithm are listed in Table 2. We first test the MIHA on Beijing instance set, where the
customer locations were scattered in both urban and suburban areas, and realistic geograph-
ical road information was leveraged to calculate the relevant costs [17]. Then experiments
are conducted on larger-scale Jingdong instances. Twenty independent experiments were
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conducted for each instance. Experimental results are listed in Tables 3–10, where the
columns represent the best solution, the mean solution, the worst solution, the standard
deviation (SD), and the elapsed time (ET, also known as computation time), respectively.

5.1. Parameter Analysis
5.1.1. plevel3

In the level-3 membrane, an extra neighbourhood search was implemented with
a specific probability plevel3 to help find better solutions and improve the diversity of
solutions. Here, we conducted the experiments on the Beijing example with 60 (customer)
nodes, i.e., BJ60_01, to analyse the influence of parameter plevel3, the results of which are
recorded in Table 3. According to Table 3, either too low or too high probability deteriorated
the performance. We suggest that lower probability was less effective in finding better
solutions, while higher probability might lead the whole evolution to undesirable areas.
Considering that the best overall result was captured at plevel3 = 0.8, we used this value in
the subsequent experiments.

Table 2. Algorithm parameters.

Notation B Typical Values

IMCA Iterations between MCAs 150

Imax Maximum iteration number 500

plevel3 Probability of level-3 search 0.8

Ar Archive size 100

Ns Neighbourhood size 100

L Tabu-list size 30

P Population size 100

pmutation Rate of mutation 0.8

pcrossover Rate of crossover 0.2

(α1, α2, µ, λ) I1 parameters (0.5, 0.5, 1, 1)

Table 3. Experimental result with different plevel3.

plevel3
Best

Solution
Mean

Solution
Worst

Solution SD ET

0 10,875.6553 10,928.4416 10,957.5933 22.3405 98.4386
0.1 10,882.5664 10,935.8356 10,978.9560 25.6220 99.7357
0.2 10,897.0627 10,922.4866 10,946.9486 14.2856 106.7122
0.3 10,894.6855 10,935.1849 10,981.7598 22.6840 114.1316
0.4 10,893.8999 10,927.5347 10,960.1311 20.8581 132.3853
0.5 10,870.5658 10,927.1250 10,965.2899 28.0809 139.0837
0.6 10,893.7139 10,922.8795 10,946.2359 19.7116 153.5391
0.7 10,859.4377 10,918.7540 10,956.2807 23.5941 158.2609
0.8 10,849.7328 10,907.9905 10,959.0818 28.7783 172.7458
0.9 10,885.8673 10,922.2359 10,945.8091 16.2176 172.7154
1 10,864.7334 10,914.4491 10,939.8273 21.2864 179.3093

5.1.2. IMCA

As described previously, after a specific number of iterations each time, i.e., IMCA,
the archive solutions of each level-2 membrane were sent to the skin membrane to help
update the population. Here, the impact of parameter IMCA is discussed. We still leveraged
the same instance, i.e., BJ60_01, to evaluate this parameter. As displayed in Table 4, the
best result was captured at IMCA = 150, which means that sending archive solutions of
level-2 membranes to the skin membrane every 150 iterations achieved better performance.
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Similarly, according to these results, either a smaller or larger IMCA may deteriorate the
solution; hence, we used IMCA = 150 in the subsequent experiments.

Table 4. Experimental results with different IMCA.

IMCA
Best

Solution
Mean

Solution
Worst

Solution SD ET

15 10,887.9339 10,915.9258 10,933.9978 12.4846 180.9297
25 10,887.3386 10,907.1512 10,946.9533 17.9590 179.3292
50 10,864.7334 10,914.4491 10,939.8273 21.2864 179.3093
75 10,887.7475 10,914.0151 10,947.0650 18.9695 175.5044

100 10,899.9133 10,917.2956 10,930.3250 9.1312 174.3383
125 10,881.1171 10,913.0205 10,956.5405 19.0231 180.1102
150 10,847.0901 10,900.6532 10,947.3101 26.0596 150.6687
175 10,866.3854 10,908.5777 10,944.5708 23.6946 158.3528
200 10,878.1705 10,911.7143 10,945.2829 18.0546 184.6337

5.2. Effectiveness of Search in Level-3 Membranes

In this subsection, the effectiveness of the search in level-3 membranes is analyzed,
where experiments were conducted on the Beijing 60-node instances with light-duty vehi-
cles. The tabu search algorithm elicited desirable solutions faster by obtaining the attractor
from the level-3 membranes. The MIHA without the level-3 membranes is denoted as
MIHA−level3 for convenience. The performance of MIHA and MIHA−level3 on our exam-
ple is shown in Table 5. It is easily observed that the level-3 membranes demonstrated
considerable advantages in finding solutions with a lower total cost.

5.3. Effectiveness of Tabu Search

The tabu search algorithm plays a significant role in the level-2 membrane. In order
to analyse the effectiveness of the tabu search algorithm, this part of the experiment used
the greedy algorithm to replace the tabu search algorithm, i.e., MIHA−TS, and compared
the experimental results with MIHA. Although the membrane framework was retained in
MIHA−TS, the demonstrated performance was less competitive than those achieved using
MIHA, as shown in Table 6.

5.4. Effectiveness of GA in Skin Membrane

The crossover operator of the genetic algorithm can combine the excellent gene frag-
ments of different individuals, and the mutation operator can help expand the search space.
As an important part of the skin membrane, it is necessary to analyse the effectiveness
of the genetic algorithm in the skin membrane. In MIHA, the solutions transmitted by
the level-2 membranes formed the initial population of the skin membrane and finally
output the excellent feasible solutions through the crossover and mutation operations in
the genetic algorithm. In this subsection, MIHA without the genetic algorithm is denoted
as MIHA−GA, in which the ability to integrate gene fragments from different membranes
was absent, and the output was the best solutions from the level-2 membranes. Table 7
records the experimental results of both MIHA and MIHA−GA, respectively. The GA in
the skin membrane had a favourable impact on the performance of our algorithm, as it
achieved solutions with lower costs. Regarding the proposed MIHA, various solutions
obtained by the tabu search of level-2 membranes with different attractors helped the GA
escape from the local optimum. As a result, the cliffs were observed every IMCA iterations
in the convergence curve of the skin membrane, as depicted in Figure 6, which further
justified the superiority of our design.
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Table 5. Comparison of MIHA and MIHA−level3.

Instance Best Solution Mean Solution Worst Solution SD ET

MIHA BJ60_01 10,864.7334 10,914.4491 10,939.8273 21.2864 179.3093
BJ60_02 10,217.4691 10,310.1949 10,395.6818 54.3404 167.1625
BJ60_03 11,321.6848 11,423.8391 11,489.1644 53.3224 168.3861
BJ60_04 11,800.7563 11,847.7284 11,915.0534 31.7880 179.6456
BJ60_05 10,890.8377 10,909.8830 10,947.0117 14.5797 190.0507
BJ60_06 11,875.3018 11,916.5380 11,942.8835 21.5401 157.5884
BJ60_07 12,528.3080 12,634.5020 12,685.8953 54.0499 138.2126
BJ60_08 11,783.3490 11,867.4716 11,932.7904 45.1478 162.5045
BJ60_09 11,573.5410 11,705.3953 11,908.5312 107.6724 173.2149
BJ60_10 12,939.9900 13,196.1938 13,269.0754 90.2917 161.0214
Average 11,579.5971 11,672.6195 11,742.5914 49.4019 167.7096

MIHA−level3 BJ60_01 10,876.9472 10,929.2492 10,959.7533 23.8597 99.9533
BJ60_02 10,354.6481 10,439.4020 10,529.0454 47.3483 98.3095
BJ60_03 11,417.6826 11,510.4497 11,651.4713 77.5482 99.3993
BJ60_04 11,810.6944 11,850.3646 11,947.2880 36.0053 104.0135
BJ60_05 10,900.3834 10,930.1086 10,996.6298 29.6276 115.6167
BJ60_06 11,884.6734 11,934.8017 11,994.1760 37.2390 100.8201
BJ60_07 12,570.4124 12,737.4635 12,916.3772 116.3777 88.5942
BJ60_08 11,816.6496 11,865.4873 11,937.1039 42.1579 94.7336
BJ60_09 11,652.5596 11,744.5783 11,860.8162 74.2931 92.3574
BJ60_10 13168.2194 13,240.3696 13,322.1267 43.8999 85.6219
Average 11,645.2870 11,718.2275 11,811.4788 52.8356 97.9418

Table 6. Comparison of MIHA and MIHA−TS.

Instance Best Solution Mean Solution Worst Solution SD ET

MIHA BJ60_01 10,864.7334 10,914.4491 10,939.8273 21.2864 179.3093
BJ60_02 10,217.4691 10,310.1949 10,395.6818 54.3404 167.1625
BJ60_03 11,321.6848 11,423.8391 11,489.1644 53.3224 168.3861
BJ60_04 11,800.7563 11,847.7284 11,915.0534 31.7880 179.6456
BJ60_05 10,890.8377 10,909.8830 10,947.0117 14.5797 190.0507
BJ60_06 11,875.3018 11,916.5380 11,942.8835 21.5401 157.5884
BJ60_07 12,528.3080 12,634.5020 12,685.8953 54.0499 138.2126
BJ60_08 11,783.3490 11,867.4716 11,932.7904 45.1478 162.5045
BJ60_09 11,573.5410 11,705.3953 11,908.5312 107.6724 173.2149
BJ60_10 12,939.9900 13,196.1938 13,269.0754 90.2917 161.0214
Average 11,579.5971 11,672.6195 11,742.5914 49.4019 167.7096

MIHA−TS BJ60_01 10,887.9165 10,928.7764 10,958.6152 22.1538 179.1811
BJ60_02 10,350.4335 10,433.3471 10,569.4033 66.3863 165.9635
BJ60_03 11,410.8506 11,546.6879 11,693.6700 83.6334 183.0199
BJ60_04 11,808.0504 11,876.0743 12,002.3412 60.3121 190.7105
BJ60_05 10,893.5351 10,908.2957 10,941.6042 15.4682 213.1253
BJ60_06 11,930.4763 11,993.7405 12,040.6174 29.2162 162.8483
BJ60_07 12,790.4131 12,945.8023 13,093.2836 95.8863 150.9155
BJ60_08 11,840.7762 11,980.0637 12,070.6884 64.6119 170.2074
BJ60_09 11,700.6390 12,040.8509 12,195.6716 140.5182 169.8237
BJ60_10 13,352.3191 13,452.7316 13,528.2388 54.9095 152.6279
Average 11,696.5410 11,810.6370 11,909.4134 63.3096 173.8423
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Table 7. Comparison of MIHA and MIHA−GA.

Instance Best Solution Mean Solution Worst Solution SD ET

MIHA BJ60_01 10,864.7334 10,914.4491 10,939.8273 21.2864 179.3093
BJ60_02 10,217.4691 10,310.1949 10,395.6818 54.3404 167.1625
BJ60_03 11,321.6848 11,423.8391 11,489.1644 53.3224 168.3861
BJ60_04 11,800.7563 11,847.7284 11,915.0534 31.7880 179.6456
BJ60_05 10,890.8377 10,909.8830 10,947.0117 14.5797 190.0507
BJ60_06 11,875.3018 11,916.5380 11,942.8835 21.5401 157.5884
BJ60_07 12,528.3080 12,634.5020 12,685.8953 54.0499 138.2126
BJ60_08 11,783.3490 11,867.4716 11,932.7904 45.1478 162.5045
BJ60_09 11,573.5410 11,705.3953 11,908.5312 107.6724 173.2149
BJ60_10 12,939.9900 13,196.1938 13,269.0754 90.2917 161.0214
Average 11,579.5971 11,672.6195 11,742.5914 49.4019 167.7096

MIHA−GA BJ60_01 10,889.6733 10,920.5130 10,947.4318 20.3041 162.6233
BJ60_02 10,267.1195 10,333.7142 10,415.6234 49.4848 149.6058
BJ60_03 11,349.3097 11,473.1526 11,595.0291 77.7908 149.0490
BJ60_04 11,804.8311 11,843.4759 11,937.9748 39.7545 150.1856
BJ60_05 10,898.5533 10,917.0069 10,942.3023 14.3160 168.1142
BJ60_06 11,882.7327 11,939.8357 11,973.6663 30.1972 170.9655
BJ60_07 12,534.6436 12,658.8725 12,849.5941 85.0550 129.9516
BJ60_08 11,806.8383 11,876.4740 11,934.8815 39.6358 138.7723
BJ60_09 11,630.3241 11,687.7664 11,850.7900 63.9084 140.8432
BJ60_10 13,120.3543 13,262.1483 13,355.0285 75.4520 128.9989
Average 11,618.4380 11,691.2960 11,780.2322 49.5899 148.9109

5.5. Effectiveness of the Membrane Structure

In this subsection, we verify the effectiveness of the membrane structure. Generally,
membrane computing provides a parallel distributed framework for solving the optimisa-
tion problem. We denoted our algorithm without the membrane structure as MIHA−MS, in
which all membranes were removed except for a single level-2 membrane, and the output
was the best solution obtained by the algorithm in it. As shown in Table 8, without the
membrane framework, the MIHA−MS was far less effective in finding competitive solutions
in comparison with the results obtained by using MIHA.

(a) BJ100_01 (b) BJ100_02

Figure 6. Cont.
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(c) BJ100_03 (d) BJ100_04

(e) BJ100_05 (f) BJ100_06

(g) BJ100_07 (h) BJ100_08

(i) BJ100_09 (j) BJ100_10

Figure 6. Convergence process of GA in skin membrane. (Cliffs are observed every IMCA iterations
in the convergence curves, which proves the effectiveness of the MCA.)
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Table 8. Comparison of the MIHA and MIHA−MS.

Instance Best Solution Mean Solution Worst Solution SD ET

MIHA BJ60_01 10,864.7334 10,914.4491 10,939.8273 21.2864 179.3093
BJ60_02 10,217.4691 10,310.1949 10,395.6818 54.3404 167.1625
BJ60_03 11,321.6848 11,423.8391 11,489.1644 53.3224 168.3861
BJ60_04 11,800.7563 11,847.7284 11,915.0534 31.7880 179.6456
BJ60_05 10,890.8377 10,909.8830 10,947.0117 14.5797 190.0507
BJ60_06 11,875.3018 11,916.5380 11,942.8835 21.5401 157.5884
BJ60_07 12,528.3080 12,634.5020 12,685.8953 54.0499 138.2126
BJ60_08 11,783.3490 11,867.4716 11,932.7904 45.1478 162.5045
BJ60_09 11,573.5410 11,705.3953 11,908.5312 107.6724 173.2149
BJ60_10 12,939.9900 13,196.1938 13,269.0754 90.2917 161.0214
Average 11,579.5971 11,672.6195 11,742.5914 49.4019 167.7096

MIHA−MS BJ60_01 11,328.7061 11,450.7661 11,645.5626 102.4337 16.3996
BJ60_02 10,706.7220 10,825.8266 10,952.4319 77.1375 16.0414
BJ60_03 12,036.9001 12,135.7632 12,194.5568 54.3717 15.1175
BJ60_04 12,367.3172 12,561.4857 12,854.7533 147.9147 17.2651
BJ60_05 11,232.0918 11,294.0261 11,371.0893 52.7390 16.8575
BJ60_06 12,288.4131 12,446.6655 12,589.8602 89.2907 16.7956
BJ60_07 13,243.3081 13,393.8310 13,479.3281 84.1279 13.8604
BJ60_08 12,172.4397 12,363.8495 12,507.0350 110.1176 13.1230
BJ60_09 12,293.5838 12,422.8764 12,574.3870 75.6798 14.9571
BJ60_10 13,356.4703 13,585.7384 13,783.8378 130.1142 13.2258
Average 12,102.5952 12,248.0829 12,395.2842 92.3927 15.3643

5.6. Computational Result of Larger-Scale Problems

In this subsection, to further demonstrate the practical property of MIHA, the experi-
ments were conducted on the larger-scale real-world problem instances, i.e., the Beijing
100-nodes set and the Jingdong 1000-nodes instance, respectively, where our method was
set with plevel3 = 0.8 and IMCA = 150. The results of the Beijing 100-nodes set are recorded
in Table 9, and the results of the Jingdong 1000-nodes instance are recorded in Table 10. The
computational result verified the favourable capability and superiority of the proposed
MIHA in solving the real-world large-scale problem. In particular, in the comparison of
different instance sizes, as shown in Table 11, a roughly linearly growing ET was observed,
which justified the advantage of our algorithm in solving the large-scale problems.

Table 9. Computational result of the Beijing 100-node problem.

Instance Best
Solution

Mean
Solution

Worst
Solution SD ET

BJ100_01 19,067.0291 19,198.1247 19,286.2464 77.2545 177.5238
BJ100_02 20,054.6213 20,212.3116 20,335.2703 79.4795 177.5122
BJ100_03 19,611.4194 19,739.1057 19,807.4854 69.5798 187.4094
BJ100_04 18,185.2382 18,288.2393 18,365.8098 66.8545 183.9430
BJ100_05 18,450.2424 18,650.0880 18,721.6565 78.3719 177.8560
BJ100_06 17,185.9916 17,292.5207 17,429.9383 100.3186 191.1868
BJ100_07 18,018.7958 18,130.9018 18,231.9109 58.4036 203.7468
BJ100_08 18,077.4404 18,245.1333 18,386.8610 102.6939 190.7556
BJ100_09 17,317.3479 17,414.3330 17,513.4761 57.2721 181.7808
BJ100_10 20,888.4245 20,996.4199 21,191.1938 87.1091 165.4292
Average 18,685.6551 18,816.7178 18,926.9849 77.7338 183.7144

Table 10. Computational result of the Jingdong 1000-node problem.

Algorithm Best
Solution

Mean
Solution

Worst
Solution SD ET

MIHA 140,577.0284 141,085.6778 141,823.7589 365.4070 2331.9363
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Table 11. The mean elapsed time of different instance sizes.

Instance BJ60 BJ100 JD1000

ET 150.6687 183.7144 2331.9363

5.7. Comparison with Other Algorithms

Three heuristic algorithms, i.e., the hybrid tabu search [17], the tabu search, and the
GA [33] were implemented as baselines to compare with our MIHA, the results of which
are recorded in Figures 7 and 8. From Figure 7, we see that MIHA outperformed the hybrid
tabu search, the tabu search, and the GA in terms of solution quality and convergence
speed for all ten instances of BJ100, respectively. Moreover, Figure 8 shows the results of the
four algorithms for the JD1000 instance, where our MIHA not only achieved the lowest cost
but also presented the highest convergence speed. This further demonstrates the significant
advantage of MIHA in solving a large-scale problem.

(a) BJ100_01 (b) BJ100_02

(c) BJ100_03 (d) BJ100_04

(e) BJ100_05 (f) BJ100_06

Figure 7. Cont.
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(g) BJ100_07 (h) BJ100_08

(i) BJ100_09 (j) BJ100_10

Figure 7. The convergence curves of the MIHA, hybrid Tabu search, Tabu search, and GA for
10 instances of BJ100. (The MIHA outperforms other algorithms in terms of solution quality and
convergence speed in all instances of BJ100.)

Figure 8. The convergence curves of MIHA, hybrid tabu search, tabu search, and GA for the JD1000
problem instance.

6. Conclusions

In this paper, we designed a membrane-inspired framework to improve the perfor-
mance of the heuristics when dealing with a realistic and large-scale green open vehicle
routing problem with time windows. The proposed method, i.e., a membrane-inspired
hybrid algorithm, benefits from the parallel distributed structure and a unique communica-
tion strategy in the P system. The computational results based on the Beijing dataset and
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Jingdong instance justified its strong competitiveness against other baselines, where our
algorithm achieved the lowest overall cost, which comprises fuel cost, emission cost, and
driver cost, on all tested instances.

The green open vehicle routing problem with time windows, as a notable variant of the
vehicle routing problem, has considerable value in the vigorous development of the sharing
economy, green logistics, and sustainable society. In the future, more realistic models
involving the green open routes will be investigated, such as the green close–open vehicle
routing problem and variants that consider a heterogeneous fleet. Our algorithm might still
be able to solve them with appropriate modifications, given the desirable generalisation
capability of the membrane-inspired algorithms for solving hard optimisation problems.
We also plan to integrate our work with the deep (reinforcement)-learning-based methods
developed by Li et al. [49], Wu et al. [50], and Xin et al. [51] for solving routing problems,
so that it allows the membrane-inspired algorithms to be more intelligent. In addition, the
engine of the vehicle poses many advantages to improve the performance and parameter
characteristics [52], and carbon emissions can be reduced if an appropriate injection strategy
is adopted [53]. Therefore, the improvement of the engine should be considered in future
work. Future research directions can also focus on developing more optimisation methods
such as the lion optimisation algorithm [54], red deer algorithm [55], etc.
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Notations

G Complete directed graph
N Node set
N0 Customer set
A Arc set
Q Vehicle capacity
w The weight of a vehicle
qi The demand of customer i
si The time cost of the route ending with i
yi The actual starting time for serving node i
dij The length of arc (i, j)
fij The amount of freight flow on arc (i, j)
xij Binary flag variable 1
zr

ij Binary flag variable 2
vr

ij The travel speed of vehicle r on arc (i, j)
[ai, bi] The time window of customer i

References
1. Dantzig, G.B.; Ramser, R.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
2. Long, J.; Sun, Z.; Pardalos, P.M.; Hong, Y.; Zhang, S.; Li, C. A hybrid multi-objective genetic local search algorithm for the

prize-collecting vehicle routing problem. Inf. Sci. 2019, 478, 40–61. [CrossRef]

http://doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1016/j.ins.2018.11.006


Sustainability 2022, 14, 8661 21 of 22

3. Zhang, D.; Cai, S.; Ye, F.; Si, Y.; Nguyen, T.T. A hybrid algorithm for a vehicle routing problem with realistic constraints. Inf. Sci.
2017, 394, 167–182. [CrossRef]

4. Toth, P.; Vigo, D. The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002; p. 9.
5. Repoussis, P.P.; Tarantilis, C.D.; Ioannou, G. The open vehicle routing problem with time windows. J. Oper. Res. 2007, 58, 355–367.

[CrossRef]
6. Moghdani, R.; Salimifard, K.; Demir, E.; Benyettou, A. The green vehicle routing problem: A systematic literature review. J. Clean.

Prod. 2021, 279, 123691. [CrossRef]
7. Bodin, L.; Golden, B.; Assad, A.; Ball, M. Routing and scheduling of vehicles and crews: The state of the art. Comput. Oper. Res.

1983, 10, 63–211.
8. Brandao, J. A tabu search heuristic algorithm for open vehicle routing problem. Eur. J. Oper. Res. 2004, 157, 552–564. [CrossRef]
9. Fleszar, K.; Osman, I.H.; Hindi, K.S. A variable neighbourhood search algorithm for the open vehicle routing problem. Eur. J.

Oper. Res. 2009, 195, 803–809. [CrossRef]
10. Tarantilis, C.D.; Ioannou, G.; Kiranoudis, C.T.; Prastacos, G.P. Solving the open vehicle routing problem via a single parameter

meta-heuristic algorithm. J. Oper. Res. 2005, 56, 588–596. [CrossRef]
11. MirHassani, S.; Abolghasemi, N. A particle swarm optimization algo-rithm for open vehicle routing problem. Expert Syst. Appl.

2011, 38, 11547–11551. [CrossRef]
12. Li, X.; Tian, P.; Leung, S. An ant colony optimization metaheuristic hybridized with tabu search for the open vehicle routing

problem. J. Oper. Res. Soc. 2009, 60, 1012–1025. [CrossRef]
13. Repoussis, P.P.; Tarantilis, C.D.; Braysy, O.; Ioannou, G. A hybrid evolution strategy for the open vehicle routing problem. Comput.

Oper. Res. 2010, 37, 443–455. [CrossRef]
14. Ashtineh, H.; Pishvaee, M. Alternative Fuel Vehicle-Routing Problem: A life cycle analysis of transportation fuels. J. Clean. Prod.

2019, 219, 166–182. [CrossRef]
15. Yu, Y.; Wang, S.; Wang, J.; Huang, M. A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem

with time windows. Transp. Res. Part B Methodol. 2019, 122, 511–527. [CrossRef]
16. Wang, L.; Lu, J. A memetic algorithm with competition for the capacitated green vehicle routing problem. IEEE/CAA J. Autom.

Sin. 2019, 6, 516–526. [CrossRef]
17. Niu, Y.; Yang, Z.; Chen, P.; Xiao, J. Optimizing the green open vehicle routing problem with time windows by minimizing

comprehensive routing cost. J. Clean Prod. 2018, 171, 962–971. [CrossRef]
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