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Abstract: The growing share of intermittent renewable energy sources raised complementarity to a
central concept in the electricity supply industry. The straightforward case of two sources suggests
that to guarantee supply, the time series of both sources should be negatively correlated. Extrapolation
made Pearson’s correlation coefficient (ρ) the most widely used metric to quantify complementarity.
This article shows several theoretical and practical drawbacks of correlation coefficients to measure
complementarity. Consequently, it proposes three new alternative metrics robust to those drawbacks
based on the natural interpretation of the concept: the Total Variation Complementarity Index (φ),
the Variance Complementarity Index (φ′), and the Standard Deviation Complementarity Index (φs).
We illustrate the use of the three indices by presenting one theoretical and three real case studies:
(a) two first-order autoregressive processes, (b) one wind and one hydropower energy time series
in Colombia at the daily time resolution, (c) monthly water inflows to two hydropower reservoirs
of Colombia with different hydrologic regimes, and (d) monthly water inflows of the 15 largest
hydropower reservoirs in Colombia. The conclusion is that φ outperforms the use of ρ to quantify
complementarity because (i) φ takes into account scale, whereas ρ is insensitive to scale; (ii) ρ does
not work for more than two sources; (iii) ρ overestimates complementarity; and (iv) φ takes into
account other characteristics of the series. φ′ corrects the scale insensitivity of ρ. Moreover, it works
with more than two sources. However, it corrects neither the overestimation nor the importance
of other characteristics. φs improves φ′ concerning the overestimation, but it lets out other series
characteristics. Therefore, we recommend total variation complementarity as an integral way of
quantifying complementarity.

Keywords: electricity supply; natural resources; climatology; hydrology; electricity markets;
reliability; flexibility

1. Introduction

The proliferation of energy sources made possible by technological advances and
consequent cost reduction introduced the term complementarity into the energy jargon.
Most of those new sources have a large natural variability.

The concept of complementarity is of particular interest when the resource’s availabil-
ity or costs are variable in time. Despite the lack of a formal definition, intuition suggests
that complementarity refers to the possibility of using different resources according to their
availability to meet a given demand. However, each one separately accounts for only a
fraction of the demand.

Correlation coefficients are by far the most widely used metric for assessing comple-
mentarity between energy sources’ time series. This approach has been used, for example,
in Poland [1], Portugal [2,3], Spain [4], Italy [5,6], USA [7], Germany [8], Australia [9],
Brazil [10–13], China [14–16], Sweden [17], Mexico [18], Canada [19], Lesotho [20], Fin-
land [21], Argentina [22], Britain [23], Saudi Arabia [24], and Chile [25]. It has also been
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used at the international level (e.g., Latin America [26], Iberian Peninsula [27]), and even at
the intercontinental level (e.g., Canada vs. Noruega [19] and Europe vs. Africa [28]).

In the case of Colombia, Pearson’s correlation coefficient has been the most used
metric [29–36]. Paredes and Ramírez [30] concluded that the highest negative mean seasonal
R coefficients were at the wind and solar sites on the Oriental Plains and solar sites in the
Antioquia region. They also found seasonal complementarity between wind sites in the
north and east and northern rivers, between wind sites in the south and center and the
rivers there, and between north and east solar sites and northern rivers. Henao et al. [34]
found that solar and wind resources in the Caribbean Coast and the central Andes regions
can complement the country’s hydropower sector during the dry seasons of the annual
climatological cycle and ENSO events. Peña Gallardo et al. [32] concluded that there is good
energetic complementarity in the north and northeastern regions of the country throughout
the year. Parra et al. [33] concluded that the Colombian power system evidenced an
overall low complementarity behavior between its renewable power plants. This low
complementarity indicates that most hydro-based power plants present similar temporal
and amplitude characteristics, making the power system vulnerable to droughts. Wind and
solar power plants have a high potential to complement Colombia’s hydroelectric system,
suggesting that more power capacity is needed to enhance such complementarity.

Under this approach, there is a high complementarity between two resources when
their time series have a high negative correlation coefficient, sometimes called anticorrelation
(e.g., [7,16,23,27,28]).

However, a complementarity metric should measure the regularity of the sum of all
available resources, and correlation coefficients fail to accomplish that. The use of correla-
tion coefficients also has the following issues, also presented by us in Cantor et al. [36]:

1. Negative correlation is not complementarity. Although complementarity entails nega-
tive correlation, negative correlation does not entail complementarity. For example,
the correlation between speed and height in a pendulum is negative, but they are
not complementary.

2. Dimensions matter. In the above example, speed and height have different units. Ob-
viously, for two or more variables to complement, they must have the same dimension.
If they have different dimensions, one cannot sum them, and their complementarity
has no sense. In the pendulum example above, the complementary variables are
kinetic energy and potential energy.

3. The scale of the variables does matter. For example, streamflows from a large river and
a small creek could exhibit a sizable negative correlation, but the large one dominates
their sum. Hence, the complementarity value could be small.

4. Linearity of the relation is also an issue. Even if correlation coefficients were suitable
for assessing complementarity, selecting Pearson’s, Kendall’s, Spearman’s, or any
other coefficient needs a physical or mathematical justification.

5. It is natural to consider the complementarity of more than two resources, but a
satisfactory correlation analysis is limited to two series.

Besides correlation, among the other metrics used to evaluate complementarity, one
can mention the one proposed by Beluco et al. [37] as the product of three partial indices:
(i) partial time complementarity index, which evaluates the time interval between the
minimum values of two sources; (ii) partial energy complementarity index, which eval-
uates the relationship between the average values of two sources; (iii) partial amplitude-
complementarity index, which assesses the differences between maximum and minimum
values of the two energy sources. This idea works well for simple annual sinusoidal series
but fails for more complicated series. Borba and Brito [38] proposed the dimensionless
ratio between the actual generation discarding excess power and the average generation.
This index is more a measure of volatility than complementarity. Han et al. [39] presented
two indices of the complementary rate of fluctuation (CROF) and complementary rate
of the ramp (CROR) to analyze the complementary degree of sequences with different
fluctuation characteristics. Their rate of fluctuation seems to follow the concept of total
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variation that we present. Neto et al. [40] used the concept of Daily Physical Guarantee
(DPG), similar to firm power, to evaluate different renewable energy sources’ complemen-
tarity. The general idea is interesting but depends on the system’s characteristics and
does not provide a direct complementarity metric. A method was introduced in [29,41]
that assesses temporal complementarity between three variable energy sources, using a
combination of correlation coefficients, Euclidean vectors, compromise programming, and
normalization. The method’s basis is correlation analysis, and therefore their proposal
shares the criticism we made above. For a complete review of different methods to evaluate
complementarity, see [42]. In our opinion, none of these metrics are satisfactory enough to
assess complementarity.

This paper proposes three novel indices based on the mathematical concept of Total
Variation to solve these issues (see Section 2). Conceptually, the total variation of a time
series is the sum of all the changes in the series. A constant series has a total variation of
zero. Therefore, a total variation of zero serves as the standard of regularity. Measuring
the deviation of a sum from that standard is the motivation for defining complementarity.
The other two indices use the same idea but with variance or standard deviation instead of
the total variation. To illustrate the use and properties of the new indices, we apply them
to four cases of study (Section 3): (1) two autoregressive processes; (2) wind vs. hydro in
the Colombian electricity market; (3) two hydropower sources in the Colombian electricity
market; (4) fifteen hydropower sources in the Colombian electricity market.

2. Materials and Methods

In ordinary language, two things complement each other when their combination
is complete or perfect. To complement is to add to something in a way that enhances or
improves it. In math, two numbers complement each other when their sum is constant,
usually 1 or 100. A measure of complementarity between two functions should assess
the perfection of their sum. For perfection, here, one takes the regularity of the sum.
Therefore, the measure of complementarity is related to the measure of regularity. A
convenient way of measuring the regularity of a function is through its total variation,
which allows for simple discontinuities. It has more satisfactory properties than the
variance [43] (p. 328) [44] (p. 140).

Section 2.1 reviews the concept and main mathematical properties of Total Variation.
Then, Sections 2.2–2.4 propose indices, φ, φ′, and φs as novel metrics of complementarity.
Afterward, Sections 3.1–3.3 present one theoretical and three real case studies to evaluate
the suitability of φ and φ′ to quantify complementarity: (1) two AR(1) processes, (2) daily
wind and hydropower generation time series in Colombia, (3) the daily inflows to two
hydropower reservoirs in Colombia, and (4) monthly water inflows of the 15 largest
hydropower reservoirs in Colombia. Results are compared between the indices. Section 3.4
presents the application of the φ index for the evaluation of the complementarity of multiple
time series.

2.1. Total Variation

According to [43,44], the total variation of a function f defined on an interval [a, b] is

b∨
a

f = sup
n

∑
i=1
| f (ti)− f (ti−1)|, (1)

where the supremum is taken over all possible finite partitions a = t1 < . . . < tn = b
of [a, b].

If the total variation is bounded (finite), f is said to be of bounded variation on [a, b].
Functions of bounded variations may have only removable discontinuities (jumps). Some
important properties of the total variation are worth recalling [43]:

1. The total variation of a constant function is zero, and conversely, if
∨b

a f = 0 then f is
constant on [a, b].
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2. The total variation of a monotonic function f on [a, b] is | f (b)− f (a)|.
3.

∨b
a(α f ) = |α|∨b

a( f ) for any constant α.
4. If f1 and f2 are functions of bounded variation, then so is f1 + f2, and

b∨
a
( f1 + f2) ≤

b∨
a
( f1) +

b∨
a
( f2) (2)

5. If a < b < c then
c∨
a
( f ) =

b∨
a
( f ) +

c∨
b

( f ). (3)

From the above properties, it is clear that the total variation of a function f with values
f (tk) at the points a = t0 < t1 < . . . < tn = b, and linear interpolation in between the given
points is

b∨
a
( f ) =

n−1

∑
k=0
| f (tk+1)− f (tk)|. (4)

This property is useful to compute the total variation of a time series.
To illustrate, consider the following sequence of functions in [0, 1]: gn(t) = sin(2πnt),

n ≥ 1. Clearly, all the functions have zero mean and their variance is 1/2, but∨1
0(gn) = 4n [44].

Using the definition of Total Variation, it is natural to define the following complemen-
tarity index.

2.2. Total Variation Complementarity Index

Given two functions f1(t) and f2(t), not both constant, their complementarity index
φ( f1, f2) over the time interval [a, b] is defined as

φ( f1, f2) = 1−
∨b

a( f1 + f2)∨b
a( f1) +

∨b
a( f2)

. (5)

Evidently, 0 ≤ φ( f1, f2) ≤ 1, and when φ( f1, f2) = 1 a perfect complementarity exists
between f1 and f2, and that occurs only if f1 + f2 is a constant. The generalization to any
number of functions is direct.

As a special case, consider the Total Variation Complementarity index between the
series of anomalies. In weather and climate, an anomaly is the difference of a series
compared with its normal or average value. Clearly, the total variation complementarity
φ between the series f1, f2, . . . , fn, is equal to the complementarity between the series of
anomalies with respect to a constant mean for each function

φ( f1, f2, . . . , fn) = φ( f1 − µ1, f2 − µ2, . . . , fn − µn), (6)

because ∨b
a( f1 + . . . + fn)∨b

a( f1) + . . . +
∨b

a( fn)
=

∨b
a[( f1 − µ1) + . . . + ( fn − µn)]∨b

a( f1 − µ1) + . . . +
∨b

a( fn − µn)
. (7)

Summary of the φ index characteristics:

1. If f1 is the vertical reflection of f2, then f1 + f2 is a constant, therefore,
∨tb

ta
( f1 + f2) = 0

and φ = 1.
2. 0 ≤ φ ≤ 1. For the extreme cases, φ = 1 means that there is perfect complementarity,

and for φ = 0 there is no complementarity.
3. φ is symmetric, this is, φ( f1, f2) = φ( f2, f1). Similarly, the symmetry holds for any

permutation of the arguments in the case of more than two functions.
4. The φ index presents the same result when evaluated on anomaly series compared

with its corresponding pure series (see Equation (6)).
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5. The φ index could be applied to two or more series.

2.3. Variance Complementarity Index

If one wants to stay within the correlation concept, it is possible to correct the use of
ρ as a metric for complementarity to consider the variables’ scale. For that, considering
Equation (5), one can replace total variation by variance. This is, given two functions f1(t)
and f2(t), not both constant, their variance complementarity index φv( f1, f2) is

φv( f1, f2) = 1− Var[ f1 + f2]

Var[ f1] + Var[ f2]
, (8)

which simplifies to

φv( f1, f2) = −
2 Cov[ f1, f2]

Var[ f1] + Var[ f2]
= −ρ1,2

2
√

Var[ f1]Var[ f2]

Var[ f1] + Var[ f2]
. (9)

Notice that φv so defined is the negative of the correlation coefficient times the ratio of the
geometric and arithmetic means of the variances. This last factor is always less or equal to
one, with equality when the two variances are equal. Therefore, φv( f1, f2) varies between
−1 and 1. It is convenient to re-scale it to the range zero to one by means of

φ′( f1, f2) = (φv + 1)/2. (10)

To illustrate the effect of the scale differences on the complementarity, consider as an exam-
ple two series with cross-correlation ρ1,2 = −0.8, and the ratio of their standard deviations
σ1/σ2 = 5. Without the correction due to the difference of scales, one overestimates their
complementarity, either to be 0.8 in the range (−1, 1) or 0.9 in the range (0, 1). However,
considering Equation (9), the complementarities are φv = 0.31, or φ′ = 0.65. Notice that
differences between the means do not play any role. The ratio of the variances is the one
that measures the relative scale of the series.

Summary of the φ′ index characteristics:

1. If f1 is the vertical reflection of f2, Var[ f1] = Var[ f2], then ρ1,2 = −1, φv = 1 and
φ′ = 1.

2. 0 ≤ φ′ ≤ 1. For the extreme cases, φ′ = 1 means that there is perfect complementarity,
and for φ′ = 0 there is no complementarity.

3. φ′ is symmetric.
4. The φ′ index presents the same result when evaluated on anomaly series compared

with its corresponding pure series.
5. The φ′ index could be applied just to two series.

2.4. Standard Deviation Complementarity Index

Using similar reasoning as in Section 2.3, the Standard Deviation Complementarity
Index, instead of the variance, measures the variability of the sum with the standard
deviation. This way, one stays in the same dimension of the original variables instead of
the squares. If σ denotes the standard deviation, one can define the index as

φs( f1, f2) = 1− σ[ f1 + f2]

σ[ f1] + σ[ f2]
= 1−

√
1− 2σ[ f1]σ[ f2](1− ρ1,2)

(σ[ f1] + σ[ f2])2 . (11)

Recognizing the square of the ratio of the geometric to the arithmetic mean, one can see
that φs is in the range (0, 1), so there is no need for a re-scaling similar to Equation (10) in
the variance index. Moreover, if σ[ f1] = σ[ f2], the equation can be simplified to

φs( f1, f2) = 1−
√

1 + ρ1,2

2
. (12)
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The standard deviation complementarity index shares all the corresponding characteristics
of φ′ listed in the summary above, except number 5.

3. Results
3.1. Case Study 1: Two First-Order Autoregressive Processes

Autoregressive processes are a well-known time series method widely used for all sorts
of applications [45]. This section shows an expression for the total variance complementarity
index between two cross-correlated autoregressive processes of order one. The purpose is
to clarify the two ways of measuring complementarity, namely the total variation and the
variance complementarity index.

Let zt be a vector time series with two components, xt and yt, both with zero mean
and unit variance. The multivariate autoregressive process of order one is

zt+1 = Azt + Bvt+1, (13)

where the matrices A and B are constant parameters, and vt is a vector time series of
uncorrelated random variables with zero mean and unit variance. This is

E[vt] = 0, Var[vt] = E[vtvT
t ] = I, Cov[vt, vt+j] = E[vtvT

t+j] = 0,

for all j 6= 0, and I the identity matrix. For j > 0, the vector vt+j is uncorrelated with zt,

Cov[zt, vt+j] = E[ztvT
t+j] = 0 for j > 0.

The second order correlation structure of the process zt depends on the matrices
M0 = Var[zt] = E[ztzT

t ] and M1 = Cov[zt+1, zt] = E[zt+1zT
t ], with components

M0 =

(
Var[xt] Cov[xt, yt]

Cov[yt, xt] Var[yt]

)
=

(
1 ρxy

ρxy 1

)
,

that is symmetric and t-independent, whereas

M1 =

(
Cov[xt+1, xt] Cov[xt+1, yt]
Cov[yt+1, xt] Cov[yt+1, yt]

)
=

(
ρx ρxt+1,yt

ρyt+1,xt ρy

)
,

is not symmetric.
To find expressions for the parametric matrices postmultiply Equation (13) by zt and

take the expected value
M1 = AM0,

therefore
A = M1M−1

0 . (14)

Similarly, postmultiply Equation (13) by zt+1 and take expected values to obtain

M0 = M1M−1
0 MT

1 + BBT. (15)

One can then obtain B from Equation (15) assuming it is triangular. A simple way is to
assume that ρxt+1,yt = ρxyρx and ρyt+1,xt = ρxyρy [46]. In that case, M1 = DM0, with D a
diagonal matrix

D =

(
ρx 0
0 ρy

)
.

Therefore, Equation (14) is now

A = M1M−1
0 = D. (16)
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Similarly, Equation (15) simplifies to

BBT = M0 −DM0D =

(
1− ρ2

x ρxy(1− ρxρy)
ρxy(1− ρxρy) 1− ρ2

y

)
, (17)

that one can solve for B

B =


√

1− ρ2
x 0

ρxy(1− ρxρy)√
1− ρ2

x

√
1− ρ2

y −
ρ2

xy(1− ρxρy)2

1− ρ2
x

. (18)

The expected value of the total variation of a univariate autoregressive process (the first
component of Equation (13)) is

E

[
n∨
1

xt

]
= (n− 1)× 2√

π

√
1− ρx. (19)

The Figure 1 shows the expected value as a function of the lag-one autocorrelation
coefficient ρx.

Figure 1. Expected value of the total variation of a univariate autoregressive process as a function
of the lag-one autocorrelation coefficient ρx = r. The points are the average of 100 simulations. The
continuous line is Equation (19).

The result in Equation (19) comes realizing that

|xt+1 − xt| = |
√

1− ρ2vt+1 − (1− ρ)xt|,

where both xt and vt are independent random variables, with zero mean and unit variance.
In addition, one usually assumes that their distribution is Gaussian. Therefore, the expected
value of

∨n
1 (xt) is

E

[
n∨
1

xt

]
= E

[
n−2

∑
k=0
|xt+1 − xt|

]
=

n−2

∑
k=0

E
[
|
√

1− ρ2vt+1 − (1− ρ)xt|
]

. (20)

A simple calculation of the expected value in Equation (20) gives Equation (19).
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Similar arguments apply to the calculation of the expected value of the total variation
of the sum xt + yt

E

[
n∨
1

(xt + yt)

]
=

n−2

∑
k=0

E|(b1,1 + b2,1)vt+1 + b2,2wt+1 − (1− a1,1)xt − (1− a2,2)yt|, (21)

where ai,j and bi,j are, respectively, the components of the matrices A and B in
Equations (16) and (18). All the random variables in Equation (21) are Gaussian, with
zero mean and unit variance. vt+1 and wt+1 are mutually independent and independent of
xt, yt. The covariance between xt and yt is ρxy. Therefore, using properties of the Gaussian
distribution, the absolute value in Equation (21) corresponds to a Gaussian distribution
with zero mean and variance equal to

(b1,1 + b2,1)
2 + b2

2,2 + (1 − a1,1)
2 + (1 − a2,2)

2 + 2(1 − a1,1)(1 − a2,2)ρxy = 2(1 + ρxy)(2 − ρx − ρy).

Finally, the expected value of the total variation of the sum is

E

[
n∨
1

(xt + yt)

]
= (n− 1)× 2√

π

√
(1 + ρxy)(2− ρx − ρy). (22)

Figure 2 illustrates this result.

Figure 2. Left panel: Expected value of the total variation of the sum of two AR(1) series as a function
of the cross-correlation coefficient ρxy for different values of the serial autocorrelation coefficient
ρy = ρx, curves are labeled with the respective values of ρy. Right panel: same as left panel but as
a function of ρy = ρx for different vales of ρxy, curves are labeled with the respective values of ρxy.
Points are average of 100 simulations and the continuous line is computed with Equation (22).

Using the above results, Equations (19) and (22), the total variation complementarity
index between two autoregressive time series with lag-one correlation coefficients ρx and
ρy, and cross correlation ρxy, is

φ(xt, yt) = 1−
∨n

1 (xt + yt)∨n
1 (xt) +

∨n
1 (yt)

= 1−

√
(1 + ρxy)(2− ρx − ρy)√

1− ρx +
√

1− ρy
. (23)

Figure 3 illustrates some particular cases of this result. We are interested in the
comparison of φ with φ′ and φs. Recall that the unit variance of xt and yt implies that

φ′(xt, yt) = (1− ρxy)/2 and that φs = 1−
√
(1 + ρxy)/2.
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A first observation is that for ρxy = −1, all three indices φ, φ′, and φs are equal to unity,
perfect complementarity regardless of ρx and of ρy.

Next, if ρx = ρy, the total variation complementarity is independent of ρx, with

φ = 1−
√
(1 + ρxy)/2 = φs ≤ φ′ = (1− ρxy)/2 (left panel of Figure 3). Interestingly, as

functions of ρxy, φ and φs depend on the square root, whereas φ′ is linear. The explanation is
that both the definition of the total variance (see Equation (13)) and of the standard deviation
are linear on the values of the series, but the cross-correlation is a second-order moment.

Still within the equality of the lag-one correlation coefficients, the case ρxy = 0, and
therefore φ = φs = 1−

√
2/2 ≈ 0.29, is interesting in comparison with φ′ = 0.5. That

high-variance complementarity index in the absence of cross-correlation comes from how
Equation (10) transforms the range of the index between zero and one. Positive cross-
correlations give 0 < φ′ < 1/2, something that seems high. An alternative to Equation (10)
could be to take −ρxy for negative correlations and zero for positive ones. However, both
are arbitrary. Indeed, one does not need re-scaling for φ nor φs. For two series with null
cross-correlation, approximately 30% of the total variation of their sum cancels out just by
chance. In contrast, one of the alternatives of normalizing the variance complementarity
to the range (0, 1) is too high (50%), and the other is too low (0%). The comment in the
previous paragraph has a bearing on this comparison, as the correspondence between φ
and φs shows.

For constant ρxy = −0.7 in the center panel of Figure 3, the total variation comple-
mentarity does depend on both ρx and ρy, although φ′ has the constant value of 0.85. φ′

is between 28% and 47% larger than φ, depending on the values of the autocorrelation
coefficients. On the other hand, the comparison between φ and φs is better for various
values of both ρx and ρy.

For the case ρx = −ρy (right panel of Figure 3), φ depends on ρx, except for φ′ close to
one. In all cases, φ′ is larger than φ. With respect to the comparison between φs and φ, the
first observation is that φs = φ for ρx = 0. Second, for larger values of the autocorrelation,
φs over-estimates φ, showing the importance of taking into account autocorrelation.

In general, it is worth noticing the contrast between φ′ and φs being independent of ρx
and ρy, whereas φ is significantly dependent on both.

Recall that all the cases considered in this section use unit variance for the two series
to make a fair comparison. Therefore, the possible scale differences do not play a role; only
the effect of the serial autocorrelation does.

We conclude that the total variation complementarity index has more information
than the variance complementarity or standard deviation indices. It considers the effect
of the autocorrelations of the series. In addition, the index based on cross-correlation, φ′,
significantly overestimates the complementarity compared with φ. In contrast, for φs, the
overestimation is less of an issue for a range of autocorrelation values.

Figure 3. Comparison of total variation complementarity indices, φ, φ′, and φs as function of ρx, ρy

and ρx,y for the sum of two AR(1) series: left panel, when ρy = ρx, in this case φ = φs; center panel,
when ρxy = −0.7, and for the annotated values of ρy, in this case φ′ = 0.85 and φs = 0.613; and
right panel, for the annotated values of ρy = −ρx as a function of φ′, in this case φs = φ for ρx = 0.
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3.2. Case Study 2: Wind vs. Hydro in the Colombian Electricity Market

The total installed capacity for electricity generation in Colombia is approximately
17.5 GW. A total of 68.3% of it comes from hydro sources, while the only wind plant
accounts for near 0.1%. This high difference in the scale of both sources has an important
impact in the assessment of their complementarity.

To quantify the complementarity between wind and hydro-resources in the Colom-
bian electricity system, we use the daily time series provided by XM, the electric system
administrator, and operator in Colombia. For hydro-resources, we analyzed natural inflows
(in units of energy) to the main 15 hydropower reservoirs, with a total effective installed
capacity of 7668 MW (≈70% of total hydro-capacity) and records from 2000 to 2021. These
rivers are San Lorenzo, Nare, Guatapé, San Carlos, Tenche, Guadalupe, Grande, Porce II,
Miel I, Urrá, Betania, Batá, Guavio, Alto Anchicayá, and Salvajina. For wind resources, we
analyzed daily wind power generation from the Jepirachi plant, with 19.5 MW of effective
installed capacity and records for 2004–2021. Notice that the dimensions of both series are
the same (energy). The reader can see more details of the hydropower system of Colom-
bia at the XM website (see http://paratec.xm.com.co/paratec/SitePages/Default.aspx,
accessed on 30 April 2022).

Figure 4 shows the estimation of φ, φ′, and φs indices to the daily series and the annual
cycles of hydro-inflows and wind generation with moving averages of 31 days (top panel).
Considering the large-scale difference between the accumulated hydro-inflows and the
Jepirachi plant, the scaled series’s complementarity was also studied (bottom panel), with
a scale factor of 1/100 for the hydro-inflow series and 1/10 for the wind generation series.
Table 1 presents the results for all analyzed cases.
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Figure 4. Complementarity indices φ, φ′ and φs between wind and hydraulic resources in the
Colombia electricity market (time series were smoothed by a 31-day moving average filter). The scale
factor in the case of scaled annual cycle is 1/100 for hydro-inflow series and 1/10 for wind-power
generation series.
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Table 1. Complementarity between daily wind and hydro-resources in Colombia. Both time series
were smoothed by a 31-day moving average filter. ρ1 represents the exponential value of the slope of
the linear regression for the autocorrelation function of both resources.

Group σ2
H [GW2h2] ρ1H [-] σ2

W [GW2h2] ρ1W [-] ρH,W [-] φ [-] φ′ [-] φs [-]

Smoothed time series 1508 0.98 0.01 0.98 −0.14 0.00 0.50 0.00

Annual cycle 878 - 0.00 - −0.22 0.00 0.50 0.00

Scaled series 0.09 - 0.13 - −0.22 0.40 0.61 0.37

As expected, because of the two series’ scale differences, the indices φ, φv (not shown),
and φs do not show complementarity. In contrast, the φ′ index indicates a complementarity
of 0.50 for the daily series and the annual cycle. The reason for this huge overestimation is
the way one re-scales the index φv to obtain φ′ (Equation (10)).

When using the scaled series, the φ index increases to 0.40, and φs to 0.37. We consider
that this scaled analysis evaluates the resources’ potential complementarity if the resources’
scales were comparable. There is still a considerable difference in the result of φ′. This
tendency of φ′ to always exceed φ, overestimating the complementarity quantification,
comes from Equation (10).

3.3. Case Study 3: Two Hydropower Sources in the Colombian Electricity Market

Nare and Guavio are two important rivers in the hydropower reservoir system
of Colombia. According to XM, these rivers belong to different hydrological regions
(see details in the XM website: http://portalbissrs.xm.com.co/hdrlg/Paginas/Aportes/
apoeneyporreg.aspx, accessed on 30 April 2022). The Andes mountain range separates the
two basins, causing significant differences in their hydroclimatic patterns. Seasonality of
rainfall is unimodal in the Guavio basin and bimodal in the Nare basin [47]. Streamflows
show these regimes, too (Figure 5).

We computed the complementarity indices between the daily natural inflows (in
energy units) of the Nare and Guavio rivers for 2000–2021. Figure 5 shows the results,
where the left panel shows the 31-day moving average daily inflows and the right panel the
annual cycle at daily time-step for both rivers. Table 2 lists the results for all analyzed cases.

The scale of both resources is not as different as in the previous case. Consequently,
the φ index is similar for the daily and scaled series with values close to 0.20. Using the
equivalent to Equation (23) that considers the values of variance (not shown), with the
parameters contained in Table 2, one gets φ = 0.20. The same value that one obtains
using the time series and Equations (4) and (5). This correspondence suggests that the
autoregressive model is good for estimating complementarity. Again, φ′ shows a higher
result than φ and φs for all cases, overestimating the complementarity to around 0.38. The
pattern is that the variance complementarity index tends to overestimate complementarity.
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Figure 5. Assessment of complementarity by the φ, φ′, and φs indices between the Nare and Guavio
rivers. Left panel: 31-day moving average daily inflows. Right panel: annual cycle at daily time-step.
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Table 2. Complementarity between 31-day moving average daily streamflows of Nare and Guavio
rivers. ρ1 represents the linear regression slope for the autocorrelation function of both resources.

Group σ2
Nare [GW2h2] ρ1Nare [-] σ2

Guavio [GW2h2] ρ1Guavio [-] ρNare,Guavio [-] φ [-] φ′ φs [-]

Smoothed time series 62 0.98 129 0.98 0.27 0.20 0.37 0.20

Annual cycle 17 - 101 - 0.50 0.17 0.33 0.11

Scaled series 0.46 - 1.45 - 0.50 0.18 0.29 0.12

3.4. Case Study 4: Hydropower-Integrated Sources in the Colombian Electricity Market

One of the main advantages of the φ index is that one can evaluate the complementarity
between any number of series. To illustrate this capability, we quantify the complemen-
tarity between the monthly energy inflows to the 15 largest reservoirs of the Colombian
hydropower system (described in Section 3.2). This analysis is worthwhile since these reser-
voirs are in different country regions with different geographic and climatic characteristics.

Figure 6 presents the daily series and annual cycle of the integrated hydro system
with moving averages of 31 days. The φ index shows a complementarity of 0.34 for the
smoothed series and 0.30 for the annual cycles. The complementarity is somewhat higher
for the unsmoothed series (not shown), reaching 0.38 and 0.46, respectively.
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Figure 6. Quantification of the complementarity with φ index between the energy inflows to the main
15 hydropower reservoirs of the Colombian electricity system, with smoothed moving averages of
31 days.

4. Discussion

This article proposes a novel method based on the concept of Total Variation. The new
index (φ) is a consistent and suitable metric for complementarity between any number of
series. The index φ measures the regularity of the sum of the variables; this is one minus a
measure of irregularity. The new index is not affected by the issues pointed out regarding
correlation coefficients. Some essential properties of φ are: (1) φ is sensitive to the scale of
the variables; (2) φ works only with dimensionally homogeneous variables; (3) φ applies
to any number of variables; (4) φ also depends on the persistence (autocorrelation) of the
series, not only on their cross-correlation.

Given the intermittency of renewable energy sources, consistent evaluation of comple-
mentarity is a critical issue. Our proposed index fulfills this need, substantially contributing
to energy planning.

The definition of φ suggested using the variance instead of total variation to measure
irregularity. The result uses the correlation coefficient to assess complementarity. This
modification corrects the drawback of differences in the scales of the series discussed
above. We call this modification the variance complementarity index, φ′. Nevertheless, the
correction produces overestimations of complementarity. This overestimation comes from
the correlation being a second-order moment. This explanation leads to using the standard
deviation instead of the variance to measure the irregularity of the sum. This third index,
the Standard Deviation Complementarity Index, corrects the overestimation.

The applications to the Colombian power system show that the variance complemen-
tarity overestimates complementarity. In comparison, the Standard Deviation Complemen-
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tarity Index is closer to the total variation index. However, the analytical results for the
expected value of two cross-correlated autoregressive series demonstrate that φs does not
capture all the complementarity’s dependencies. In particular, the example shows that
serial autocorrelation does affect complementarity.

Finally, we used the proposed indices to quantify the Colombian electricity system’s
complementarity. This assessment is important due to its hydrological and climatic regional
differences. The total variation complementarity index between the daily series of the hydro-
resources is 0.30. This number estimates the complementarity between the 15 main rivers
feeding the Colombian power system, which has never been achieved before. The total
variation complementarity index, φ, between hydro and wind resources is almost null due
to the wind component’s negligible contribution. When one uses scaled variables, it is 0.39,
representing the potential complementarity between these resources and could stimulate a
higher level of investment in wind capacity development. The proposed index put a solid
basis and a concrete number on those intuitive ideas.

5. Conclusions

There is no agreement in the electricity industry and the scientific community on how
to define and assess the complementarity of energy sources. The most frequently used
approach is to associate complementarity with negative correlation. This article showed
that correlation indices have several intrinsic shortcomings when used for that intention
and proposes the uniformity of the sum of the resources as a more physically based concept
of complementarity. As a consequence, dimensional homogeneity is a necessary condition
for any set of variables before complementarity can be assessed.

There are other drawbacks to the use of correlation coefficients to assess comple-
mentarity. (1) If the series scales are very different, correlation coefficients may mislead
complementarity. A negative correlation is a necessary but not sufficient condition for
complementarity. (2) Correlation coefficients can only be used with pairs of variables, while
the applied cases worldwide usually encompass multiple energy sources.

In this article, we propose a new method (φ) based on the concept of Total Variation,
which considers as a starting concept to assess complementarity the regularity measure of
the sum of the variables. This method is sensitive to the scale of the variables, works only
with dimensionally homogeneous variables, depends on the persistence of the series (not
only on their cross-correlation), and can be applied to more than two series.

We also present two more indices based on variance (φ′) and standard deviation
(φs). We found that the (φ′) index produces complementarity overestimation, on the
other hand, although (φs) corrects the overestimation, this index does not capture all the
complementarity’s dependencies between the time series.
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