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Abstract: The assessment of shear behavior in SFRC beams is a complex problem that depends on
several parameters. This research aims to develop an artificial neural network (ANN) model that
has six inputs nodes that represent the fiber volume (Vf), fiber factor (F), shear span to depth ratio
(a/d), reinforcement ratio (ρ), effective depth (d), and concrete compressive strength ( f ′c) to predict
shear capacity of steel fiber-reinforced concrete beams, using 241 data test gathered from previous
researchers. The proposed ANN model provides a good implementation and superior accuracy for
predicting shear strength compared to previous literature, with a Root Mean Square Error (RMSE) of
0.87, the average ratio (vtest/vpredicted) of 1.00, and the coefficient of variation of 22%. It was shown
from parametric analysis the reinforcement ratio and shear span to depth ratio contributed the most
impact on the shear strength. It can also be noticed that all parameters have a nearly linear impact on
the shear strength except the shear span to depth ratio has an exponential effect.

Keywords: steel fibers reinforced concrete beam; shear stress; ANN model; durability

1. Introduction

Steel fiber-reinforced concrete (SFRC) is a structural material having a short and dis-
crete steel fiber spread randomly through the concrete mixture to improve the mechanical
properties of concrete such as the compressive strength, shear strength, and ductility [1].
The use of SFRC enhances the crack resistance by reducing crack propagation and crack
width due to small spacing between fibers, resulting in bridging the diagonal tension
crack and performance shear strength (Anant and Modhera 2008) [2]. SFRC also helps the
concrete to change its behavior from a brittle to a ductile material.

For several years, great effort has been devoted to the study of the shear behavior
of SFRC beams. The majority of the studies have shown the use of SFRC beams with no
stirrups is influenced by different parameters including longitudinal reinforcement ratio (ρ),
shears span to depth ratio (a/d), concrete compressive strength ( f ′c), fiber factor F, and beam
effective depth (d). Kwak et al. [3] studied the effect of shear span to depth ratios of 2, 3, and
4 and the fiber volume fraction (F) up to 0.75% on the shear strength. It was concluded that
the ultimate shear strength increased with an increase in compressive strength, decreased
with increasing span to depth ratio (a/d), and increased with fiber volume (Vf). Similarly,
Sway and Bahia [4] studied the effect of longitudinal reinforcement ratio (ρ), concrete
compressive strength ( f ′c), and fiber volume (Vf) up to 1.2% on the shear strength of SFRC
beams without stirrups. It was found that the steel fiber enhances the ultimate shear
strength by increasing the fiber volume. Similar to conventional reinforced concrete beams,
the shear strength of SFRC beams increases with increasing the compressive strength.
Shahnewaz and Alam [5] studied the effect of compressive strength on the shear capacity of
steel fiber-reinforced concrete beams. The obtained result indicated that the shear strength
increased exponentially with increasing the compressive strength of concrete.
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Narayanan and Darwish (1988) concluded that there is an exponential relationship
between the ultimate shear strength and shear span to depth ratio where the shear strength
decreases with increasing the shear span to depth ratio due to the anchorage between
support and point load [6].

Researchers have proposed several models for predicting the shear strength of SFRC
beams based on a calibration with experimental data. Some of these models were derived
based on linear regression analysis using limited data from experimental results. Therefore,
these models are not capable of predicting the average shear stress with enough precision
and trustworthiness for a wide range of variables.

Sustainability in construction requires a design that focuses on durability throughout
the functional life cycle. As mentioned earlier the steel fibers positively impact the concrete
durability by reducing the crack propagation and crack width. The structure of steel
fibers enhances the abrasion and freeze-thaw resistance. In addition, using steel fiber
instead of steel reinforcement reduced the CO2 emissions that contribute to preserving the
environment. Adding the steel fiber to the marine concrete structure also delays the crack
propagation and increases the flexural strength that causes reducing the corrosion of steel by
reducing the growth and width of the crack, therefore, reducing the chloride penetrations.

To exploit the advantages of using steel fibers and ensure structural safety, it is essential
to develop reliable models for predicting the shear capacity of steel fiber-reinforced concrete
(SFRC) beams without stirrups. Artificial intelligence (AI) models have gained a lot of
attention in the last two decades because of the accuracy and dependability of these data-
driven approaches.

As a result, researchers used various artificial intelligence methods like artificial neural
networks (ANN), Genetic algorithms (GP), and Bayesian networks to solve many complex
structural engineering problems, such as estimating the compressive strength of confined
concrete and determining the displacement of the reinforced concrete building. The focus
of this study is to develop a reliable design model for predicting the shear stress of SFRC
beams using an Artificial neural network (ANN), based on a large number of experimental
data results. The study also aims to compare it with some of the models existing in the
literature and to conduct a parametric study to evaluate the effect and contribution of each
of the affecting variables on the shear strength of SFRC beams.

2. Background of Empirical Equation and Model

Many empirical equations have been proposed in the literature for predicting the shear
strength of the SFRC beam. For instance, in 1986 Sharma [7] developed a simple empirical
model to predict shear strength based on the result of his experimental, the model proposed
in Equation (1)

vu = k f ′t

(
d
a

)0.25
(MPa) (1)

f ′t = 0.79
(

f ′c
)0.5

(MPa) (2)

where:
vu is an average shear strength, k is a constant equal to 2

3 , f ′t is a tensile strength of
concrete, and a/d is span to depth ratio. As shown in Equation (1), Sharma ignores some
important parameters such as volume fiber and reinforcement ratio that are significantly
influencing the shear strength.

Narayan and Darwish in 1987 [8] suggest another model for estimating the average
shear stress based on the result of 33 tests on the beam without shear reinforcement and
with SFRC presented in Equation (3).
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Where the fspc f is the computed value of split cylinder strength of fiber concrete, τf is
the average fiber-matrix interfacial bond stress, Fcu f is the cube strength of fiber, F is the

fiber factor, and e is the arch action factor equal to 1 if a
d > 2.8 and equal 2.8

(
d
a

)
for a

d ≤ 2.8

vu = e
[

0.24 fsp f c + 80ρ
d
a

]
+ vb (MPa) (3)

fsp f c =
fcu f

20−
√

F
+ 0.7 +

√
F (MPa) (4)

vb = 0.41τf (MPa) (5)

Another design model was also proposed by Ashour et al. (1992) [9] by testing
18 samples of high-strength SFRC beams presented in Equation (6). It was noticed that
similarities between its equation with ACI building code with change in constants.

vc f =
(

0.7
√

f ′c + 7F
)d

a
+ 17.2ρ

d
a
(MPa) (6)

A later study by Kwack et al. [3] proposed another empirical formula based on 139 tests.
This model presented a result with higher accuracy when compared with the previous
formulas because it depended on a larger data test and included most of the parameters.
This model is presented in Equation (7).

Where e = 1 if a
d > 3.4 and e = 3.4(a/d) for a

d ≤ 3.4

vc f = 3.7e f
2
3

sp f c

(
ρ

d
a

) 1
3
+ 0.8vb (MPa) (7)

Over the years, several researchers developed many new models for estimating
the shear strength of SFRC beams without stirrups using Artificial intelligence models
like ANN and GEP modeling. In 2005 Adhikary and Mutsuyoshi and Khuntia and Sto-
jadinovic [10,11] proposed two models for predicting the shear capacity of steel fibers-
reinforced concrete beams using ANN programming. One of the models contains four
variables while the second model contains five variables. The final result obtained was that
the model which contains five variables estimated the shear capacity of SFRC beams more
accurately than the model with four variables.

Another design model was also developed by Alumwsawi (2018) to predict the shear
strength using the hybrid ANN with particle swarm optimization (PSO) based on an
85-beam test. The result showed that the hybrid model ANN-PSO achieved good accuracy
in the prediction of shear strength in SFRC beams and the model attained values of cor-
relation coefficients and roots mean square error (RMSE) 0.82 and 0.567, respectively [12].
In 2011 Arafa et al. [13] developed the ANN model for predicting the shear strength in
normal and deep beams. It was found that the developed ANN has higher accuracy in
predicting shear strength when compared with the ACI code. Later studies by Ahmadi et al.
proposed a new model using Gene Expression Programming (GEP) and ANN model based
on 129 test results for estimating the shear strength of SFRC beams with no stirrups. It was
concluded that the average shear stress can be calculated using GEP and ANN modeling
with a mean absolute percentage error (MAPE) of 11.27 [14].

3. Artificial Neural Networks Programming

Artificial neural networks (ANNs) are predictive tools used to create a mathematical
model for a problem in which the solution is too complex. Multi-layer perception (MLP)
ANN [15] is the most known type of Artificial neural network. MLP networks consist of at
least three layers: one input layer, one output layer, and one or more hidden layers. Each
layer has one or more processing units (neurons) and contains a number of nodes. Each
unit in the multi-layer perception (MLP) is fully connected to units in subsequent layers



Sustainability 2022, 14, 8516 4 of 17

through weighted connections (wij) [16] Once processing units receive the information it
combines with others coming from different units through a combination function then the
combined data are sent to the following nodes. This process is repeated until the algorithm
fits the data precisely indicated by the convergence of the error rate. The output is attained
by passing the sum of the inputs and weights throughout an activation function [17].

The artificial neural network must be trained from a set of data called the training
set. There are many available algorithms used to train ANN. The feed-forward back-
propagation has been widely used in many studies for this purpose. During the training
stage, weight vector and biases are calibrated to minimize the model error and produce the
most precise prediction (lowest root mean square error RMSE). The Bayesian regularization
training algorithm was used to provide generalization and prevent overfitting.

4. ANN Model and Experimental Data Collection

Developing a neural network model for predicting the shear strength of SFRC beams
requires experimental data. These data were gathered from literature reviews. The data
collected consists of 241 test results from 21 experimental works. The experimental data
collected has been summarized in Table 1, and the data range and number of points have
been illustrated in Figure 1. The detailed experimental database is listed in Appendix A.

Table 1. Collected data used for creating an ANN model.

Reference No. of Tests F = Vf (l/d) ρt, % d, mm f’
c, MPa a/d

[18] 4 0.27–0.55 0.75–1.32 202–437 19.3–21.3 3–3.1
[8] 17 0.38–1.13 0.37–4.58 215 92–101.3 1–6

[19] 43 0.10–1.1 3.09 127 33.2–40.2 1.2–5
[20] 3 0.6–1.0 1.95 261 23.8–32.9 3.45
[21] 5 0.47–0.56 3.08–4.93 255–300 110–1112 1.75–4.5
[3] 9 0.31–0.47 1.5 212 30.8–68.8 2–4

[22] 6 0.60–1.0 1.1–2.2 102–204 22.7–26.0 1.5–3
[23] 6 0.3–0.6 1.1–2.2 221 34 1.5–3.5
[24] 9 0.30–0.45 1.34–2 197 20.6–33.4 2.0–3.6
[25] 8 0.24–0.9 2.15 557 40.8–56 1.35
[26] 7 0.17–0.66 1.22 186 28.7–32.8 2–3
[10] 29 0.25–2.0 2–5.72 126–130 28.8–52.6 2–3.5
[6] 11 0.25–1.33 3.55 345 30.2–54.6 0.46–0.93

[27] 19 0.4–0.64 2.87–4.47 180–570 39.4–93.3 2.77–3.33
[28] 2 0.4–0.8 2.68 150 38.7–42.4 2–2.67
[29] 6 0.33–0.66 3.59 175 80.0 2–4.5
[30] 32 0.4–0.98 2.67 251 24.9–64.6 3.49
[4] 4 0.4–1.2 3.05–4 210 35.5–39.8 4.50

[31] 7 1 1.55–4.31 265 33.1–40.9 2–4.91
[32] 4 0.3–0.6 3.89 340 33–36 1.5–2.5
[33] 10 0.50 2.5–3.0 254–1118 29–50 3.45–3.61

Matlab Software has been utilized to develop the model. The structure of the devel-
oped ANN model consists of three layers with several nodes. One input layer consists
of six neurons presented in the steel fiber factor (F), the volume fraction of steel fiber
(Vf), depth of the beam (d), reinforcement ratio (ρ), shear span to depth ratio (a/d), and
the compressive strength of concrete ( f ′c). The output layer consists of one neuron that
represents the predictive shear strength of the steel fibers reinforced concrete beam. Six
hidden layers consisting of three neurons were utilized in the proposed model.

To ensure that the developed model is generalizable and to prevent overfitting, the
software separates the available data into two datasets training and testing datasets. In this
study, 80% of available data was randomly selected for the training set and 20% for the
testing and validation set. The training sets are used in creating the ANN model whereas
the training sets are used in testing the generalization of the model.
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Figure 1. Experimental data range and number for each parameter.

5. Results and Discussion

The developed artificial neural network model was used to evaluate the influence
of parameters like fiber volume, concrete cylinder compressive strength, longitudinal
reinforcement ratio, effective depth, and shear span-to-depth ratio on the shear strength of
SFRC beams. The model is fed by these input parameters to predict the shear strength.

The relation between the experimental shear strength and the prediction shear strength
using the ANN model for 241 test results is shown in Figure 2, which shows a good
agreement between the prediction shear strength and the experimental results.
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Figure 2. Experimental versus predicted shear strength using the ANN model.
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Figure 3 represents a comparison between the developed ANN model and some
of the previously existing models like Kwak et al. [3], Sharma [7], Narayanan and Dar-
wish (1987) [10], and Ashour et al. [8], in terms of an average shear strength ratio of the
experimental data to the predicted data (vtest/vpredicted), root-mean-squared error (RMSE),
and coefficient of variation (COV). The root mean square error is calculated according to
Equation (8). From this figure, it can be seen that the ANN model has the lowest values
of RMSE and COV of (0.87, 0.22) respectively, and the average ratio of the tested shear
strength to estimated shear strength (vtest/vpredicted) of (1.00). The developed ANN model
has better accuracy than other models. According to statistical analysis, lower values of
RMSE and COV indicate a higher prediction accuracy. The higher prediction accuracy for
the ANN model can be attributed to the Bayesian algorithm embedded in software that
minimizes the error between the input and output. In addition, ANN provides more model
flexibility than conventional regression.

RMSE =

√√√√ 1
N

N

∑
k=1

(
vtest − vpredicted

)2
(8)Sustainability 2022, 14, x FOR PEER REVIEW 7 of 19 
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In addition, the accuracy of the proposed model was determined by drawing the ratio
of tested shear strength to estimated shear strength (vtest/vpredicted), with respect to each of
the parameters that are illustrated in Figure 4. The flattering trend line shows accurate and
consistent forecasts for the entire range of variables.
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6. Parametric Analysis

The parametric analysis is performed with the developed artificial neural network to
evaluate the effect of each input parameter on the shear strength. The effect was examined
by varying only one parameter and fixing all other parameters.

6.1. Effect of Volume Fraction of Steel Fiber Vf %

The effect of the volume fraction of steel fibers on the shear strength is shown in
Figure 5. The reinforcement ratio ρ, concrete compressive strength f ′c , shear span to depth
ratio (a/d), and the depth of the beam were kept constant. The figure shows the shear
strength increase with increased volume fraction of steel fibers. It was also indicated that
the effect of volume fraction on the shear strength is negligible for volume fractions larger
than 1.5%.
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Figure 5. Effect of volume fraction of steel fibers on the predicted shear capacity.

6.2. Effect of Reinforcements Ratio (ρ)

Figure 6 shows the influence of varying the reinforcement ratio on the shear capacity
of SFRC beams by fixing all other parameters. this figure indicates the shear capacity
increase linearly with an increased reinforcement ratio (ρ) due to the dowel action can
be considerably improved. It can be seen that the ANN model confirms the effect of
reinforcement of steel ratio on shear strength, whereas some formulations Sharma [7], and
Kuntia et al. [6] completely ignore its important role.
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6.3. Effect of Effective Depth (d, mm)

The influence of changing the effective depth (d, mm) on the shear strength is shown
in Figure 7. The reinforcement ratio, concrete compressive strength f ′c , and all other input
parameters were kept constant for this study. This figure shows the shear strength decrease
with increased effective depth of the beam. This is similar to the findings of Appa Rao [33].
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This figure also indicates that the decrease in shear strength converges to a constant value
at a depth larger than 500 mm.
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6.4. Effect of Concrete Compressive Strength, f ′c
Figure 8 shows the effect of changing the concrete compressive strength on the shear

strength of SFRC beams. The reinforcement ratio ρ, the depth of the beam, and fiber volume
were kept fixed for purpose of analysis. It was found that the shear strength increases
slightly linearly with increased compressive strength.
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Figure 8. Effect of concrete compressive strength on the shear strength.

6.5. Effect of Shear Span to Depth Ratio (a/d)

The influence of varying shear span to depth ratio on the shear strength of SFRC
beams is plotted in Figure 9. The reinforcement ratio, compressive strength of concrete,
depth of the beam, and fiber volume were kept constant for this study. This figure shows
that with increased (a/d) ratio, the shear strength decreased exponentially. This result is
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consistent with the Narayanan and Darwish [6,10]. Similarly, recent studies have also
discussed similar behavior [34–40]. The adopted procedure for evaluating each of the
variables has been wildly utilized in research [41–55].
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7. Conclusions

The artificial neural network is improved and used to forecast the shear capacity
of steel fiber-reinforced concrete beams based on 241 datasets gathered from previous
researchers. The ANN model’s parameters were reinforcement ratio (ρ), fiber volume
fraction Vf, concrete compressive strength, effective depth, shear span to depth ratio (a/d),
and fiber factor. The proposed ANN model provides a good implementation and superior
accuracy for predicting shear strength compared to previous literature, with Root Mean
Square Error (RMSE) of 0.87, the average ratio of the tested shear strength to estimated
shear strength (vtest/vpredicted) of (1.00), and the Coefficient of Variation of 22%.

The parametric analysis shows the predicted shear capacity of steel fiber-reinforced
concrete beams increase with increased reinforcement ratio (ρ), concrete cylinder compres-
sive strength ( f ′c), and volume fraction of steel fibers. However, it was noticed that the
shear strength of SFRC beams decreased with an increase in the effective depth and span to
depth ratio. In addition, it can be noticed that all parameters have a nearly linear impact on
the shear strength except for shear span to depth ratio has an exponential effect.

It can also be concluded that adding the fibers to reinforcing concrete enhances the
improvement of some characteristics of concrete, such that the tensile strength, post-peak
behavior, ductility, and abrasion resistance.
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Appendix A. Collected Database

Table A1. Collected Experimental Database.

Reference Vf, % F = Vf l/d ρt, % d, mm f’
c,MPa a/d EXP Shear

Capacity, MPa

[22]

1.00 0.60 2.20 102 22.70 3.00 3.16
1.00 0.60 1.10 102 22.70 3.00 2.43
1.00 0.60 1.10 102 22.70 1.50 5.64
1.00 1.00 2.20 102 26.00 3.00 3.55
1.00 0.60 2.20 204 22.70 3.00 3.05
1.00 1.00 2.20 204 26.00 3.00 3.05

[24]

0.50 0.30 1.34 197 29.10 2.00 2.54
0.50 0.30 1.34 197 29.10 2.80 1.78
0.50 0.30 1.34 197 29.10 3.60 1.52
0.75 0.45 2.00 197 29.90 2.80 2.20
0.75 0.45 2.00 197 20.60 2.80 2.03
0.75 0.45 2.00 197 33.40 2.80 2.91
0.75 0.45 1.34 197 29.90 2.00 2.88
0.75 0.45 1.34 197 29.90 2.80 2.03
0.75 0.45 1.34 197 20.60 2.80 1.52

[23]

0.50 0.30 1.10 221 34.00 2.50 1.79
0.50 0.30 2.20 221 34.00 1.50 4.02
0.50 0.30 2.20 221 34.00 2.50 1.90
0.50 0.30 2.20 221 34.00 3.50 1.47
1.00 0.60 2.20 221 34.00 1.50 4.39
1.00 0.60 2.20 221 34.00 2.50 2.46

[10]

0.25 0.25 2.00 130 48.80 2.00 2.96
0.25 0.25 2.00 130 48.80 2.50 2.67
0.25 0.25 2.00 130 48.80 3.00 2.77
0.25 0.25 2.00 130 31.36 2.00 2.71
0.25 0.25 2.00 130 31.36 2.50 2.07
0.25 0.25 2.00 130 31.36 3.00 1.94
0.50 0.67 2.00 130 48.64 3.00 3.23
1.00 1.33 2.00 130 52.64 3.00 3.66
0.50 0.67 2.00 130 28.80 3.00 1.97
1.00 1.00 2.00 130 29.20 3.00 2.97
0.50 0.67 2.00 130 48.64 2.00 4.62
0.50 0.67 2.00 130 48.64 2.50 3.69
0.50 0.67 2.00 130 39.20 3.50 2.61
1.00 1.33 2.00 130 45.84 2.00 5.57
1.00 1.33 2.00 130 45.84 2.50 4.42
1.00 1.33 2.00 130 45.92 3.50 2.97
0.50 0.67 3.69 128 39.20 3.00 2.96
0.50 0.67 5.72 126 39.20 3.10 3.55
0.50 0.67 3.69 128 28.80 3.00 2.24
0.50 0.67 5.72 126 28.80 3.10 2.33
1.00 1.33 3.69 128 45.92 3.00 4.37
1.00 1.33 5.72 126 45.92 3.10 5.00
1.50 1.50 5.72 126 50.40 3.10 4.85
2.00 2.00 5.72 126 40.64 3.10 4.93
1.50 1.50 3.69 128 50.40 3.00 4.46
0.50 0.50 5.72 126 47.20 2.00 5.46
1.00 1.00 5.72 126 43.20 2.00 6.77
1.50 1.50 5.72 126 50.40 2.00 7.15
2.00 2.00 5.72 126 40.64 2.00 6.30
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Table A1. Cont.

Reference Vf, % F = Vf l/d ρt, % d, mm f’
c,MPa a/d EXP Shear

Capacity, MPa

[8]

1.00 0.00 0.37 215 92.00 2.00 1.68
1.00 0.00 0.37 215 92.60 4.00 0.89
1.00 0.00 0.37 215 93.70 6.00 0.56
0.50 0.00 2.84 215 99.00 1.00 9.09
0.50 0.00 2.84 215 99.10 2.00 4.82
0.50 0.00 2.84 215 95.40 4.00 2.27
0.50 0.00 2.84 215 95.83 6.00 1.95
1.00 0.00 2.84 215 95.30 1.00 12.74
1.00 0.00 2.84 215 95.30 2.00 6.06
1.00 0.00 2.84 215 97.53 4.00 3.17
1.00 0.00 2.84 215 100.50 6.00 1.96
1.50 0.00 2.84 215 96.40 1.00 13.95
1.50 0.00 2.84 215 96.60 2.00 7.21
1.50 0.00 2.84 215 97.10 4.00 3.51
1.50 0.00 2.84 215 101.32 6.00 1.98
1.00 0.00 4.58 215 94.50 2.00 6.73
1.00 0.00 4.58 215 93.80 4.00 3.88
1.00 0.00 4.58 215 95.00 6.00 2.93

[4]

0.80 0.80 3.05 210 38.16 4.50 3.22
0.40 0.40 4.00 210 35.52 4.50 2.16
0.80 0.80 4.00 210 37.44 4.50 3.10
1.20 1.20 4.00 210 39.84 4.50 3.13

[6]

0.25 0.50 3.55 345 43.12 0.70 9.16
0.50 1.00 3.55 345 51.60 0.70 10.14
0.75 1.00 3.55 345 49.76 0.70 9.42
1.00 1.00 3.55 345 46.40 0.70 10.46
1.25 1.00 3.55 345 54.56 0.70 11.48
1.00 1.25 3.55 345 53.60 0.70 11.39
1.00 0.25 3.55 345 49.28 0.46 13.16
1.00 0.00 3.55 345 46.64 0.58 11.71
1.00 0.00 3.55 345 44.48 0.81 9.91
1.00 0.25 3.55 345 47.92 0.93 9.97
1.00 1.33 3.55 345 30.24 0.70 8.52

[29]

0.50 0.33 3.59 175 80.00 2.00 6.84
0.50 0.33 3.59 175 80.00 3.00 3.19
0.50 0.33 3.59 175 80.00 4.50 2.78
1.00 0.66 3.59 175 80.00 2.00 7.40
1.00 0.66 3.59 175 80.00 3.00 4.10
1.00 0.66 3.59 175 80.00 4.50 3.44

[26]

0.50 0.17 1.22 186 28.70 2.00 1.64
0.50 0.33 1.22 186 32.20 2.00 1.94
1.00 0.33 1.22 186 29.00 2.00 2.18
1.00 0.33 1.22 186 32.10 3.00 1.58
1.00 0.66 1.22 186 32.30 3.00 1.98
1.50 0.50 1.22 186 32.80 3.00 2.42
1.00 0.66 1.22 186 32.60 2.00 2.73

[28]
1.00 0.40 2.68 150 38.70 2.67 4.49
2.00 0.80 2.68 150 42.40 2.67 5.73

[31]

1.00 0.00 4.31 265 35.60 2.00 5.51
1.00 0.00 4.31 265 40.88 3.43 4.05
1.00 0.00 4.31 265 36.00 4.91 2.92
1.00 0.00 2.76 265 37.76 2.00 4.93
1.00 0.00 2.76 265 33.12 3.43 3.13
1.00 0.00 2.76 265 35.92 4.91 2.94
1.00 0.00 1.55 265 35.68 2.00 4.65
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Table A1. Cont.

Reference Vf, % F = Vf l/d ρt, % d, mm f’
c,MPa a/d EXP Shear

Capacity, MPa

[25]

0.75 0.00 2.15 557 54.10 1.35 3.30
1.50 0.00 2.15 557 49.90 1.35 3.87
0.40 0.00 2.15 557 55.00 1.35 2.44
0.60 0.00 2.15 557 56.00 1.35 2.77
0.75 0.00 2.15 557 54.10 1.35 2.84
1.50 0.00 2.15 557 49.90 1.35 3.33
0.60 0.00 2.15 557 40.80 1.35 2.83
0.40 0.00 2.15 557 47.00 1.35 2.95

[32]

0.50 0.00 3.89 340 35.00 2.00 10.68
0.75 0.00 3.89 340 33.00 2.00 8.87
1.00 0.00 3.89 340 36.00 2.00 10.31
1.00 0.00 3.89 340 36.00 2.50 7.56
1.00 0.00 3.89 340 36.00 1.50 15.05

[3]

0.50 0.00 1.50 212 63.80 2.00 5.09
0.75 0.00 1.50 212 68.60 2.00 5.44
0.50 0.00 1.50 212 62.60 3.00 3.09
0.75 0.00 1.50 212 63.80 3.00 3.40
0.50 0.00 1.50 212 63.80 4.00 2.41
0.75 0.00 1.50 212 68.80 4.00 2.74
0.50 0.00 1.50 212 30.80 2.00 4.04
0.50 0.00 1.50 212 30.80 3.00 2.55
0.50 0.00 1.50 212 30.80 4.00 2.00

[18]

0.50 0.00 1.32 202 21.30 3.00 1.57
1.00 0.00 1.32 202 19.60 3.00 1.86
0.50 0.00 0.75 437 21.30 3.10 1.18
1.00 0.00 0.75 437 19.60 3.10 1.51

[20]
0.75 0.00 1.95 261 32.90 3.45 2.77
1.00 0.00 1.95 261 23.80 3.45 2.38
1.25 0.00 1.95 261 24.10 3.45 2.90

[19]

0.22 0.00 3.09 127 33.22 4.80 2.18
0.22 0.00 3.09 127 33.22 4.80 2.18
0.22 0.00 3.09 127 33.22 4.80 2.10
0.22 0.00 3.09 127 33.22 4.80 2.18
0.22 0.00 3.09 127 33.22 4.80 2.18
0.22 0.00 3.09 127 33.22 4.80 2.10
0.22 0.00 3.09 127 33.22 4.80 2.10
0.22 0.00 3.09 127 33.22 4.40 2.49
0.22 0.00 3.09 127 33.22 4.20 2.49
0.22 0.00 3.09 127 33.22 4.20 2.18
0.22 0.00 3.09 127 33.22 4.20 1.95
0.22 0.00 3.09 127 33.22 4.30 2.34
0.22 0.00 3.09 127 33.22 4.30 2.18
0.44 0.00 3.09 127 40.21 4.20 2.57
0.44 0.00 3.09 127 40.21 4.00 2.57
0.44 0.00 3.09 127 40.21 4.00 2.42
0.44 0.00 3.09 127 40.21 4.00 2.57
0.22 0.00 3.09 127 33.22 4.40 2.26
0.22 0.00 3.09 127 33.22 4.40 2.10
0.22 0.00 3.09 127 33.22 4.00 2.34
0.22 0.00 3.09 127 33.22 4.00 2.42
0.22 0.00 3.09 127 33.22 4.00 2.57
0.22 0.00 3.09 127 33.22 4.60 2.03
0.22 0.00 3.09 127 33.22 4.40 2.10
0.22 0.00 3.09 127 33.22 4.40 2.03
0.22 0.00 3.09 127 33.22 5.00 1.95
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Table A1. Cont.

Reference Vf, % F = Vf l/d ρt, % d, mm f’
c,MPa a/d EXP Shear

Capacity, MPa

[19]

0.22 0.00 3.09 127 33.22 4.80 1.79
0.44 0.00 3.09 127 40.21 4.00 2.49
0.44 0.00 3.09 127 40.21 4.20 2.65
0.44 0.00 3.09 127 40.21 4.20 2.34
0.44 0.00 3.09 127 40.21 4.20 2.57
0.88 0.00 3.09 127 39.72 3.20 2.88
0.88 0.00 3.09 127 39.72 3.40 2.73
0.88 0.00 3.09 127 39.72 3.40 2.57
0.88 0.00 3.09 127 39.72 3.40 3.27
0.88 0.00 3.09 127 39.72 3.40 3.12
1.76 0.00 3.09 127 39.79 2.80 4.44
1.76 0.00 3.09 127 39.79 1.80 6.00
1.76 0.00 3.09 127 39.79 1.20 11.30
1.76 0.00 3.09 127 39.79 1.20 10.91
0.22 0.00 3.09 127 33.22 4.80 1.95
0.22 0.00 3.09 127 33.22 4.80 1.87
0.22 0.00 3.09 127 33.22 4.80 2.03

[27]

1.00 0.00 4.47 180 90.60 3.33 8.33
1.00 0.00 4.47 180 83.20 3.33 8.22
0.50 0.00 4.47 180 80.50 3.33 7.03
0.75 0.00 4.47 180 80.50 3.33 7.31
1.00 0.00 3.09 195 39.40 3.08 4.87
1.00 0.00 4.28 235 91.40 2.77 6.62
1.00 0.00 4.28 235 93.30 2.77 7.74
1.00 0.00 4.28 235 89.60 2.77 8.68
1.00 0.00 3.06 410 76.80 2.93 3.57
1.00 0.00 3.06 410 76.80 2.93 4.15
1.00 0.00 3.06 410 72.00 2.93 4.52
1.00 0.00 3.06 410 72.00 2.93 4.04
0.50 0.00 3.06 410 69.30 2.93 3.27
0.50 0.00 3.06 410 69.30 2.93 3.85
0.75 0.00 3.06 410 60.20 2.93 4.18
0.75 0.00 3.06 410 75.70 2.93 3.61
1.00 0.00 2.87 570 76.80 2.98 2.68
1.00 0.00 2.87 570 72.00 2.98 3.56
0.75 0.00 2.87 570 60.20 2.98 3.05

[21]

0.75 0.00 3.08 300 109.50 1.75 8.85
0.75 0.00 3.08 300 110.00 2.50 4.78
0.75 0.00 3.08 300 111.50 3.50 3.53
0.75 0.00 3.08 300 110.80 4.50 3.58
1.00 0.00 4.93 255 55.84 1.96 6.64

[30]

0.75 0.00 2.67 251 28.10 3.49 3.03
0.75 0.00 2.67 251 25.30 3.49 2.12
1.00 0.00 2.67 251 27.90 3.49 2.92
1.00 0.00 2.67 251 26.20 3.49 3.29
1.50 0.00 2.67 251 28.10 3.49 2.97
1.50 0.00 2.67 251 27.30 3.49 3.51
0.50 0.00 2.67 251 27.50 3.49 1.75
0.50 0.00 2.67 251 24.90 3.49 2.07
0.75 0.00 2.67 251 27.80 3.49 2.44
0.75 0.00 2.67 251 27.30 3.49 2.71
1.00 0.00 2.67 251 26.30 3.49 3.11
1.00 0.00 2.67 251 27.10 3.49 2.79
0.75 0.00 2.67 251 53.40 3.49 3.03
0.75 0.00 2.67 251 54.10 3.49 3.37
1.00 0.00 2.67 251 53.20 3.49 3.85
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Table A1. Cont.

Reference Vf, % F = Vf l/d ρt, % d, mm f’
c,MPa a/d EXP Shear

Capacity, MPa

[30]

1.00 0.00 2.67 251 55.30 3.49 4.41
1.50 0.00 2.67 251 64.60 3.49 5.21
1.50 0.00 2.67 251 59.90 3.49 4.28
0.50 0.00 2.67 251 47.80 3.49 3.40
0.50 0.00 2.67 251 49.50 3.49 4.06
0.75 0.00 2.67 251 55.30 3.49 3.90
0.75 0.00 2.67 251 56.40 3.49 4.75
1.00 0.00 2.67 251 53.40 3.49 3.43
1.00 0.00 2.67 251 51.00 3.49 4.20
1.00 0.00 2.67 251 27.80 3.49 2.12
1.00 0.00 2.67 251 27.20 3.49 2.10
1.00 0.00 2.67 251 27.60 3.49 2.63
1.00 0.00 2.67 251 27.90 3.49 2.18
1.00 0.00 2.67 251 34.70 3.49 2.66
1.00 0.00 2.67 251 36.20 3.49 2.68
1.00 0.00 2.67 251 37.00 3.49 2.95
1.00 0.00 2.67 251 38.30 3.49 2.79

[33]

0.75 0.00 0.02 254 29.00 3.50 3.13
0.75 0.00 0.02 254 29.00 3.50 3.11
0.75 0.00 0.03 394 39.00 3.61 2.72
0.75 0.00 0.03 394 39.00 3.61 3.27
0.75 0.00 0.03 541 50.00 3.45 2.49
0.75 0.00 0.03 541 50.00 3.45 3.51
0.75 0.00 0.03 813 50.00 3.50 3.39
0.75 0.00 0.03 813 50.00 3.50 3.49
0.75 0.00 0.03 1118 50.00 3.50 3.17
0.75 0.00 0.03 1118 50.00 3.50 3.06
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