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Abstract: Concrete, the most consumed man-made material worldwide, has shaped the environment
and the modern world. Even though concrete is a major contributor to the carbon footprint, it is
indispensable for building the sustainable world of tomorrow. Researchers have been exploring
ways to reduce the carbon footprint and to implement strategical waste management plans in which
wastes are repurposed. Pollution has been a challenge for almost all countries, especially with the
increase in the release of greenhouse gases in the atmosphere and the emissions resulting from wastes
in unmanaged landfills. Additionally, the areas available for landfills have become scarce. Daily all
around the world, generated are wastes such as wood ash, waste glass, used tires, construction debris,
and demolition wastes. These wastes usually accumulate in landfills for years, as they are mostly
nondecomposable. This research explores a solution to this twofold problem in which concrete
components are replaced by wastes and by-products, which in return reduces the need for raw
materials that have a significant carbon footprint and repurposes wastes as part of a circular economy.
In this research, wood ash is used as a partial replacement of cement and sand, fine crushed glass and
crumb rubber as partial replacements of sand, and crushed glass and recycled concrete aggregates as
partial replacements of gravel. The optimum eco-friendly structural concrete mix was determined
to be the combined mix consisting of 5% wood ash as a partial replacement of cement; 20% wood
ash, 20% fine crushed glass, and 2% crumb rubber as partial replacements of sand; and 5% crushed
glass and 50% recycled concrete aggregates as partial replacements of coarse aggregates. By mass, the
recycled waste materials constituted 32% of the mix, translating into 34% of its volume. Additionally,
identified were mixes that may be used for structural applications.

Keywords: compressive strength; splitting tensile strength; modulus of elasticity

1. Introduction

The negative impacts of the continuous increase in pollution level on mankind and
the environment has become a reality humans are trying to deal with. Creating a healthier
environment has been a concern for scientists for a long time, and disposing of generated
wastes properly proved to be highly effective in treating such problem. One way of
proceeding is by producing an eco-friendly concrete mix combining all of these wastes
while still maintaining acceptable mechanical properties. Concrete, due to its performance,
strength, durability, flexibility, and affordability, a major construction material, is used in
all sorts of buildings, bridges, roads, and dams. Thus, the world is now in pursuit of a
sustainable future which involves repurposing materials to avoid unwarranted waste and
obtain the most value out of the resources, along with minimizing air pollution sources.
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This sustainable future calls for sustainable construction materials development and hence,
an eco-friendly structural concrete mix is desired.

Among the multitude of issues facing our modern world, pollution remains one of
the top challenges that need to be addressed. According to the United Nations Economic
Commission for Europe (UNECE), air pollution is a main environmental health threat and
a major cause of diseases [1]. Carbon dioxide (CO2) is a major air pollutant in terms of
greenhouse effects and is the result of fossil fuel combustions to which cement production
is a tremendous contributor. Cement is a major component of concrete, and its production
is estimated to be the source of 8% of the world’s CO2 [2]. According to Greenspec [3],
the production of 1 ton of cement produces 780 kg of CO2, and it is considered as a
global emitter. However, concrete has transformed into an indispensable component
for the growth of infrastructure and construction and without it, the built environment
is not capable of providing the necessities of modern lifestyles. More than 10 billion
tons of concrete are being produced yearly [4]. Such a volume of concrete necessitates the
extensive utilization of humongous amounts of natural resources for aggregates and cement
production. Limestone quarries and cement manufacturing plants are also considered
as sources of pollution, including the emissions from the trucks hauling the materials.
Currently, even the acquisition of sand can be disastrous, as it is ruining so many of the
world’s beaches and river courses. Therefore, while concrete has shaped the built-up
environment, it has contributed enormously to the carbon footprint.

Landfilling is one of the foremost prevalent methods of disposing municipal and
industrial wastes, but it is also a major contributor to environmental pollution. Other
than the potential threats that landfilling imposes to the soil and groundwater, it also
causes the release of toxic gases and odors if not managed properly. Methane (CH4)
and carbon dioxide (CO2) are among the major greenhouse gases (GHG) emitted from
landfills [5]. These emitted gases and odors have negative effects on the environment and
health. According to the World Health Organization (WHO) [6], around 91% of the world’s
population lives in places where air quality levels exceed acceptable limits. The increase in
population resulted in a higher demand for cars; thus, tire waste is consequently increasing.
Disposing of tires through incineration generates a huge amount of CO2, benzene, and
other toxic substances because of their high combustible properties. Scrap tires, for example,
need 100 years to decompose naturally, resulting in soil poisoning and chemical releasing,
and almost one-quarter of scrap tires end up in landfills each year [7]. Disposing of them in
landfills can inflict several hazards such as tire fires that produce emissions that are even
more toxic than those of a combustor. The only effective eco-friendly way of the disposal of
this waste is through recycling. Tire waste could be grinded into crumb rubber (CR) and
incorporated in concrete mixes [8]. Based on experimental work by Eldin and Senouci [9],
the concrete tensile strength is reduced by 50% and the compressive strength is reduced by
85% if the coarse aggregates are replaced by rubber. Busic et al. [10] proved that partially
replacing fine aggregates in self-compacting concrete by rubber exhibited better, fresh, and
hardened properties in concrete compared to replacing coarse aggregates. According to
experiments conducted by Tripathi and Baniy [11], using crumb rubber in the concrete
mix significantly increased the toughness and ductility of concrete and suggested using
chemical admixtures to increase the compressive strength lost due to the presence of rubber
and still benefit from the ductility. According to Gerges et al. [12], the optimum percentage
of rubber replacing the fine aggregates is 5% to maintain maximum compressive strength
and 10% to maintain maximum flexural strength. Huang et al. [13] proposed an empirical
model relating CR content to the compressive strength of the resulted concrete design.
Wang and Du [14] experimentally verified the thermal and sound insulation and noise
reduction advantages of the incorporation of CR in concrete mix. Recently, Amiri et al. [15]
experimentally investigated the influence of the simultaneous replacements of both CR and
recycled concrete on the mechanical properties and durability of concrete.

Another undecomposable, yet 100% recyclable, waste found in landfills is glass. It
potentially takes one million years for a glass bottle to decompose in the atmosphere, or
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even longer if it is in a landfill. According to the Environmental Protection Agency (EPA),
glass constitutes almost 5% of the municipal solid waste landfilled each year, which is
almost 6 million tons of glass each year [16]. A field in which waste glass may be used is
the construction sector, where the waste glass is reused as aggregate in concrete production
due to the similarities in the physical and chemical properties of sand and glass [17]. Lately,
several papers [18–20] have re-emphasized the benefits and impact of incorporating waste
glass in concrete mix design.

Landfills also receive construction and demolition wastes (CDW), which are the debris
generated during the construction, renovation, and demolition of buildings, roads, and
bridges. EPA supports and recognizes that CDW are resources that could be used in
new construction projects, thus eliminating the need for virgin materials to be mined and
processed [21]. In 2018, the United States produced 600 million tons of CDW, which is more
than twice the amount of the generated municipal solid wastes and is usually dumped
in landfills with exhaustible volume capacities. According to a study by Novková and
Mikulica [22], recycled concrete (RC) aggregates generated from CDW can easily replace
the natural aggregates of concrete, as these form almost 70% of the concrete’s total volume.
Not only does this save the natural resources, but it also saves the space of landfills and
reduces costs if the price of the recycling and separation process is compared with the price
of the energy-intensive aggregate exploitations. Other advantages of using RC include the
reduction in costs in terms of transporting concrete to the landfill and transporting raw
materials to the construction site. It also extends the life of the landfill due to the reduction
in the amount of waste disposal. While the practical use of RC in concrete is rare to find,
several studies show results from the testing of concrete with partial or total replacement
of natural aggregates (NA) by RC. According to Pavlu et al. [23], RC properties depend
on the source, quality of the waste material, percentage ratio of components, and also
on the sieve-fraction of aggregates, and so RC retrieved from different sources presents
different mechanical and physical properties. Veriana et al. [24] indicated that the maximum
replacement rate of NA by RC should range between 30% and 50%. Moreover, according
to Nováková and Mikulica [22], a 20% replacement of natural aggregates with RC had no
negative influence on the physico-mechanical properties of concrete; it also resulted in
a rise in the compressive strength by 5.8% in comparison with the mix containing 100%
NA, and this was attributed to the residual cement contained in RC. A study conducted
by Tošić et al. [25] concluded that by taking the economical, environmental, and technical
aspects into account, structural concrete containing 50% of RC would yield optimal results.
In research conducted by Taffese [26], it was concluded that although RC showed lower
physical and mechanical properties compared with natural aggregates, concrete with 10%
RC had a higher compressive strength than that employing only natural aggregates, and
the splitting tensile strength of the concrete samples composed of up to 20% RC was similar
to that of the NA concrete.

As nations recognize that bioenergy provides a solution for minimizing carbon dioxide
emissions, green energy in the form of biomass is becoming increasingly important. Wood
biomass is considered as a sustainable source of energy and a valuable renewable alternative
to finite fossil fuels. However, a by-product produced in this burning process is wood ash
(WA). WA is a major environmental pollutant and health hazard in the absence of emission
control processes, which are also very expensive [27]. The most common way of disposing
of this waste is either by landfilling or by incineration. Unmanaged landfills increase the
possibility of polluting underground water resulting from the leaching of the heavy metals
in WA and can also cause airborne diseases to neighboring populations. On the other
hand, incineration increases the emissions of carbon dioxide in the atmosphere. According
to Siddique [28], approximately 70% of the WA generated is landfilled, thus leading to
extensive investigation on how to use WA in building materials. According to Naik [29],
WA has a substantial potential for use as a pozzolanic mineral admixture and an activator
in cement-based materials, and it was observed that increasing the replacement percentage
from 0% to 30% of the total binder weight while maintaining the same water–cement ratio
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decreased the slump value of the concrete from 80 mm to 40 mm. The mixture of 12% WA
replacement of the total cement resulted in a compressive strength of 46 MPa, which was
even greater than that of the control mix [30].

Thus, with the advantages and disadvantages of incorporating WA, waste glass, CR,
and RC as individually or at most as two to three simultaneous waste materials replacing
normal concrete mix components have been explored. Consequently, the main objective
of this study is to obtain an eco-friendly concrete mix in which the normal concrete mix
components are mostly replaced by the wastes that generally end up in landfills, accom-
plishing a major step towards a sustainable future. This outcome provides an alternative
solution for landfilling, lowers the environmental impact of concrete manufacturing, and
reduces costs. As a matter of fact, the outcome would be the resolution of a five-fold
problem: cement production, wood, tire, glass wastes disposition, and the concrete debris
from demolition wastes.

2. Experimental Program
2.1. Concrete Mix Components

In this study, besides the natural concrete mix components, five different types of
waste materials that have been commonly used individually and combined with each other
have been selected as substitute recyclables ingredients. Thus, the utilized ingredients in
the concrete mix design are:

Wood ash (WA): The wood ash is a residue resulting from the burning of wood
(Figure 1a) and was collected from a local wood bakery. The grain size of wood ash ranges
between 0.13 mm to 0.60 mm. The specific gravity of WA was determined to be 1.70.

Crumb rubber (CR): Crumb rubber (Figure 1c) consists of fine rubber particles ranging
in size from 0.075 mm to no more than 4.75 mm. Crumb rubber is generated after shredding
the waste tires and removing the steel debris that are found in steel-belted tires.

Crushed glass (CG): Crushed glass (Figure 1d) is a waste glass material that is crushed
in the roller.

Fine crushed glass (FCG): Fine crushed glass (Figure 1b) is a waste glass material that
is crushed in the roller and becomes granulated by sieving. The specific gravity of FCG
was determined to be 2.45.

Recycled concrete (RC): Recycled concrete (Figure 1e) is an aggregate derived from
the crushing of previously used concrete structural elements.

Natural sand (NS): Natural sand, also known as fine aggregates, is a loose granular
substance, usually colored yellowish to brownish; it is a by-product of the erosion of mainly
siliceous rocks, which constitute the main terrain of beaches, riverbeds, seabed, and deserts.
The grain size of sand ranges between 0.13 mm to 4.75 mm.

Gravel: Gravel, also known as coarse aggregates, is any particle greater than 4.75 mm,
but generally ranges between 9.5 mm and 37.5 mm in diameter. Gravel is basically crushed
stone of unconsolidated rock fragments. The most common types of rock used in gravel
are sandstone, limestone, and basalt.

Ordinary Portland Cement (OPC): The final element added to the mixture is Ordinary
Portland Cement (PAL 42.5), also known as Cement Type I. The mix resulting from the
utilization of this cement is the most adaptable, long-lasting mortar/concrete and represents
the most widely used cement in construction sites.

Water (W): The water used in the mixture is distilled water, with all sorts of impurities
removed, leading to the reduction in any potential sources of inaccuracies.

Sieve analysis for these coarse and fine aggregates was conducted according to ASTM
C136 [31]. Figure 2 displays the sieve analysis results for the three coarse aggregates and
for the four fine aggregates. The particle size distributions of recycled concrete aggregates
and crushed glass are like that of the gravel. The grain size distributions of the four fine
aggregates is reasonable, around the limits as defined by the ASTM standards [31]. It is
worth mentioning that wood ash partially replacing natural sand was used to substitute
the finer particles of the fine aggregates in the mixes.



Sustainability 2022, 14, 8660 5 of 24Sustainability 2022, 14, x FOR PEER REVIEW 5 of 27 
 

 
(a) (b) (c) 

  
(d) (e) 

Figure 1. The Five Waste Materials used in the Mortar Mix Design. (a) Wood Ash (WA). (b) Fine 
Crushed Glass (FCG). (c) Crumb Rubber (CR). (d) Crushed Glass (CG). (e) Recycled Concrete (RC). 

Sieve analysis for these coarse and fine aggregates was conducted according to ASTM 
C136 [31]. Figure 2 displays the sieve analysis results for the three coarse aggregates and 
for the four fine aggregates. The particle size distributions of recycled concrete aggregates 
and crushed glass are like that of the gravel. The grain size distributions of the four fine 
aggregates is reasonable, around the limits as defined by the ASTM standards [31]. It is 
worth mentioning that wood ash partially replacing natural sand was used to substitute 
the finer particles of the fine aggregates in the mixes. 

Figure 1. The Five Waste Materials used in the Mortar Mix Design. (a) Wood Ash (WA). (b) Fine
Crushed Glass (FCG). (c) Crumb Rubber (CR). (d) Crushed Glass (CG). (e) Recycled Concrete (RC).

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 27 
 

 
Figure 2. Sieve Analysis Results for the Coarse and Fine Aggregates Materials. 

The chemical compositions of the fine crushed glass and the wood ash are displayed 
in Table 1. As for the crumb, it is the usual composition of rubber tires. Two main synthetic 
rubber polymers used in tire manufacturing are butadiene rubber and styrene butadiene 
rubber. These rubber polymers are used in combination with natural rubber. Variations 
in the physical and chemical properties of these rubber polymers determine the perfor-
mance of each component in the tire as well as the overall tire performance. 

Table 1. Chemical Composition of Fine Crushed Glass. Wood Ash, Crumb Rubber, and 
Crushed Glass. 

Composition % FCG % WA % CR % CG 
SiO2 70.56 37.86 26.5 72.61 

AL2O3 1.54 13.24 8.7 1.38 
Fe2O3 0.42 6.91 9.3 0.48 
CaO 10.38 18.83 12.9 11.70 
MgO 1.95 4.11 6.4 0.56 
Na2O 14.14 1.39 1.4 13.12 
K2O 0.36 2.36 1.1 0.38 
SO3 --------- ---------- 1.6 0.09 
TiO2 --------- ---------- 1.0 --------- 

CI ---------- ---------- 0.1 --------- 
Zn ----------- ----------- 20.2 --------- 

Loss on Ignition 0.65 15.3 10.8 0.22 
  

0%

20%

40%

60%

80%

100%

0.010.1110100

Pa
ss

in
g C

um
ul

at
iv

e 
(%

)

Particle Size (mm)

Natural Sand Wood Ash
Crumb Rubber Fine Crushed Glass
Recycled Concrete Aggregates Crushed Glass
Gravel

Figure 2. Sieve Analysis Results for the Coarse and Fine Aggregates Materials.

The chemical compositions of the fine crushed glass and the wood ash are displayed
in Table 1. As for the crumb, it is the usual composition of rubber tires. Two main synthetic
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rubber polymers used in tire manufacturing are butadiene rubber and styrene butadiene
rubber. These rubber polymers are used in combination with natural rubber. Variations in
the physical and chemical properties of these rubber polymers determine the performance
of each component in the tire as well as the overall tire performance.

Table 1. Chemical Composition of Fine Crushed Glass. Wood Ash, Crumb Rubber, and Crushed
Glass.

Composition % FCG % WA % CR % CG

SiO2 70.56 37.86 26.5 72.61

Al2O3 1.54 13.24 8.7 1.38

Fe2O3 0.42 6.91 9.3 0.48

CaO 10.38 18.83 12.9 11.70

MgO 1.95 4.11 6.4 0.56

Na2O 14.14 1.39 1.4 13.12

K2O 0.36 2.36 1.1 0.38

SO3 ——— ———- 1.6 0.09

TiO2 ——— ———- 1.0 ———

CI ———- ———- 0.1 ———

Zn ———– ———– 20.2 ———

Loss on Ignition 0.65 15.3 10.8 0.22

2.2. Concrete Mix Design

The concrete mix design was conducted in a fashion to serve the main scope of this
study, which is to establish the most eco-friendly concrete mix resulting from replacing the
largest quantity of raw/recycled materials with solid wastes while realizing an optimum
mix. Several mix design combinations were examined for this purpose. The concrete
mixing, casting, curing, and test samples preparation was conducted according to ASTM
C192 [32]. In this study, all types of concrete mixes were realized at a constant water-to-
cement ratio (w/c) of 0.5. A normal concrete mix was defined and tested as a control
mix. The control mix resulted from a combination of 320 kg/m3 of cement, 160 kg/m3 of
water, 740 kg/m3 of sand, and 1240 kg/m3 of gravel. More than 60 different mixes were
casted by partially replacing cement by wood ash, sand by crumb rubber and/or wood ash
and/or fine crushed glass, and gravel by recycled concrete aggregates and/or or crushed
glass. Table 2 summarizes the concrete mix components and the partial replacement ratios
explored utilizing individual waste materials.

Table 2. Mix Component Replacement Percentages with Individual Waste Type.

Waste Type Replaced Component Percentage Replacements
WA Cement 2%, 4%, 6%, 8%, 10%, 15%, and 20%

WA NS 2%, 10%, 15%, 20%, 25%, and 30%

CR NS 1%, 2%, 3%, 4%, and 5%

FCG NS 10%, 20%, and 30%

CG Gravel 5%, 10%, 20%, 30%, 40%, and 50%

RC Gravel 20%, 25%, 40%, 50%, 60%, 75%, 80%, and 100%

A second set of concrete mixes in which two types of waste replacement percentages
were incorporated are summarized in Table 3.
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Table 3. Mix Component Replacement Percentages with Two Waste Types.

Material WA: Cement
RC: Gravel

WA: Cement
CR: NS

WA: Cement
CG: Gravel

CR: NS
RC: Gravel

CR: NS
CG: Gravel

WA: NS
RC: Gravel

2% WA 2% WA 4% WA 4% CR 4% CR 10% WA

25% RC 4% CR 5% CG 25% RC 5% CG 50% RC

4% WA 4% WA 4% WA 4% CR 4% CR 15% WA

25% RC 2% CR 10% CG 50% RC 10% CG 75% RC

2% WA 2% WA 2% WA 2% CR 2% CR 20% WA

% Replacement

50% RC 2% CR 10% CG 50% RC 10% CG 100% RC

A third set of mixes in which three types of wastes were incorporated are summarized
in Table 4.

Table 4. Mix Component Replacement Percentages with Three Waste Types.

Material WA: Cement, CR: NS, and RC: Gravel WA: Cement, CR: NS, and CG: Gravel

2% WA + 2% CR + 25% RC 2% WA + 2% CR + 5% CG

2% WA + 2% CR + 50% RC 2% WA + 2% CR + 10% CG

2% WA + 4% CR + 25% RC 2% WA + 4% CR + 5% CG

2% WA + 4% CR + 50% RC 2% WA + 4% CR + 10% CG

4% WA + 2% CR + 25% RC 4% WA + 2% CR + 5% CG

4% WA + 4% CR + 25% RC 4% WA + 4% CR + 5% CG

4% WA + 2% CR + 50% RC 4% WA + 2% CR + 10% CG

% Replacement

4% WA + 4% CR + 50% RC 4% WA + 4% CR + 10% CG

2.3. Conducted Experiments

For each mix type, three cylindrical specimens 15 cm by 30 cm were cast for each
experiment, and the following parameters were obtained according to the applicable
ASTM standards

• Slump test according to ASTM C143 [33];
• Compressive strength at 7, 28, and 90 days according to ASTM C39 [34];
• Modulus of elasticity according to ASTM C597 [35] and ASTM C469 [36].
• Splitting tensile strength at 28 days according to ASTM C496 [37];

After all the parameters were obtained for the individual component replacements, a
rational procedure was adopted to select eco-friendly mixes to replace the greatest number
of natural raw materials with recycled wastes while yielding a concrete mix with adequate
properties required for structural applications.

3. Results

In this portion of the research, 51 mixes containing different percentages of replacement
of wood ash, crumb rubber, fine crushed glass, crushed glass, and recycled concrete
aggregates were prepared and tested for their slumps, compressive strengths, splitting
tensile strengths, and moduli of elasticity. Eco-friendly mixes that can be used for structural
purposes are defined to be mixed containing waste products as partial replacements of
normal components and having a 28-day compressive strength greater than 18 MPa in
accordance with ACI (Section 19.2.1.1) [38].

3.1. Slump Test Results

Figure 3 represents the slump test results for individual waste material replacement
ratios conducted according to ASTM C143 [33]. The results indicated that increasing the
replacement ratios of cement by WA caused a slight decrease in the slump ranging from 1%
to 3%. Moving on to replacing sand by WA, as the percentages of replacements increased,
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the graphs indicate a variation in the slump values ranging from an increase of 1% to
a decrease of 3%. Replacing sand by CR, as the percentages of replacements increased,
the graphs indicated a variation in the slump values ranging from a decrease of 1% to an
increase of 2%. Replacing sand by FCG, the slump test results indicated a variation of
less than 1%. When gravel was replaced by CG, the workability increased as the slump
increased from 16.5 cm for the control mix to reach 17.2 cm at 50% replacement. The
slump hardly increased as the percentage of replacement increased, but the effect was
negligible. Replacing gravel by recycled concrete showed similar results as the crushed
glass by increasing the workability. However, the recycled concrete had a reduced effect
on the workability as the slump result was increased proportionally to the percentage of
replacement, reaching 17 cm at 100% replacement. Therefore, recycled concrete slightly
increases the workability of the concrete but has a reduced effect over the crushed glass.
Examining the slump test results for mixes with replacements of two waste materials,
as shown in Figure 4, reveals that there is an insignificant decrease that varies from as
high as 3% to an increase of up to 2%. However, for the slump test results for mixes with
replacements of three waste materials, as shown in Figure 5, the results are either similar
or show an increase of up to 4%. Thus, the variation in slump upon replacing different
percentages of single or multiple waste types is negligible, which indicates that these
replacements do not significantly affect the workability.
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Figure 3. Slump (cm) for Single-Waste-Material Replacement.
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Figure 4. Slump (cm) for Two-Types-of-Waste Replacements.

3.2. Compressive Strength Results

The compressive strength tests (Figure 6) were conducted according to ASTM C39 [34]
at 7, 28, and 90 days after curing. Thus, the effects of these waste materials on early strength,
effective strength, and long-term strength are explored. Figures 7–9 represent the results
for single-waste-material replacements. As the percentage of WA replacement for cement
increased, the compressive strength decreased. However, it was noticed that the percentage
decrease in the compressive strength in comparison with the control mix became less over
time. At 7 days, a 5% replacement decreased the compressive strength by 64%, while at
90 days the decrease was 28%. This indicates that WA resulted in a relative increase in
strength over the long term. The 5% replacement of cement by WA provided the best results
and was chosen for the most eco-friendly mix. Upon replacing 10% of sand by WA, the
compressive strength decreased. This was followed by a gradual increase in compressive
strength as the replacement percentage reached 20%. Thus, 20% as the optimal replacement
percentage was chosen because it resulted in a 90-day compressive strength greater than
that of the control mix.
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Figure 5. Slump Test for Three-Types-of-Waste Replacements.
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Figure 6. Concrete Cylinder Tested in Compression.
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Figure 7. Histogram of Compressive Strength Results for Single-Waste-Material Replacement at
7 Days.
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Figure 8. Histogram of Compressive Strength Results for Single-Waste-Material Replacement at
28 Days.
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Figure 9. Histogram of Compressive Strength Results for Single-Waste-Material Replacement at
90 Days.

There was a very rapid decrease in the compressive strength when sand was replaced
by CR at 90 days. A mere 5% replacement resulted in a 50% decrease in the compressive
strength. Thus, for the optimum mix, a 2% sand replacement by CR was chosen. FCG re-
sults in an optimal strength for a 20% replacement of sand. It is noticed that the percentage
difference of the compressive strength barely varied over time. At 10% replacement, the
percentage decrease in compressive strength at 7, 28, and 90 days was 24%, and at 30%
replacement it was 32%. Replacing 10% of the medium aggregates by CG decreased the
compressive strength by 59%, 40%, and 18% at 7, 28, and 90 days, respectively, thus indicat-
ing that CG resulted in an increase in the compressive strength over time. Consequently,
the 5% replacement was adopted to ensure that the compressive strength of the eco-friendly
mix still resulted in a satisfactory strength. For up to 40% replacement of gravel by RC,
the concrete mix compressive strength decreased, whereas an increase in the replacement
ratio of more than 40% resulted in an increase in the compressive strength. At 90 days,
the percentage difference in the compressive strength was merely 4% when all the coarse
aggregates were replaced by RC.
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Figures 10 and 11 represent the compressive results for two- and three-waste-materials
replacements. For two-waste-materials replacements, the combination of 10% WA replacing
sand with 50% RC replacing gravel and 20% WA replacing sand with 100% RC replacing
gravel had displayed an improved compressive strength compared to the reference mix.
The best performance for three-waste-materials replacements was the combination of 2%
WA for cement, 2% CR for sand, and 5% CG for gravel, but still it was less than the reference
mix by 7.83%.
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Figure 10. Compressive Strength for Two-Waste-Materials Replacements at 7, 28, and 90 days.

3.3. Modulus of Elasticity

The modulus of elasticity for concrete (Ec) is an important parameter that shows the
ability of concrete to deform elastically. Building specifications often require that specific
values of the modulus of elasticity must be met to ensure that the structural integrity of the
building is satisfactory and to prevent unsatisfactory deformations. In this research, the
modulus of elasticity was obtained using three different ways which are listed below:
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# Modulus of elasticity test using ultra-sonic pulse velocity test according to ASTM
C597 [35];

# Modulus of elasticity computation based on the 28-day compressive strength of
concrete according to ACI 318 [38];

# Modulus of elasticity test using a Compressometer according to ASTM C469 [36].
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Figure 11. Compressive Strength for Three-Waste-Materials Replacements at 7, 28, and 90 days.

Figures 12–14 represent the results of the three methods used to obtain the moduli
of elasticity upon partially replacing the normal mix materials with the individual waste
materials at different percentages. The graphs presented indicate that a replacement of sand
by WA up to 20% would keep similar results for the modulus of elasticity. However, the
values significantly decreased with 25% and 30% replacement. As for replacing cement by
WA, a significant decrease was recorded between the control mix and the 5% replacement,
and then slight decreases were recorded as the percentage of replacement increased to
reach up to 20%. While replacing gravel by RCA, the value of the elastic modulus dropped
significantly compared to a 20% replacement by the control mix and then increased as
the percentage of replacement increased, almost matching the control mix results at 100%
replacement. Replacing sand by FCG decreased the value of the modulus of elasticity by
10% with 10% and 20% displacement. A value of 30% replacement showed even less values
for the modulus of elasticity. Using CG as a replacement for gravel, slight changes in the
modulus of elasticity were recorded with a decrease that reached up to 20% of the value
obtained by the control mix as the percentages of replacement varied from 5% to 50%.
Replacing sand by CR recorded the greatest decrease in the modulus of elasticity with 5%,
10%, 15%, and 20%. The decrease in the value of the modulus of elasticity reached up to
50% with a 20% replacement.
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Figure 12. Modulus of Elasticity using UPV Method for Single-Waste-Material Replacement.
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Figure 13. Modulus of Elasticity using ACI Method for Single-Waste-Material Replacement.
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Figure 14. Modulus of Elasticity using Stress–Strain Curve for Single-Waste-Material Replacement.

3.4. Splitting Tensile Strength

Concrete is not normally designed to resist direct tension; however, the knowledge of
the tensile strength of concrete is important because it determines the resistance to cracking.
The splitting tensile strength (Figure 15) was conducted according to ASTM C496 [37].
Figure 16 represents the results for replacing individual waste materials at different per-
centages. Starting off by replacing sand by WA, the splitting strength decreased at 10%,
25%, and 30% replacement and increased at 15% and 20% replacement. As the control
mix recorded a splitting strength of 2.85 MPa, the lowest value recorded was 1.96 MPa
at 30% replacement, and the highest value recorded was 3.1 MPa at 20% replacement.
Replacing cement by WA significantly decreased the splitting strength of the concrete as
the percentage of replacement increased. The control mix recorded 2.85 MPa compared
to a sample with 20% replacement of cement by WA at 1.17 MPa. Replacing sand by CR
decreased the splitting strength as well: 2.85 MPa for the control mix down to 0.9 MPa for
20% replacement. This sharp decrease should be taken into consideration while choosing
the replacement percentage of sand by CR. Replacing sand by FCG decreased the splitting
strength of the concrete but to a lesser extent compared to the effect of replacing sand
by CR and WA. Replacing gravel by CG decreased the splitting strength to a value of
1.24 MP at 50% replacement and resulted in a 56% reduction compared to the control
mix. The decrease in the splitting strength increased as the percentage of replacement
increased. Finally, replacing gravel by RC displayed a decrease in the splitting strength to
2.06 MPa at 20% replacement. However, the splitting strength increased as the percentage
of replacement increased, reaching a value of 2.87 MPa at 100% replacement.
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Figure 16. Splitting Tensile Strength for Single-Waste-Material Replacement.
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Figure 17 represents the splitting tensile strength results for replacing two waste mate-
rials at different percentages and combinations. Three mixed replacement combinations
exceeded the values obtained for the reference mix, and they resulted from:

• A total of 5% WA for cement and 20% WA for sand with an increase of 6.6%;
• A total of 15% WA for cement and 75% RC for gravel with an increase of 6.6%;
• A total of 20% WA for cement and 100% RC for gravel with an increase of 7.9%;
• A total of 2% CR for cement and 50% RC for gravel with an increase of 2.4%
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Figure 17. Splitting Tensile Strength for Two-Types-of-Waste-Materials Replacements.

Figure 18 represents the splitting tensile strength results for replacing three waste
materials at different percentages and combinations. The only mix replacement combina-
tion that exceeded the values obtained for the reference mix by 11.4% resulted from the
replacement combination of 2% WA for cement, 5% CR for sand, and 5% CG for gravel.
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Figure 18. Splitting Tensile Strength for Three-Types-of-Waste-Materials Replacements.

4. Eco-Friendly Mixes

In this study, the most eco-friendly criteria were set for mixes containing more than
20% waste materials replacing normal materials. Table 5 explores the eco-friendly structural
concrete mixes realized in this study. In the optimum eco-friendly concrete mix design,
cement was replaced by mass at 5% by WA; sand was replaced by volume with 20% of WA,
2% with CR, and 20% by FCG; and gravel was replaced by 5% CG and 50% RCA by volume.
These percentages were adopted, as they represented the highest percentage that each waste
material attained individually. Figure 19 displays the slump test results, displaying a slight
decrease in the slump compared to the control mix with a value of 0.1 cm. In Figure 20, the
results for the compressive strength indicate a decrease compared to the control mix, which
recorded 21.1 MPa, 28.1 MPa, and 29.9 MPa at 7, 28, and 90 days, and the most eco-friendly
mix, which recorded 16.5 MPa, 18.7 MPa, and 23.4 MPa. However, mix 1 is superior to
the reference mix at 28 and 90 days and is less at 7 days. Regardless, the limitation of
using the concrete for structural applications requires maintaining compressive strength
above 18 MPa at 28 days [33], which is met in the most eco-friendly mix. In Figure 21,
the optimum eco-friendly mix records a decrease in the elastic modulus compared to the
control mix. In Figure 22, the splitting tensile strength slightly decreases from 2.85 MPa for
the control mix to 2.62 MPa for the most eco-friendly mix. This decrease is considered an
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acceptable reduction, taking into consideration the huge environmental impact realized by
this mix.

Table 5. Eco-Friendly Mixes.

Mix Number Mix Waste Components f’c28 (MPa) % Replacement by Volume

RC Replacing Gravel

Mix a 80% RC 22.11 20.95

Mix b 100% RC 23.34 26.19

WA Replacing Sand + RC Replacing Gravel

Mix 1 20% WA, 100% RC 30.73 35.33

Mix 2 15% WA, 75% RC 25.88 26.5

WA Replacing Cement + CR and WA Replacing Sand + RC Replacing Gravel

Mix 3 Optimum Eco-Friendly Mix 18.69 34.63
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5. Conclusions

This study investigated WA as a partial replacement for cement and sand, FCG and
CR as partial replacements for sand, and CG and RC as partial replacements for gravel to
reduce both the contribution of concrete to the carbon footprint and the depletion of the
corresponding natural resources, along with the benefit of diverting wastes from landfills.
The optimum mix or the most eco-friendly mix resulted from the replacement percentages
of 2% CR, 50% RC, 20% FCG, 5% CG, and 20% WA for sand and 5% WA for cement,
providing adequate results in terms of the mechanical properties producing structurally
worthy concrete.
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Some more comprehensive observations about of the key findings in these replacement
ratios of single-, two-, and three-waste materials are:

• Slump

# An increase in the percentages of the RC replacement of gravel resulted in an
increase in slump due to the irregularity of the RC shape.

# An increase in the percentages of the CG replacement of gravel resulted in
an increase in slump as a result of a smooth surface and the angular shape of
glass waste.

# An increase in the percentages of the WA replacement of cement resulted in
a decrease in slump due to the additional absorption of WA, resulting in a
decrease in the water–cement ratio.

# An increase in the percentages of the CR replacement of sand resulted in an
increase in slump after an initial decrease at the lower replacement percentages
due to the smooth surface of the CR.

# An increase in the percentages of the WA replacement of sand resulted in an
increase in slump after an initial decrease at the lower replacement percentages
due to the increase in the material that could be classified as binder.

# An increase in the percentages of the FCG replacement of sand resulted in an
increase in slump due to the minute size of material allowing it to fill voids.

# For two-waste-materials replacement percentages, the slump was equal or
exceeded the reference mix except for the cases where one of the waste materials
was WA replacing sand, which resulted in lower slump values, as indicated
previously for only WA replacement.

# For three-waste-materials replacement percentages, the slump was equal or
exceeded the reference mix for the combinations, as the different materials were
able to compensate for each other’s deficiencies.

• Compressive Strength

# For individual waste materials replacement: The seven-day tests for 20% WA
replacing sand results achieved the maximum value but still less than the
reference mix, with the 28-day results being almost identical to the reference
mix. As for the 90-day results, the 15% and 20% WA replacing sand resulted in
almost identical values as the reference mix. In addition, a great improvement
in values for 5% CG for gravel and 100% RC for gravel were obtained. Both
WA and CG had binder effects and RC added a residue of cement to the mixes.

# For two-waste-materials replacement: The test results at 90 days for 10%, 15%,
and 20% WA replacing sand combined with 50%, 75%, and 100% RC replacing
gravel reached greater values than those of the reference mix, whereas 5% WA
for cement in combination with 25% WA for sand resulted in almost identical
values as the reference mix at 90 days.

# For three-waste-materials replacement: The best test results were at 90 days for a
combined mix of 2% WA replacing sand, 2% CR replacing sand, and 5% CG
replacing gravel, which reached a value of almost 95% of the reference mix.

• Splitting Tensile Strength

# For individual waste materials replacement: The test results for 15% and 20% WA
replacing sand achieved greater values than the reference mix, whereas the
test results for 100% RC replacing gravel were almost identical to those of the
reference mix.

# For two-waste-materials replacement: The test results for the combination of 5%
WA replacing cement plus 25% WA replacing sand, 15% WA replacing sand
plus 75% RC replacing gravel, 20% WA replacing sand plus 100% RC replacing
gravel, and 2% CR replacing sand plus 50% RC replacing gravel reached greater
values than the results of the reference mix.
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# For three-waste-materials replacement: The only test results that were greater
than those of the reference mix were realized from a combined mix of 2% WA
replacing sand, 2% CR replacing sand, and 5% CG replacing gravel.

In the control mix, water, cement, sand, and gravel constituted, respectively, 7.05%,
14.1%, 49.79%, and 29.05% of the total mass of the concrete mix. In the optimum eco-friendly
mix, and upon replacing cement by 5% of WA by mass, replacing sand by 2% of CR, 20% of
WA, and 20% FCG by volume, and replacing gravel by 5% and 50% by the volume of CG
and RC, respectively, the total replacement of wastes was 32% by mass and 34% by volume.

Author Contributions: Conceptualization and Methodology: N.N.G. and C.A.I. Experimental Work:
S.A., J.S. and R.A. Validation: E.S. Supervision: M.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data, models, and code generated or used during the study appear
in the article.

Acknowledgments: The support of the Civil Engineering Laboratory at the University of Balamand
is highly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. UNECE. Air Pollution. Available online: https://unece.org/air-pollution-and-health (accessed on 24 February 2022).
2. Lehne, J.; Preston, F. Making Concrete Change: Innovation in Low-Carbon Cement and Concrete. 2018. Available online:

https://www.chathamhouse.org/2018/06/making-concrete-change-innovation-low-carbon-cement-and-concrete (accessed on
24 February 2022).

3. Greenspec. Environmental Impacts of Concrete. Available online: https://www.greenspec.co.uk/building-design/
environmental-impacts-of-concrete/ (accessed on 24 February 2022).

4. Meyer, C. Concrete Materials and Sustainable Development in the United States. Struct. Eng. Int. 2004, 14, 203–207. [CrossRef]
5. Sonibare, O.O.; Adeniran, J.A.; Bello, I.S. Landfill air and odor emissions from an integrated waste management facility. J. Environ.

Health Sci. Eng. 2019, 17, 13–28. [CrossRef] [PubMed]
6. WHO. Air Pollution. 2016. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_2 (accessed on

24 February 2022).
7. IPEC. Waste Tires Treatment Technologies. Available online: https://tdplant.com/news/waste-tires-conversion-technologies

(accessed on 24 February 2022).
8. Issa, C.A.; Salem, G. Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Constr. Build. Mater. 2013, 42,

48–52. [CrossRef]
9. Eldin, N.N.; Senouci, A.B. Rubber-tire particles as concrete aggregate. J. Mater. Civ. Eng. 1993, 5, 478–496. [CrossRef]
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