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Abstract: Consisting of ten cities in four Chinese provinces, the Huaihai Economic Zone has suffered
serious air pollution over the last two decades, particularly of fine particulate matter (PM2.5). In this
study, we used multi-source data, namely MAIAC AOD (at a 1 km spatial resolution), meteorological,
topographic, date, and location (latitude and longitude) data, to construct a regression model using
random forest to estimate the daily PM2.5 concentration over the Huaihai Economic Zone from 2000 to
2020. It was found that the variable expressing time (date) had the greatest characteristic importance
when estimating PM2.5. By averaging the modeled daily PM2.5 concentration, we produced a yearly
PM2.5 concentration dataset, at a 1 km resolution, for the study area from 2000 to 2020. On comparing
modeled daily PM2.5 with observational data, the coefficient of determination (R2) of the modeling
was 0.85, the root means square error (RMSE) was 14.63 µg/m3, and the mean absolute error (MAE)
was 10.03 µg/m3. The quality assessment of the synthesized yearly PM2.5 concentration dataset
shows that R2 = 0.77, RMSE = 6.92 µg/m3, and MAE = 5.42 µg/m3. Despite different trends from
2000–2010 and from 2010–2020, the trend of PM2.5 concentration over the Huaihai Economic Zone
during the 21 years was, overall, decreasing. The area of the significantly decreasing trend was
small and mainly concentrated in the lake areas of the Zone. It is concluded that PM2.5 can be
well-estimated from the MAIAC AOD dataset, when incorporating spatiotemporal variability using
random forest, and that the resultant PM2.5 concentration data provide a basis for environmental
monitoring over large geographic areas.

Keywords: particulate matter; random forest; MODIS; aerosol optical depth; trend analysis; Huaihai
Economic Zone

1. Introduction

PM2.5 has become a great threat to human health, increasing the risk of respiratory
and cardiovascular diseases [1]. The World Health Organization (WHO) has reported that
nearly 90% of global population breathe air exceeding WHO air quality limits [2,3]. It is
estimated that air pollution has claimed 6.67 million deaths worldwide in 2019 [4] and
nearly 2 million deaths in China every year [2], which makes air pollution the fourth largest
risk factor for global mortality [4]. China’s 337 cities experienced a total of 345 days of
severe pollution and 1152 days of serious pollution in 2020, with PM2.5 pollution accounting

Sustainability 2022, 14, 8520. https://doi.org/10.3390/su14148520 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14148520
https://doi.org/10.3390/su14148520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9845-944X
https://orcid.org/0000-0001-7763-1108
https://doi.org/10.3390/su14148520
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14148520?type=check_update&version=1


Sustainability 2022, 14, 8520 2 of 22

for 77.7% of days of serious pollution [5]. Due to the dispersion of air pollution from two
neighboring regions (the Beijing-Tianjin-Hebei Region and the Yangtze River Delta Region
(Figure 1a)), and severe air pollutant emissions of its own, the Huaihai Economic Zone
has serious air pollution [6–9]. The air quality of the 10 cities in the Huaihai Economic
Zone is lower than the national average level for the same period [10]. It is evident that the
importance of air pollution in China and the Zone cannot be underestimated. However,
no attempts have yet been made to estimate the PM2.5 concentration specifically over this
large area and examine its spatiotemporal evolution for a long period.
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Traditionally, PM2.5 is observed at ground-based sites. Due to the limited number
and uneven distribution of ground-based sites, PM2.5 data generally tend to have low
spatial coverage. Additionally, the ground-based monitoring network was built quite late
in China and there is an absence of long-term PM2.5 data records [11], which hinders PM2.5
studies that rely on time-series data. Such issues can however be addressed using remote
sensing observations. PM2.5 can be inferred from aerosol optical depth (AOD) data, due
to the correlation between AOD and PM2.5 [12]. Satellite-derived AOD data have a wide
spatial coverage and high temporal and spatial resolutions, providing an effective way to
monitor near-ground PM2.5 concentration and address the spatial discontinuity of ground-
based PM2.5 data [13,14]. The correlation between satellite-derived AOD data and PM2.5
concentration data allows the mapping of PM2.5 concentration at reliable levels of accuracy
and continuous spatial coverage, which is crucial for characterizing the spatial variability
of PM2.5 concentration and formulating a context-specific, rather than one-size-fits-all, air
pollution control policy [15].

AOD-based PM2.5 estimation methods can be roughly divided into three categories,
namely, empirical statistical methods, chemical transfer models, and vertical correction
models. The chemical transfer models are more data-demanding and more influenced
by uncertainties in emission inventories and model parameters, and the vertical revision
method does not account for the vertical stratification structure of PM2.5. Compared with
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these two methods, empirical statistical models are considered to be simpler, faster, and
more accurate [16]. In empirical statistics methods, machine learning is considered more
effective in addressing the relationships between variables with high autocorrelation and
complex interactions than traditional linear regression models [17]. Machine learning can
better handle large volumes of multi-dimensional and multi-variety data and more easily
discover trends and patterns from time series data than traditional methods [18,19]. As
one of the most popular machine learning methods, random forest is generally recognized
as superior to other machine learning regression models because it assumes no normality,
is faster and easier to run, returns feature importance, and possesses better prediction
accuracy [18–21]. Therefore, it has been widely used for various purposes, such as disease
prediction [22], risk assessment [23,24], and PM2.5 concentration estimation [20,25,26].

In previous studies on machine learning modeling of PM2.5 concentration, auxiliary
variables other than AOD fall into the following categories: meteorological parame-
ters [27–32], land use types [28,30], topography [32], and other associated pollutant
factors [31]. Since PM2.5 concentration has seasonal differences [33] and spatial autocor-
relation [34,35], the influences of time and geographical location on PM2.5 concentration
should be considered in the process of modeling PM2.5 concentration at a 1 km resolution.
In order to improve estimation accuracy, this study intends to take the spatiotempo-
ral heterogeneity of PM2.5 concentration into account by adding date, latitude, and
longitude as extra predictor variables.

This study focuses on the estimation of daily PM2.5 concentration from the 1-km
resolution MAIAC AOD dataset over the Huaihai Economic Zone during 2000–2020. The
specific objectives of this study are: (1) testing random forest for modeling daily PM2.5
concentration at a 1 km resolution by combining AOD, meteorological, topographic, date,
and location data, (2) producing a yearly PM2.5 concentration dataset at a 1 km resolution
for the study area from 2000–2020 by averaging the model daily PM2.5 concentration data
and assessing its quality, and (3) unraveling the trend of PM2.5 concentration in the study
area over the 21 years.

2. Data and Methods
2.1. Study Area

Among the earliest regional economic cooperation organizations in China, the Huaihai
Economic Zone was established in 1986 and initially involved 20 cities in the Shandong,
Jiangsu, Henan, and Anhui provinces. Xuzhou has been officially assigned as the central
city of the zone by the State Council of China [36]. In November 2018, China confirmed
that the zone consists of 10 major prefectural cities (Figure 1b), 3 Jiangsu cities (Xuzhou,
Lianyungang, and Suqian), 4 Shandong cities (Zaozhuang, Linyi, Heze, and Jining), 1
Henan city (Shangqiu), and 2 Anhui cities (Huaibei and Suzhou) [37].

The climate in the zone belongs to the typical temperate continental monsoon climate
that is characterized by distinct seasons, with a hot, rainy summer (June–August) and a
cold, dry winter (December–February). The elevation is low in the south and high in the
north, with an average elevation of 63.02 m. In total, the zone covers a geographical area of
95,805 km2 and a population of over 72.61 million. Among the 10 cities, Xuzhou, Suqian,
Zaozhuang, Jining, Huaibei, and Suzhou are resource-based cities and there has long been
concern over their air pollution issues. The rapid socioeconomic development in the zone,
particularly urban expansion and population growth, in the last two decades, has further
lowered the regional air quality.

2.2. Data
2.2.1. Ground-Observed PM2.5 Data

In the study area, there are 79 monitoring sites recording PM2.5 data (Figure 1b), as
part of the China Environmental Monitoring Station. These sites provide hourly PM2.5
concentration data over the study area. As MODIS satellites pass the study area from
10 a.m. to 2 p.m., hourly PM concentration data during these five hours were selected for
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this study (Table 1). The selected hourly PM2.5 concentration data were averaged as the
observed daily PM2.5 concentration.

Table 1. Information on the variables involved in the PM2.5 concentration estimation.

Type Name (Abbreviation) Data Source Description Time Period

Ground Observed
PM2.5 Data PM2.5

http://www.cnemc.cn/zzjj/
(accessed on 5 April 2022)

Hourly PM2.5 from 10:00 am
to 2:00 pm was averaged as

Daily PM2.5

1 January 2015–
31 December 2020

AOD Data AOD

MODIS/Terra Land Aerosol
Optical Thickness Daily L2G
Global 1 km SIN Grid V006

https://search.earthdata.nasa.gov
(accessed on 10 April 2022)

1 km resolution 1 January 2000–
31 December 2020

Meteorological Data

Wind speed (WS)

ERA5-Land hourly data from 1950
to present

https://cds.climate.copernicus.eu
(accessed on 7 April 2022)

Originally 0.1◦ and
resampled to 1 km

1 January 2000–
31 December 2020

boundary layer height (BLH)

2m temperature (T2M)

near-surface pressure (SP)

Total precipitation (TP)

Topographic Data Surface elevation (SE)
STRMDEM dataset

http://www.gscloud.cn/search
(accessed on 10 April 2022)

Originally 90 m and
resampled to 1 km –

Date and Location Data

The order of the day when PM2.5
was observed in a year (Date) – –

1 January 2000–
31 December 2020

Longitude (Long) –

Latitude (Lat) –

2.2.2. AOD Data

The AOD data used in this study were derived from the MCD19A1 Version 6 data
product, a Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua
combined Multi-angle Implementation of Atmospheric Correction (MAIAC) Land AOD
gridded Level 2 product, produced daily at a 1 km resolution [38]. Compared with other
AOD products (e.g., the 10-km-resolution DB AOD and 3-km-resolution DT AOD [39]),
MAIAC AOD products have a higher spatial resolution, which better characterizes the
spatial heterogeneity of AOD and therefore benefits the estimation of PM2.5 concentration.
The AOD data downloaded consist of both Aqua and Terra AOD data, which were averaged
as the daily AOD data. In total, we downloaded 7567 AOD images over the entire study
area and 7567 days of the period from 1 January 2000 to 31 December 2020 (i.e., 7670 days),
with a high temporal coverage of 98.66%. For the spatial coverage, we did not complete
AOD data because the impact of the missing AOD data is limited [26,39,40] on yearly
PM2.5 concentration products; furthermore, data completion does not lead to significantly
improved spatial coverage [26,40,41] on yearly PM2.5 concentration products but induces
errors that undermine model evaluation [39,42].

In order to match PM2.5 measurements with AOD data, we extracted AOD values in
the 1-km AOD image data at the locations of PM2.5 monitoring sites using the ‘Extracting
Values to Points’ utility in ArcGIS, which helped to identify a total of 5237 pairs of matched
PM2.5 measurements and AOD data. After matching the ground-observed PM2.5 data to the
obtained AOD data and removing the data pair containing the missing AOD values, a total
of 5237 pairs of matched PM2.5 and AOD data were obtained. Meteorological, topographic,
date, and location data were similarly matched with these pairs for modeling. The matched
5273 data records in 2020 were used to build an estimation model of PM2.5 concentration,
and the daily PM2.5 concentration data in 2019 were averaged as the observed yearly
PM2.5 concentration (79 samples) to assess the quality of the synthesized yearly PM2.5
concentration dataset (Section 2.3.3).

2.2.3. Meteorological Data

ERA5 is the fifth-generation ECMWF (European Centre for Medium-Range Weather
Forecasts) atmospheric reanalysis of the global climate, covering the period from January

http://www.cnemc.cn/zzjj/
https://search.earthdata.nasa.gov
https://cds.climate.copernicus.eu
http://www.gscloud.cn/search
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1950 to the present. The family of ERA5 datasets consists of ERA5 (a comprehensive
reanalysis from 1979 to near real-time), ERA5.1 (a re-run of EAR5 for the years 2000 to
2006 only), and ERA5-Land (a land surface dataset from 1950 to the present time). In
this study, because our study focuses on land and requires finer details, we used the
ERA5-Land dataset. ERA5-Land provides hourly, high-resolution information of surface
variables over several decades at a ~9 km grid spacing and covers the period from 1950 to
2–3 months before the present [43]. More information about ERA5 can be found on its
official website [44].

Previous studies have shown that there are significant spatial differences in the effect
of meteorological conditions on PM2.5 concentration. In order to construct a PM2.5 concen-
tration estimation model applicable to this study area, we selected the four meteorological
variables with the strongest importance for PM2.5 estimation in our region, according to
Jing et al. [45], and added boundary-layer height as the fifth meteorological variable due to
its widely proven importance [46–48].

The meteorological data used in this study were extracted from the ERA5-Land hourly
data from 1950 to the present, including 10 m_U wind speed (the eastward wind component
at a height of 10 m above the surface of land), 10 m_V wind speed (the northward wind
component at a height of 10 m above the surface of land), 2 m temperature (air temperature
at a height of 2 m above the surface of land), boundary-layer height (the height of the
planetary boundary layer, the lowest part of the troposphere and the closest to Earth’s
surface), near-surface pressure, and total precipitation (Table 1).

As the downloaded meteorological data are in Network Common Data Form (NetCDF)
format at a 0.1◦ spatial resolution, they were converted into raster data in the TIFF format
and resampled to the spatial resolution of AOD data (i.e., 1 km) using the bilinear interpo-
lation method. Using the same method as that described in Section 2.2.2, we matched the
meteorological data to the corresponding AOD data. In order to have the same passing
time of the Terra and Aqua satellites, the hourly meteorological data acquired from 10 am
to 2 pm was averaged and used to represent daily meteorological conditions. As such, five
different variables were derived from these data, namely wind speed (WS, which is the
vector addition of 10 m_U wind speed and 10 m_V wind speed), 2 m temperature (T2M),
boundary-layer height (BLH), near-surface pressure (SP), and total precipitation (TP).

2.2.4. Topographic Data

As Zhang et al. [49] have shown that topography can intensify PM2.5 pollution, we
used surface elevation (SE) to consider the topographic effect on PM2.5 concentration.
Elevation data used in this study were extracted from the SRTM (Shuttle Radar Topography
Mission) DEM (digital elevation model) dataset (Table 1). The spatial resolution of the
dataset is 90 m, but it was resampled to the spatial resolution of AOD data (i.e., 1 km).
Using the same method as that described in Section 2.2.2, we matched the topographic data
to the AOD data.

2.2.5. Date and Location Data

As the PM2.5 concentration is associated with seasonal change and geographical
location, we considered these factors by introducing appropriate variables. When a PM2.5
concentration was observed at the monitoring sites, the order of the date within the year
could help transform the date into a numeric variable for modeling (Table 1). For example,
1 January was treated as value 1 and 31 December as value 365. Regarding the geographic
location, the longitude and latitude of the center of each pixel was used to create a variable
for longitude and a variable for latitude.

2.3. Methods
2.3.1. Pearson Correlation Analysis

In order to understand how the observed PM2.5 is correlated with the selected variables,
a Pearson correlation analysis was performed [13]. This would provide a basis for the
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modeling of PM2.5. The data used for the correlation analysis had been matched with AOD
data in 2020 (Section 2.2). The Pearson correlation analysis was performed on 5237 samples.
Table 2 shows the results of the Pearson correlation analysis. Except for TP, all the other
variables were significantly correlated with PM2.5 and therefore selected as the variables
for modeling.

Table 2. The correlations between observed PM2.5 and potential influencing variables. The correlation
between observed PM2.5 and total precipitation (TP) was not significant.

Variable Date Long Lat AOD WS T2M BLH SP TP SE PM2.5

Date 1 0.009 −0.010 −0.007 −0.358 ** −0.163 ** −0.190 ** 0.263 ** −0.023 −0.015 0.185 **
Long 1 −0.287 ** −0.093 ** 0.014 0.027 0.074 ** −0.001 0.063 ** −0.207 ** −0.140 **
Lat 1 0.092 ** −0.045 ** −0.236 ** −0.042 ** 0.005 0.015 0.493 ** 0.176 **

AOD 1 −0.004 −0.087 ** 0.006 0.070 ** 0.020 0.064 ** 0.477 **
WS 1 0.292 ** 0.807 ** −0.308 ** 0.109 ** −0.062 ** −0.123 **

T2M 1 0.274 ** −0.825 ** 0.050 ** −0.158 ** −0.413 **
BLH 1 −0.236 ** 0.092 ** −0.076 ** −0.183 **
SP 1 −0.110 ** −0.180 ** 0.226 **
TP 1 0.015 −0.015
SE 1 0.135 **

PM2.5 1

Note: ** denotes p < 0.01, the correlation is significant.

2.3.2. Random Forest Modeling

Random forest was used to estimate daily PM2.5 concentrations with the nine variables
(features) determined in Section 2.3.1. Random forest is an ensemble learning method
for the classification and regression method, based on a large number of different and
independent decision trees [50,51]. Each decision tree in the forest returns a prediction
and the average of all the predictions is treated as the prediction of the forest [50]. It can
efficiently process a substantial number of input features (variables) and assess the impor-
tance of each. It is generally believed that random forest outperforms linear algorithms,
such as linear and logistic regression [20,25]. In addition, random forest can evaluate
the importance of features entering the forest, which facilitates the analysis of predictor
variables. More information about how random forest is used for regression is detailed in
previous studies [52,53].

There are two key parameters to be tuned in the application of random forest, namely,
the number of decision trees (n_estimators) and the number of features randomly selected
at each node (max_features) [51]. The values for n_estimators to be selected range from
100 to 5000 with increments of 100. As too many trees are computationally expensive
and do not necessarily produce better results [50,54], we did not exceed 5000 trees. The
values for max_features to be selected consists of

√
p (where p is the number of available

features/variables),
√

p/2, and 2
√

p, which is recommended by the developer of random
forest [51,55]. In this study, these values are 2, 3, and 6, respectively, since there are
9 variables.

In order to identify optimal values for the two parameters(n_estimators and max_features),
we made use of GridSearchCV, a tool that tunes the parameters of a machining learning
model using the grid-search and k-fold cross-validation techniques [56]. For two parameters,
grid search uses different combinations of their possible values, calculates the performance
for each value combination, and selects the value combination with the best performance
for the parameters. This process is realized by the k-fold cross-validation, which helps to
evaluate the quality of a model and select a model that performs best on unseen data [57].
The data from 2020 were used to build the daily PM2.5 concentration estimation model
(Section 2.2.2) and were randomly split into two parts: 70% were used as training data
(3691 samples) for training the random forest model and 30% were used as testing data
(1582 samples) for evaluating the model. The 70/30 proportion for splitting data for training
and testing is recommended by and used in many studies [58–60]. The training data were
further divided into k equally sized folds (or sets). We used each as the validation set and
the other k − 1 folds as the training set, fitted a random forest model with the training set,
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calculated the accuracy of the model with the validation set, and averaged the accuracies
derived in each cross-validation. We repeated the procedure k times and obtain k average
accuracies. The value combination that has the highest averaged accuracy was selected as
the optimal values for the two parameters. In this study, the coefficient of determination (R2)
was used to measure the model’s accuracy. According to method suggested by Jung [61] for
selecting the optimal k value for cross validation, k = 8 was used.

After parameter tuning, a final random forest model for daily PM2.5 concentration
estimation was determined. The model was then applied to the test data, which were never
used in the modeling, for evaluating the model with coefficient of determination (R2), root
mean square error (RMSE), and mean absolute error (MAE) [62–64].

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
Σn

i=1(ŷi − yi)
2

n
(2)

MAE =
∑n

i=1|ŷi− yi|
n

(3)

where ŷi is the ground observation, yi is the model estimate, y is the average of yi, and n
is the sample size.

2.3.3. Yearly PM2.5 Concentration Dataset

By applying the determined daily PM2.5 concentration estimation model, we were
able to produce a daily PM2.5 concentration dataset at a 1 km resolution. By averaging
the daily PM2.5 concentration dataset, a yearly PM2.5 concentration dataset of the Huaihai
Economic Zone from 2000 to 2020 was then synthesized. The yearly PM2.5 concentration
dataset can provide a basis for the spatiotemporal evolution analysis of PM2.5 concentration
over the study area during the two decades. It is noted that due to the presence of cloud,
snow, and ice, AOD data are not available for every pixel for every single day of a year.
This means that not every single pixel in the yearly dataset was based on 365 (or 366) days’
PM2.5 concentration. As such, it is necessary to conduct a data quality assessment of the
synthesized yearly PM2.5 concentration dataset before its deployment in applications such
as spatiotemporal analysis. Since not all the data from 2000 to 2019 were used in the model
training, we should conduct the data quality assessment on the synthesized yearly PM2.5
concentration data from the rest years. Because the monitoring sites in the study area
became available only as of 13 May 2014, and the number of available sites available varied
from year to year, hourly PM2.5 concentration data (10 am to 2 pm) from the available PM2.5
monitoring sites from 2015 to 2020 were averaged, respectively, as the observed yearly
PM2.5 concentration data from 2015 to 2020. Values at the locations of the PM2.5 monitoring
sites were extracted from the synthesized yearly PM2.5 concentration data from 2015 to 2020
as the modeled yearly PM2.5 concentration data. This means that the number of available
sites provides the number of samples for the data quality assessment. The R2, RMSE, and
MAE measures (Equations (1)–(3)) were used to compare the observed and modeled yearly
PM2.5 concentration data from 2015 to 2020.

2.3.4. Trend Analysis

From the synthesized yearly PM2.5 concentration dataset, we calculated the average
PM2.5 concentration of all pixels for each year, which is termed the yearly average PM2.5
concentration. On the scatterplot of the yearly average PM2.5 concentration, we fitted
a curve to the data using linear or nonlinear regression, revealing the trend of yearly
average PM2.5 concentration, and identified if there existed turning points on the curve
(i.e., increase-to-decrease or decrease-to-increase changes in PM2.5 concentration over two
decades). Afterwards, the 21-year period was divided into multiple stages, based on the
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revealed trend and any turning points. By applying the Theil-Sen estimator and Mann-
Kendall trend test [65] for the multiple stages and the overall 21-year period, we intended
to examine the trend of PM2.5 concentration over the Huaihai Economic Zone.

In non-parametric statistics, the Theil-Sen estimator, also known as Sen’s slope esti-
mator, is a method for robustly fitting a line to sample points by choosing the median of
the slopes of all lines passing through pairs of points [66]. It is computed efficiently, is
insensitive to outliers, and is often used for estimating a linear trend of time series data [67].
The procedure for developing this estimation is given below:

For time series data, a set of linear slopes are estimated:

Qi =
xj − xk

j− k
, j = 1, . . . , N (4)

where N is the number of the pairs of data, xj and xk are the elements of time series data,
and i and j represent the positions of xi and xj in the time series data, respectively (j > k).
The N values of Qi are ranked from smallest to largest, and the median of Qi , Qmed , is
computed as:

Qmed =

{
Q[(N+1)/2] i f N is even
Q[N/2] + Q[(N+2)/2] i f N is odd

(5)

While the value of Qmed indicates the steepness of the trend, a positive value indicates
an upward trend in the time series and a negative value a downward trend.

The Mann-Kendall trend test, abbreviated as the M-K test, is a statistical method for
determining whether a trend exists in time series data [68,69]. The trend can be linear or
non-linear. As it is a non-parametric test, there is no underlying assumption made about
the normality of the data [65]. This test is also not affected by missing values or outliers [70].
The procedure for conducting this test is detailed below.

The Mann-Kendall test statistic S is calculated as follows:

S = ∑n−1
i=1 ∑n

j=i+1sign
(
xj − xi

)
, ∀j > i (6)

where n is the length of time series data, xi and xj are the elements of time series data, and
sign

(
xj − xi

)
is the sign function, shown as follows:

sign
(
xj − xi

)
=


1 (xj − xi > 0)
0
(
xj − xi = 0

)
−1 (xj − xi < 0)

(7)

The variance of S is calculated as:

Var(S) =
n(n− 1)(2n + 5) + ∑

g
p=1 tp

(
tp − 1

)(
2tp + 5

)
18

(8)

where n is the length of time series data, g is the number of tied groups, and tp is the
number of ties of extent p. A tied group is a set of sample data that have the same value. If
each element only appears once in a time series, the Var(S) can be simplified to:

Var(S) =
n(n− 1)(2n + 5)

18
(9)

When n > 10, the standard normal test statistic Z is computed as:

Z =


S−1√
Var(S)

(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)
(10)
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Positive Z values suggest an increasing trend in the time series data while negative
Z values imply a decreasing trend. As a standard normal statistic, Z obeys the standard
normal distribution, at significance level α. If |Z| > Z1− α

2
(the value of Z1− α

2
can be found

in the standard normal distribution table), a significant trend exists in the time series. In
this study, α = 0.05 was used, such that there is a significant trend in the time series when
|Z| > 1.96.

We used the Theil-Sen estimator to calculate the trend in the time series data and the
Mann-Kendall test to calculate the statistical significance of the trend. In other words, the
two methods were applied jointly, and the pixels that failed the Mann-Kendall test were
removed from the Theil-Sen estimator result.

3. Results
3.1. Random Forest Modeling

As described in Section 2.3.2, we used GridSearchCV to locate the best values
for the two random forest parameters, i.e., the number of decision trees (n_estimators)
and the number of features randomly selected at each node (max_features). There were
150 combinations of parameter values in total and the average, R2, was calculated for
each combination (Figure 2). While max_features = 6 produced better models than lower
max_features values, R2 did not always increase with n_estimators. It was found that
the combination of n_estimators = 1500 and max_features = 6 produced the best model
on the validation set (R2 = 0.84). As the range of n_estimators from 100 to 5000 was too
large to be visualized in a heat map and R2 stabilized after n_estimators = 2000, only R2

values for n_estimators ranging from 100 to 2000 are shown on the heat map in Figure 3.
This pair of parameter values was used to determine the random forest model for daily
PM2.5 concentration estimation in the study. Meanwhile, the importance of features is
illustrated in Figure 4. Among the nine variables, date, AOD, and T2M were the most
important features, with their normalized feature importance values of >0.40, >0.20, and
>0.10, respectively.

Once it was developed, the final random forest model for daily PM2.5 concentration
estimation was applied to the testing data for accuracy assessment. On comparing
modeled daily PM2.5 with observational data, R2 = 0.85, RMSE = 14.63 µg/m3, and
MAE = 10.03 µg/m3 (Figure 5). Since the testing data were not involved in the model
training, the model was expected to have similar accuracy in estimating PM2.5 values for
any pixel outside the testing data. This model was used for estimating the daily PM2.5
concentration at a 1 km resolution for the entire study area from 2000 to 2020.
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Figure 5. Evaluation of the random forest model for daily PM2.5 concentration estimation based on
the testing data. Note that the model was built on the data from 2020 (5273 samples) (Section 2.2.2),
with 70% for training (3691 samples) and 30% for testing (1582 samples) (Section 2.3.2).
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3.2. Yearly PM2.5 Concentration Dataset

With the modeled daily PM2.5 concentration, we calculated the modeled monthly and
seasonal PM2.5 concentration, averaged from 2000 to 2020 (Figure A1) and produced the
yearly PM2.5 concentration dataset by averaging the modeled daily PM2.5 concentration
(Figure A2). As described in Section 2.3.3, we performed a quality assessment on the
synthesized yearly PM2.5 concentration dataset. The number of available sites, time range,
number of available data items (hourly data per day), and missing-data rate from 2015–2020
are shown in Table 3.

Table 3. Information on the observed values of the site from 2015 to 2020.

Year Number of Available Sites Time Range Number of Available Data Items Proportion of Available Data

2015 40 1 January–31 December 2015 65,714 90.02%
2016 40 1 January–31 December 2016 68,109 93.05%
2017 40 1 January–31 December 2017 68,626 94.01%
2018 40 1 January–31 December 2018 67,282 92.17%
2019 79 1 January–31 December 2019 130,729 90.43%
2020 79 1 January–31 December 2020 90,251 62.43%

The year-specific data quality assessment result is shown in Figure 6, with R2 ranging
from 0.69 to 0.79 (Figure 6a–f). The overall data quality assessment result from 2015 to 2020
shows that R2 = 0.77, RMSE = 6.92 µg/m3, and MAE = 5.42 µg/m3 (Figure 6g). This shows
that the synthesized yearly PM2.5 concentration dataset is reliable and can be used for
further analysis. In addition, we also validated the modeled monthly PM2.5 by comparing
it with the observed monthly PM2.5 data from available monitoring sites between 2015 and
2020 (Figure A3).
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Figure 6. Data quality assessment of the yearly PM2.5 concentration datasets by comparing the
synthesized yearly PM2.5 concentration data from 2015 to 2020 against the observed yearly PM2.5 data
in the same period (Section 2.3.3). Each available site corresponds to a yearly averaged value. The
graphs from (a–f) represent the data quality assessment of the yearly PM2.5 concentration datasets
from 2015 to 2020 respectively, and the overall data quality assessment in these 6 years is shown in (g).

3.3. Trend Analysis

The yearly average PM2.5 concentration of the entire study area from 2000 to 2020 was
calculated and plotted in Figure 7. This figure shows that the yearly average PM2.5 of the
zone increased and then decreased with time, with the highest value being in 2010. After
testing for linear, exponential, logarithmic, polynomial, and multiplicative power fit, we
selected the polynomial fit as the best method by comparing values of R2. It is found that a
quadratic model was the best fit for the data, with R2 = 0.63 and the highest point of the
curve falling in the year of 2010. This means that the 21-year period could be divided into
two stages: the one from 2000–2010 as the upward stage and the other from 2010–2020 as
the downward stage.
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Figure 7. Yearly average PM2.5 concentration over the Huaihai Economic Zone.

As described in Section 2.3.4, the Theil-Sen slopes of yearly PM2.5 concentration over
the Huaihai Economic Zone from 2000–2010, 2010–2020, and 2000–2020 were calculated to
reveal the change on a pixel scale. The Mann-Kendall trend test was then performed on
the calculated Theil-Sen slope maps to calculate the significance of the changes. Figure 8
shows the Theil-Sen slope maps and Mann-Kendall trend test results of the yearly PM2.5
concentration for the 2000–2010 and 2010–2020 stages and the entire 2000–2020 period,
respectively. As the majority of the slope values ranged from −2 to 2 and there is a need to
discriminate positive and negative values, the resultant slope maps were classified into six
levels, with the range from −2 to 2 divided into four levels with increments of 1.
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Figure 8. The results of the Theil-Sen estimator (a,c,e) and the Mann-Kendall trend test (b,d,f) for the
2000–2010, 2010–2020, and 2000–2020 periods. Blank areas in (b,d,f) refer to insignificant changes.
The area where Nansi Lake and Hongze Lake are located is partially enlarged, as shown in (g,h).
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The combined results of the Theil-Sen estimator and the Mann-Kendall trend test
show that during the 2000–2010 stage, 91.5% of the study area saw a significantly increas-
ing trend in PM2.5 concentration, and most of the slope values were within the range of
1–2 (Figure 8b). From 2010 to 2020, 69.59% of the study area had a significantly decreasing
trend in PM2.5 concentration, mostly in the west and south of the Zone (Figure 8d). For
the entire period from 2000 to 2020, however, only 1% of the study area passed the sig-
nificance test (Figure 8f), mainly in the Nansi Lake area at the junction of the Shandong
and Jiangsu provinces (Figure 8g) and the Hongze Lake area at the southeast corner of
the Zone (Figure 8h).

4. Discussion
4.1. Random Forest Modeling

PM2.5 concentration can be estimated from AOD based on their close correlation [13,71]
but the inclusion of additional variables can improve the estimation [72,73]. In this study,
we considered factors such as meteorology, topography, date, and location. The correlation
analysis result (Table 1) proves that these variables are significantly correlated with PM2.5,
except for total precipitation. Date and location represent the spatiotemporal heterogeneity
of PM2.5 concentration. Latitude and longitude were used by Yang and Huang as variables
for land cover classification using random forest [74]. In this study, we also examined the
effect of the two variables by removing them from modeling. The results show that R2

decreased to 0.849 with the exclusion of latitude and longitude, which is lower than the
value of 0.853 from when these variables were included (Figure 5). This has further proved
that the two variables play a role in the random forest model.

In addition to AOD, T2M and date have high correlations with PM2.5 and high feature
importance, which means that the two variables are essential for PM2.5 concentration
modeling. The role of T2M can be explained by the fact that five cities (Xuzhou, Linyi,
Zaozhuang, Jining, and Heze) in the Zone have central heating systems used in the cold
months, so there are more PM2.5 emissions when temperatures are low [75]. It is noted
that date has a low correlation with PM2.5 but that its feature importance was the highest
in the random forest model. Pearson correlations capture the linear relationship between
different variables, but feature importance in random forest identifies the level of influence
of features for classification or regression. A low correlation coefficient only means a
lower linear correlation but does not necessarily imply lower feature importance in the
random forest regression. The high feature importance of date means that it plays a very
important role in the regression process. As previous studies have shown [75–77], PM2.5
concentration does not simply increase or decrease over time, but is high over some periods
(October to February) and low over others (March to September) within the same year.
Admittedly, features with higher importance are considered more important than those
with lower importance [51,78]; however, explaining differences in feature importance is not
straightforward as feature importance might not be physically meaningful [51].

In addition to the ranking of features’ importance, the main advantage of random forest
regression lies in improved accuracy. Based on the ensemble learning technique, random
forest creates many trees on the subset of data and combines all the trees’ outputs. In this
way, it reduces overfitting and is therefore more capable of prediction than other models.
The R2 was 0.84 on the validation data and 0.85 on the testing data (Section 3.1), which
suggests that overfitting was not an issue here and that the resultant random forest model
was robust. In terms of accuracy, our model (Figure 4) (R2 = 0.85, RMSE = 14.63 µg/m3)
outperforms the model obtained by Wei et al. (R2 = 0.85, RMSE = 15.57 µg/m3) [25] that
estimated 1-km PM2.5 concentrations across China using the same source of AOD data
and a random forest method. Our accuracy is much higher than that of Guo et al. [26]
where various data were used to estimate 1-km PM2.5 concentrations across China without
considering their spatial and temporal variability.
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4.2. Yearly PM2.5 Concentration Dataset

With the validated daily PM2.5 concentration model, daily PM2.5 concentration over
the Huaihai Economic Zone at a 1 km resolution could be estimated from 2000 to 2020.
Subsequently, it was possible to produce a monthly, seasonal, or yearly PM2.5 concentration
dataset at a resolution of 1 km by averaging the modeled daily PM2.5 concentrations over
the study area for further analysis and applications. Monthly, seasonal, and yearly PM2.5
concentration datasets would contribute to the examination of the monthly, seasonal, and
yearly variabilities of PM2.5 concentration. As it is most interesting to examine the trends
of PM2.5 concentration during the last two decades, this study focuses on the production of
the yearly PM2.5 concentration dataset. To our knowledge, the PM2.5 pollution over the
Huaihai Economic Zone is less studied, although it has a history of poor air quality and is
located between two large polluted urban agglomerations (i.e., the Beijing-Tianjin-Hebei
Region and the Yangtze River Delta). This study provides a feasible way to produce yearly
PM2.5 concentration datasets for air quality monitoring.

A good daily PM2.5 concentration estimation model can produce good daily PM2.5
concertation data, but this does not necessarily guarantee a reliable yearly dataset because
there is missing AOD data for some days. However, the quality assessment shows that the
accuracy of the yearly PM2.5 concentration dataset is good (R2 = 0.77, RMSE = 6.92 µg/m3,
and MAE = 5.42 µg/m3) (Figure 6g), which suggests that missing AOD data are not causing
issues in our study. However, we believe that if there were more days with recorded AOD
data, there would be more modeled daily PM2.5 data and the already high quality of the
yearly dataset could have been further improved. The synthesized yearly dataset can serve
as a ready-for-use source of data for multiple purposes, such as the analysis of the relation-
ship between population exposure and diseases [79,80], the identification of the drivers of
PM2.5 emissions [81,82], and the trend analysis of PM2.5 concentration, as demonstrated in
this study.

4.3. Trend Analysis

Both the scatterplot of the yearly average PM2.5 (Figure 6) and the Theil-Sen estimator’s
result (Figure 8a,c,e) clearly show that PM2.5 concentration had an upward trend from
2000–2010 and a downward trend from 2010–2020. This finding is similar to that of
Wang et al. [67] who examined the spatiotemporal variability of PM2.5 concentration in
China. Although the Theil-Sen estimator’s result illustrates that nearly the entire zone had
changes during the three periods, only part of the zone experienced significant increases or
decreased in PM2.5 concentration (Figure 8b,d,f).

In the 2000–2010 stage, there was a significant, increasing trend in the Zone, especially
for the four cities of Shandong (Linyi, Zaozhuang, Jining and Heze) and the two cities of
Anhui (Suzhou and Huaibei) (Figure 8b), for which most of the slope values were >1. There
are multiple reasons for this finding. Firstly, the Shandong province has the highest air
pollutant emissions in China due to heavy coal consumption in the electrical power sector
and the high concentration of coal-fired power plants [83]. Its PM2.5 concentration increases
from east to west, and the western part of Shandong is heavily polluted [84], including
the four Shandong cities of the Zone. Secondly, the northeastern part of the Zone is in the
Yimeng Mountain area (the high-elevation areas in Figure 1b), which is not conducive to
the diffusion of pollutants and therefore results in serious local air pollution [85]. Lastly, air
pollution from polluted neighboring regions, such as the Beijing-Tianjin-Hebei region and
the Yangtze River Delta region should be not ignored. Shi et al. reported that pollution in
Anhui was originally from the Yangtze River Delta region and particularly intense in the
two Anhui cities of the Zone [86].

The trend of PM2.5 concentration changed to be completely different from the increas-
ing in the 2000–2010 stage to the decreasing in the 2010–2020 stage. We believe that this
is attributed to China’s air pollution countermeasures. In 2012, China released a new
ambient air quality standard (GB 2095-2012), setting limits on the levels of PM2.5 for the
first time [87]. Although it only took effect nationwide in 2016, many cities and regions
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in China were required to implement the new standard earlier. China set up a national
air quality monitoring network in 2012, initially comprising of 496 monitoring sites in
74 cities [88] (including Xuzhou and Lianyungang), which is now extended to 956 mon-
itoring sites in 190 cities [11]. The network allows cities to monitor and release readings
on PM2.5 and many other pollutants. In the same year, China also issued the Air Pollution
Prevention and Control Action Plan to mitigate air pollution and its associated health
impacts [89]. Comprising of 10 specific measures, this action was considered as the most
stringent air pollution control policy in China. In addition to the national policies, provinces
and cities also issued their own, respective plans. Data show that the investment in envi-
ronmental protection in the provinces of Jiangsu, Shandong, Henan, and Anhui increased
significantly from 2010 to 2020 [90–93]. All these initiatives have, together, contributed to
the improvement of air quality in the zone in recent years.

Despite a significant increasing trend in the 2000–2010 stage and a significant decreas-
ing trend in the 2010–2020 stage, the overall trend of PM2.5 concentration over the Huaihai
Economic Zone remained decreasing during the 21 years (Figure 8f). It appears that the
improvement in the second stage offset the deterioration in the first stage. However, the
area of the significantly increasing trend was much smaller and mainly distributed in the
Nansi Lake area (Figure 8g) and surrounding the Hongze Lake area (Figure 8h). This
finding suggests that although air quality has been considerably improved in the wetlands,
there is a need for continuous and more intensive efforts to decrease the overall PM2.5
concentration in the Zone.

4.4. Innovations and Limitations

The innovation of the study is making use of the added values of random forest to
model daily PM2.5 concentration. In addition, in the modeling process, extra variables,
such as date and location, were included as these variables represent the spatiotemporal
heterogeneity of PM2.5 concentration and therefore serve to improve the model’s accuracy.
However, there are also some limitations to the study, which need to be addressed in future
work. The spatial coverage of the MAIAC AOD data used in this study is generally not
very high, such that PM2.5 was not modeled for every pixel in the Zone. Sample data for
training are mainly concentrated in the spring and winter due to the availability of AOD
data, which may lead to less accurate PM2.5 predictions in the summer and autumn. If the
spatial resolution of meteorological data was higher, PM2.5 concentration maps would have
been more evenly distributed.

In addition, our study only estimates regional PM2.5 concentration and it is unclear
how well our model would perform when applied at a larger scale. It would be interesting
to test the model and, if necessary, improve it for estimating PM2.5 concentrations over the
entire mainland of China and compare our results with other studies.

5. Conclusions

In order to better estimate the 1-km resolution, daily PM2.5 concentration from the
MAIAC AOD dataset, this study considers additional variables and uses random forest
regression to construct a daily PM2.5 concentration estimation model using the case study
of the Huaihai Economic Zone from 2000 to 2020. From the results, it is concluded that:

• Random forest is capable of modeling daily PM2.5 concentration over a large geo-
graphic area with an accuracy of R2 = 0.85. In addition to AOD, date is an important
feature that should be considered.

• A yearly PM2.5 concentration dataset at a 1 km resolution can be synthesized by
averaging modeled daily PM2.5 concentration data. It has a data quality of R2 = 0.77
and can be considered a ready-for-use dataset for various purposes.

• Although increasing from 2000–2010 and decreasing from 2010–2020, the trend of
PM2.5 concentration was significantly decreasing overall over the last two decades.
The area of the significantly increasing trend was small and mainly distributed in the
lake areas in the zone.
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This study contributes to a better understanding of the influencing factors of PM2.5
pollution and demonstrates the potential of random forest for modeling PM2.5 concentra-
tions. It also examines the changes of PM2.5 levels over time and justifies the necessity
of adopting context-specific PM2.5 prevention measures by decision-makers and environ-
mental managers.
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Appendix A

With the determined random forest model (Section 3.1), we modeled the daily PM2.5
concentration at a 1 km resolution over the Huaihai Economic Zone from 2000 to 2020.
Subsequently, we calculated the modeled monthly and seasonal PM2.5 concentrations,
averaged from 2000 to 2020 (Figure A1) and produced the 1 km-resolution, yearly PM2.5
concentration dataset by averaging the modeled daily PM2.5 concentration (Figure A2).
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Figure A1. The modeled monthly and seasonal PM2.5 concentrations, averaged from 2000 to 2020. 
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Figure A1. The modeled monthly and seasonal PM2.5 concentrations, averaged from 2000 to 2020.
The modeled monthly PM2.5 concentrations for the study area (a) were obtained by averaging the
modeled daily PM2.5 concentration in the same months from 2000 to 2020. Similarly, we calculated
the modeled seasonal PM2.5 concentration from 2000 to 2020 (b). PM2.5 concentration decreased and
then increased with month and season. In addition, PM2.5 concentrations in cold months were higher
than in warm months.
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