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Abstract: Soil organic matter (SOM) is a key index of soil fertility. Visible and near-infrared (VNIR,
350–2500 nm) reflectance spectroscopy is an effective method for modeling SOM content. Charac-
teristic wavelength screening and spectral transformation may improve the performance of SOM
prediction. This study aimed to explore the optimal combination of characteristic wavelength selec-
tion and spectral transformation for hyperspectral modeling of SOM. A total of 219 topsoil (0–20 cm)
samples were collected from two soil types in the East China. VNIR reflectance spectra were mea-
sured in the laboratory. Firstly, after spectral transformation (inverse-log reflectance (LR), continuum
removal (CR) and first-order derivative reflectance (FDR)) of VNIR spectra, characteristic wave-
lengths were selected by competitive adaptive reweighted sampling (CARS) and uninformative
variables elimination (UVE) algorithms. Secondly, the SOM prediction models were constructed
based on the partial least squares regression (PLSR), random forest (RF) and support vector regression
(SVR) methods using the full spectra and selected wavelengths, respectively. Finally, optimal SOM
prediction models were selected for two soil types. The results were as follows: (1) The CARS
algorithm screened 40–125 characteristic wavelengths from the full spectra. The UVE algorithm
screened 105–884 characteristic wavelengths. (2) For two soil types and full spectra, CARS and UVE
improved the SOM modeling precision based on the PLSR and SVR methods. The coefficient of
determination (R2) value in the validation of the CARS-PLSR (PLSR model combined with CARS) and
CARS-SVR (SVR model combined CARS) models ranged from 0.69 to 0.95, and the relative percent
deviation (RPD) value ranged from 1.74 to 4.31. Lin’s concordance correlation coefficient (LCCC)
values ranged from 0.83 to 0.97. The UVE-PLSR and UVE-SVR models showed moderate precision.
(3) The PLSR and SVR modeling accuracies of Paddy soil were better than those for Shajiang black
soil. RF models performed worse for both soil types, with the R2 values of validation ranging from
0.22 to 0.68 and RPD values ranging from 1.01 to 1.60. (4) For Paddy soil, the optimal SOM prediction
models (highest R2 and RPD, lowest root mean square error (RMSE)) were CR-CARS-PLSR (R2 and
RMSE: 0.97 and 1.21 g/kg in calibration sets, 0.95 and 1.72 g/kg in validation sets, RPD: 4.31) and
CR-CARS-SVR (R2 and RMSE: 0.98 and 1.04 g/kg in calibration sets, 0.91 and 2.24 g/kg in validation
sets, RPD: 3.37). For Shajiang black soil, the optimal SOM prediction models were LR-CARS-PLSR
(R2 and RMSE: 0.95 and 0.93 g/kg in calibration sets, 0.86 and 1.44 g/kg in validation sets, RPD: 2.62)
and FDR-CARS-SVR (R2 and RMSE: 0.99 and 0.45 g/kg in calibration sets, 0.83 and 1.58 g/kg in
validation sets, RPD: 2.38). The results suggested that the CARS algorithm combined CR and FDR
can significantly improve the modeling accuracy of SOM content.

Keywords: competitive adaptive reweighted sampling algorithm (CARS); uninformative variables
elimination (UVE); soil hyperspectral data; soil organic matter; support vector regression
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1. Introduction

Hyperspectral technology can quickly and easily acquire continuous spectral curves
of soils containing various wavelengths and rich spectral information. Such technology can
reflect multiple soil properties comprehensively, thus enabling high-efficiency and accurate
modeling predictions of soil properties [1–7]. Many studies concerning the applications of
visible and near-infrared (VNIR, 400–2500 nm) and mid-infrared reflectance spectroscopy
(MIRS, 2500–25,000 nm) technology in modeling predictions of soil properties have been
undertaken [8–12].

The traditional soil organic matter (SOM) content test method is complicated and
expensive, whereas hyperspectral technology can quickly and accurately test the SOM con-
tent [13–16]. Many studies concerning the application of VNIR hyperspectral technology in
modeling predictions of soil properties have been undertaken. Various models were used
for SOM spectral predictions, such as multiple linear regression [17], partial least squares
regression (PLSR) [15,18,19], multivariate adaptive regression spline (MARS) [10,20], ar-
tificial neural networks [21], machine learning [10,22,23], deep learning [24] and other
methods. Systematic comparisons of modeling methods have also been conducted. Among
these models, PLSR has relatively high overall precision and is widely used [10,18,23,25].

Due to differences in the soil forming environment, there are different hyperspectral
characteristics among different geographical regions and soil types. Many studies have been
conducted in different geographical regions and soil types [10,19–21,26]. SOM prediction
models with spectral variables for grouping soil samples are more accurate than global
modeling methods. A local PLSR model based on the spatial constraints proposed by
Shi et al. [19] predicted the SOM content more accurately using a soil spectral library in
China. Bao et al. [26] improved the SOM prediction accuracy by applying an optimal soil
grouping strategy.

Soil hyperspectral data are composed of various wavelengths with different correla-
tion degrees among them and some information redundancy. Characteristic wavelength
screening aims to eliminate the uninformative variables while selecting characteristic vari-
ables from hyperspectral data using algorithms and various criteria. After characteristic
wavelength screening, the number of spectral wavelengths is compressed significantly,
which reduces the dimensionality of the variables and the complexity of the models in the
modeling process. Sophisticated methods include the competitive adaptive reweighted
sampling (CARS) algorithm, the uninformative variables elimination (UVE) algorithm, the
successive projections algorithm (SPA), uniform-interval wavelength reduction, the genetic
algorithm, and particle swarm optimization [26–31]. Moreover, combinations of multiple
algorithms, such as UVE-SPA, CARS-SPA and Monte Carlo-based UVE, have been used to
optimize selected wavelengths [29,32]. Some studies reported that CARS could compress
the number of original spectral wavelengths to lower than 16% [26,32,33].

PLSR modeling precision based on selected characteristic wavelengths—usually higher
than that based on the full spectra [26–28,31] or the dimensionality of the spectral data—can
be significantly reduced while assuring modeling precision [34]. The CARS and UVE al-
gorithms optimize wavelength selection based on the PLSR model. The UVE algorithm
selects characteristic wavelengths based on stability analyses of the PLSR regression co-
efficient [30]. The CARS algorithm selects characteristic wavelengths with high absolute
regression coefficient values in the PLSR model [29]. Both algorithms were shown to be
effective ways to reduce the number of inputs and improve the PLSR modeling accuracy of
SOM [26,27,32,33]. However, it is rarely reported whether CARS and UVE algorithms can
improve the accuracy of machine learning methods, such as random forest (RF), support
vector regression (SVR) and others.

Spectral transformation, such as inverse-log reflectance (LR), continuum removal (CR),
first-order derivative reflectance (FDR) and fractional order derivative, might increase the
precision of SOM prediction models by enhancing the absorption or reflection character-
istics of the soils in some wavelengths [11,23,35–37]. For example, Nawar et al. [35] and
Dotto et al. [23] reported that CR and FDR transformation had a strong positive influence
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on the performance of most SOM prediction models. FDR transformation showed better
model performance than the second derivative transformation for SOM estimations in
several modeling methods [36]. Some research has also explored the prediction effect of
SOM content using characteristic wavelength screening combined with different spectral
transformation techniques [38,39]. As shown above, characteristic wavelength screening,
spectral transformation and combinations of two means have been widely applied to
improve the accuracy of SOM spectral modeling.

Paddy soil and Shajiang black soil, i.e., the two main types of cultivated soil in East
China, were selected as the study object in this research. After different spectral transfor-
mations of the VNIR hyperspectral data of the two soil types, characteristic wavelength
datasets were selected using the CARS and UVE algorithms. Then, PLSR, SVR and RF
were used to establish SOM prediction models. The objectives of this research were
to: (1) analyze the influence of the CARS and UVE algorithms on the accuracy of the PLSR,
SVR and RF models, (2) compare improvements of modeling accuracy by characteristic
wavelength screening and spectral transformation, and (3) assess the modeling perfor-
mance of the PLSR, SVR and RF models and establish an optimal SOM prediction model
for Paddy soil and Shajiang black soils in East China.

2. Materials and Methods
2.1. Study Area

Study area 1 is located in the central plains of Jiangsu Province (119◦53′37′′–120◦14′4′′ E,
32◦20′17′′–32◦44′50′′ N) in eastern China, covering an area of 1050 km2 (Figure 1). The
annual average temperature, precipitation and elevation are 14.5 ◦C, 991.7 mm and 5–10 m,
respectively. Parent materials mainly included lagoonal facies sediments. Paddy soil
dominates. Paddy fields dominate land use type, and the rice-rape rotation is the main
crop rotation system.
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Study area 2 is located in Huaibei Plain of Anhui Province (116◦15′43′′–116◦49′25′′ E,
32◦55′29′′–33◦29′64′′ N) in eastern China, covering an area of 2091 km2 (Figure 1). The
annual average temperature and precipitation are 14.8 ◦C and 821.5 mm, respectively. The
elevation is 20–30 m, decreasing from the northwest to the southeast. Shajiang black soil
dominates. Upland dominates the land use type, and wheat-soybean rotation is the main
crop rotation system.

2.2. Soil Sampling and Analysis

In study area 1, 111 Paddy soil samples were collected from the surface layer (0–20 cm)
in November 2009 (Figure 1). In study area 2, 108 Shajiang black soil samples were collected
from the surface layer in June 2016 (Figure 1). In each field, 8–12 soil samples were collected
within a radius of 10–20 m from the field center. The collected soil samples were mixed
and 1 kg was retained using the quartation method. After soil samples were air-dried and
ground in the lab, a part of each sample was sieved using a 0.2-mm soil sieve and used to
measure SOM content. The SOM content was determined using the potassium dichromate
method, which is the same as the wet oxidation method [40].

2.3. Soil Spectrum Collection and Preprocessing

After air-drying, grinding and sieving (<2 mm), the diffuse reflectance spectra of
the soil samples were measured using an ASD FieldSpec 4 portable spectral radiometer
(Analytical Spectral Devices Inc., Boulder, CO, USA). The wavelength range and resampling
interval were VNIR (350–2500 nm) and 1 nm, respectively. The entire operation was
performed in a dark laboratory with controlled lighting conditions; the light source was a
halogen lamp. The soil samples were placed in containers with a diameter of 10 cm and a
depth of 1.5 cm, and the surface of the soil sample was scraped flat. The sensor probe was
located 15 cm above the surface of the soil sample, with a probe view angle of 25◦. A white
panel with 99% reflectance was used to calibrate the spectrometer before measuring. Each
sample was rotated four times, and 10 scans were performed from each direction. Hence,
40 scanning spectral curves were collected for each sample and the mean was used as the
spectra of the soil sample [41].

The Savitzky-Golay (SG) filter method with a moving window of 11 nm and a local
polynomial order of 2 regression was used to smooth the reflectance curves. LR, CR and
FDR were applied to transform the original reflectance (R) to strengthen the relationship
between the SOM and the spectra. Finally, each soil sample yielded 2141 wavelengths for
each type of spectra data in the VNIR (355–2495 nm) domain. Spectral data processing was
performed using “prospectr” package [42] in the R software.

2.4. Characteristic Wavelength Screening Algorithms

The CARS algorithm selects characteristics by choosing variables with high absolute
regression coefficient values in the PLSR model. It consists of three major steps, i.e., Monte
Carlo sampling, PLSR modeling and the acquisition of variable weights. This algorithm
executes forced wavelength selection by the exponential damping function and makes
competitive wavelength selections using the adaptive reweighted sampling technique.
The detailed process of the CARS algorithm is shown in the references [29]. The UVE
algorithm is a variable selection approach based on stability analysis of the PLSR regression
coefficient [30]. This algorithm eliminates uninformative variables that have relatively
small covariance with dependent variables but high variances. The detailed process of the
UVE algorithm is shown in the references [43,44]. The CARS and UVE algorithms were
applied in MATLAB R2012a.

2.5. SOM Spectral Modeling

A total of 111 Paddy soil samples were divided into a calibration set (74, 2/3) and a
validation set (37, 1/3) using the Kennard-Stone method. For Shajiang black soil, 72 soil
samples were selected as the calibration set, and 36 were used as the validation set. Figure 2
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presents a flowchart of the process. Firstly, characteristic wavelengths were screened from R,
LR, CR and FDR spectral data using the CARS and UVE algorithms, respectively. Secondly,
for each type of spectral data, the SOM models were established based on the PLSR, SVR
and RF models using characteristic wavelengths and full spectra. Finally, the performance
of the models was compared and the optimal model for each soil type was selected.
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In RF modeling, the two main parameters are the number of trees growing in the forest
(ntree) and the number of randomly selected predictor variables at each node (mtry). In SVR
modeling, the linear kernel function was used to build the model and the main parameter
was the penalty coefficient (C). The parameters mtry and ntree were set to 1–5 and 100–2000
for RF modeling, respectively, and the C range was set to 2−4–24 for SVR modeling. The
“e1071” package [45] in the R software was used for parameter tuning using grid search
and 10-fold cross-validation. RF and SVR modeling and parameter tuning were performed
using the “e1071” packages in the R software. PLSR modeling was performed using the
“pls” package [46] in the R software. Statistical analyses were performed using the “stats”
package [47] in the R software (R Core Team, R version 4.2.0, https://www.r-project.org/).

2.6. Model Evaluation

The coefficient of determination (R2), root mean square error (RMSE), relative percent
deviation (RPD) and Lin’s concordance correlation coefficient (LCCC) were chosen as the
evaluation indexes. RMSE is smaller as R2 approaches 1, indicating better stability and
higher prediction precision of the model. If RPD is below 1.5, the models have poor
estimation abilities. With RPD in the range of 1.5 to 1.8, the estimation precision of the
models is improved to some extent, but it has a margin for improvement. For RPD in
the range of 1.8 to 2, the prediction is considered to be good. When RPD is higher than
2, the models achieve a high level of precision. LCCC represents the distribution and
aggregation degree of the predicted and observed values near the 1:1 line; the larger the
value, the better.

The calculation formulas of the different evaluation indexes were as follows:

R2 = 1−∑n
i=1(Oi − Pi)

2
/∑n

i=1

(
Oi −O

)2
(1)

https://www.r-project.org/
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RMSE =

√
1
n∑n

i=1(Oi − Pi)
2

(2)

RPD = so/RMSE (3)

LCCC = 2rsosp/
[
so

2 + sp
2 +

(
O− P

)2
]

(4)

where Oi and Pi are the observed and predicted values, respectively; O and P are the mean
values of observed and predicted values, respectively; so and sp are the corresponding
standard deviations; r is the correlation coefficient between the observed and predicted
values; and n is the number of observations.

3. Results
3.1. Characteristic of Soil Spectral Curves

The SOM of Paddy soil samples was relatively high, averaging 32.13 ± 7.21 g/kg
(Table 1), while that of Shajiang black soil was relatively low, averaging 21.60 ± 3.94 g/kg.
The coefficients of variation (CV) of SOM in Paddy soil and Shajiang black soil were 18.24%
and 22.44%, showing moderate variation. The CV of Paddy soil was relatively high.

Table 1. Statistical characteristics of soil organic matter.

Soil Type Data Sets n Range
(g/kg)

Mean
(g/kg) SD (a) Skewness Kurtosis CV (b) (%)

Paddy soil
All samples 111 15.43~58.22 32.13 7.21 0.50 0.92 22.44

Calibration sets 74 15.43~52.49 31.93 7.03 0.23 0.16 22.01
Validation sets 37 18.43~58.22 32.52 7.64 0.95 2.20 23.50

Shajiang
black soil

All samples 108 6.65~31.30 21.60 3.94 −0.14 1.10 18.24
Calibration sets 72 6.65~30.25 21.47 4.01 −0.39 1.57 18.69
Validation sets 36 15.62~31.30 21.84 3.82 0.46 −0.08 17.50

(a) SD, Standard deviation; (b) CV, Coefficient of variation.

The SOM content was divided into seven levels: <15 g/kg, 15–20 g/kg, 20–25 g/kg,
25–30 g/kg, 30–35 g/kg, 35–40 g/kg and >40 g/kg [39]. The mean spectral reflectance
curves corresponding to seven SOM content levels were calculated (Figure 3a). With
increasing SOM content, the spectral reflectance of the soil decreased over the full spectral
range except for the spectral curve of SOM below 15 g/kg. With increasing wavelength, the
reflectance in the visible spectrum increased quickly. In the NIR wavelength, the reflectance
of soils showed stable growth (Figure 3a). The mean spectral reflectance of soil samples
with SOM < 15 g/kg was smaller than that of the samples with SOM from 15 to 25 g/kg.

The absorption characteristics were not apparent in the original spectral curves; how-
ever, after CR transformation, they were visibly strengthened and the depth of the absorp-
tion valley increased (Figure 3b). Except for the more prominent absorption valleys near
1400 nm, 1900 nm and 2200 nm, the relevant evident characteristics were also detected near
500 nm, 650 nm and 850 nm, respectively. The absorption characteristics near 650 nm were
generally strengthened with an increase in SOM content.

The spectral reflectance curves of the two soil types at the minimum, 25%, 50%,
75% and maximum of SOM content were used to analyze the spectral characteristics
(Figure 4). The spectral reflectance curves of Paddy soil and Shajiang black soil gradually
became flat with increasing SOM content, indicating negative correlation between the
spectral reflectance and SOM content (Figure 4). For Shajiang black soil, the two spectral
curves when the SOM content was 18.91 g/kg and 21.82 g/kg had extremely similar and
overlapping characteristics (Figure 4b). Similar phenomena were observed between the
two spectral curves when the SOM content was 23.89 g/kg and 31.30 g/kg (Figure 4b). The
spectral features showed no significant differences with the change in SOM content.
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SOM content showed significantly negative correlations with the R spectra in the full
spectra range; however, it showed significantly positive correlations with the LR spectra
(Figure 5). For Paddy soil, the correlations between SOM content and spectra were stronger.
The correlations in the 400–900 nm wavelengths were significantly stronger than those in the
other wavelengths and the absolute values of the correlation coefficients were higher than
0.6 (Figure 5a). For Shajiang black soil, slightly weaker correlations with the SOM content
were observed, without great differences in correlation among the different wavelengths.
The absolute value of the correlation coefficient was between 0.30 and 0.48. The SOM, CR
and FDR spectra presented significant positive or negative correlations at 400–750 nm,
1400–1700 nm and 2200–2400 nm wavelengths, and the absolute values of the correlation
coefficients were lower than those of the R and LR spectra (Figure 5).
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3.2. Results of Characteristic Wavelength Screening

For the R spectra of the Paddy soil, the screening results based on the UVE algo-
rithm is shown in Figure 6. A total of 815 wavelengths were screened from 2141 wave-
lengths, accounting for 37.89% of the total number of spectral wavelengths. The screened
551 wavelengths were distributed at 1223–1550 nm, 1929–2100 nm and 2233–2485 nm,
whereas the 264 visible wavelengths were distributed at 355–432 nm, 506–610 nm and
637–718 nm.
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For the R spectra of Paddy soil, the screening results based on the CARS algorithm
are shown in Figure 7. The number of screened wavelengths decreased continuously until
reaching zero during the screening process, whereas the Monte Carlo sampling times or
operation times increased continuously (Figure 7a). According to the trend graph of the
RMSE of cross-validation (RMSECV) (Figure 7b), the modeling precision increased, whereas
the RMSECV decreased when the operation time increased from 1 to 27 due to the deletion
of the wavelengths which were poorly correlated with SOM. At the 27th sampling time,
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RMSECV reached a minimum; therefore, the selected spectral variable subset was optimal.
A total of 61 wavelengths screened by the CARS algorithm were mainly distributed within
1990–2490 nm, accounting for 2.84% of the total number of wavelengths.
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was optimal.

The screened characteristic wavelengths of the two soil types are shown in Figure 8.
The number of characteristic wavelengths using the UVE algorithm was higher than that
with the CARS algorithm; this was related to the principles of the algorithms. The UVE algo-
rithm screened 105–884 characteristic wavelengths for two soil types. The CARS algorithm
compressed the characteristic wavelengths of the two soil types to lower than 6% of the full
spectral wavelengths and reduced the complexity of the SOM spectral modeling. For the R,
LR, CR and FDR spectra, the CARS algorithm screened 61–125 characteristic wavelengths
from all 2141 wavelengths of Paddy soil and 40–61 for Shajiang black soil, respectively.

3.3. PLSR Modeling Based on Characteristic Wavelengths

The PLSR models of SOM were established using the selected wavelengths and full
spectral wavelengths (Table 2). The validation results of the SOM PLSR models are shown in
Figure 9 (Paddy soil) and Figure 10 (Shajiang black soil). For different soil types and spectral
transformation data, the accuracy of the SOM models using the selected wavelengths was
improved to different extents compared to the models using the full spectral wavelengths.
The accuracy of the PLSR models combined with the CARS algorithm (CARS-PLSR) was
higher than those of the PLSR models combined with the UVE algorithm (UVE-PLSR).
CARS-PLRS models had the highest accuracies, with R2

p, RPD and LCCC values higher
than 0.80, 2.0 and 0.90, indicating that the SOM content could be accurately predicted. The
PLSR modeling accuracy of paddy soil was better than that of Shajiang black soil.
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Table 2. PLSR models for SOM content based on selected wavelengths and spectral transformation datasets.

Soil Type Model (a) Number of
Wavelengths

Calibration Sets Validation Sets
RPD LCCC

R2
c RMSEc (g/kg) R2

p RMSEp (g/kg)

Paddy
soil

R-F-PLSR Full spectra 0.83 2.86 0.76 3.66 2.06 0.88
R-UVE-PLSR 815 0.92 1.99 0.81 3.29 2.29 0.91

R-CARS-PLSR 61 0.91 2.09 0.87 2.68 2.81 0.93

LR-F-PLSR Full spectra 0.95 1.62 0.80 3.37 2.24 0.90
LR-UVE-PLSR 884 0.90 2.16 0.86 2.77 2.72 0.92

LR-CARS-PLSR 125 0.95 1.58 0.90 2.43 3.01 0.95

CR-F-PLSR Full spectra 0.70 3.81 0.62 4.66 1.62 0.79
CR-UVE-PLSR 268 0.88 2.38 0.87 2.77 2.72 0.92

CR-CARS-PLSR 70 0.97 1.21 0.95 1.72 4.31 0.97

FDR-F-PLSR Full spectra 0.92 1.96 0.78 3.51 2.15 0.87
FDR-UVE-PLSR 300 0.88 2.38 0.83 3.09 2.44 0.91

FDR-CARS-PLSR 70 0.91 2.03 0.94 1.81 4.18 0.97

Shajiang
black
soil

R-F-PLSR Full spectra 0.85 1.53 0.58 2.44 1.55 0.72
R-UVE-PLSR 366 0.82 1.67 0.69 2.10 1.80 0.80

R-CARS-PLSR 40 0.94 0.98 0.79 1.72 2.19 0.87

LR-F-PLSR Full spectra 0.89 1.31 0.61 2.37 1.59 0.74
LR-UVE-PLSR 461 0.84 1.57 0.62 2.34 1.61 0.76

LR-CARS-PLSR 40 0.95 0.93 0.86 1.44 2.62 0.92

CR-F-PLSR Full spectra 0.92 1.10 0.28 3.21 1.17 0.54
CR-UVE-PLSR 257 0.81 1.72 0.64 2.26 1.61 0.79

CR-CARS-PLSR 53 0.92 1.11 0.73 1.96 1.93 0.84

FDR-F-PLSR Full spectra 0.96 0.78 0.26 3.23 1.45 0.55
FDR-UVE-PLSR 105 0.82 1.67 0.63 2.30 1.94 0.79

FDR-CARS-PLSR 61 0.98 0.55 0.85 1.46 2.58 0.92

Note: (a) R, LR, CR, and FDR stand for different spectral data. F stands for full spectral wavelengths; UVE
stands for selected wavelengths by UVE algorithm; CARS stands for selected wavelengths by CARS algorithm.
Model R-F-PLSR stands for PLSR model using all spectral wavelength reflectance; R-UVE-PLSR stands for PLSR
modeling using selected reflectance wavelength by UVE algorithm.
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With the same soil type and wavelength screening algorithm, the accuracy of the PLSR
models after spectral transformation (LR, CR, and FDR) was improved compared with
the original reflectance (R). For example, the CARS-PLSR models of Paddy soil (model
LR-CARS-PLSR, CR-CARS-PLSR and FDR-CARS-PLSR), with R2

p and RPD values greater
than 0.90 and 3 and RMSEp lower than 2.43 g/kg, outperformed model R-CARS-PLSR
(with R2

p value of 0.87, RDP value of 2.81 and RMSEp value of 2.68 g/kg). LCCC values
increased. For Shajiang black soil, the accuracy of LR-CARS-PLSR and FDR-CARS-PLSR
was slightly better than that of R-CARS-PLSR. Overall, this study showed that LR and FDR
transformation improved the modeling accuracy, which was consistent with other research
results [23,35,36,38].

The improvement of model accuracy by characteristic wavelength screening was
superior to that of spectral transformation. For example, in Paddy soil, the R2

p values of the
PLSR models using full transformed spectra (model LR-F-PLSR, CR-F-PLSR and FDR-F-
PLSR) ranged from 0.62 to 0.80, and the RPD values ranged from 1.62 to 2.24. Compared
with R-F-PLSR (R2

p and RPD value of was 0.76 and 2.06), the accuracies of LR-F-PLSR,
CR-F-PLSR and FDR-F-PLSR were slightly improved (Table 2). In Paddy soil, the R2

p and
RPD value of the UVE-PLSR (LR-UVE-PLSR, CR-UVE-PLSR and FDR-UVE-PLSR) and
CARS-PLSR models (LR-CARS-PLSR, CR-CARS-PLSR and FDR-CARS-PLSR) ranged from
0.81 to 0.95 and from 2.29 to 4.31, respectively, and the accuracy of these models were
significantly improved than above models.

For two soil types, the predictive accuracy of the samples with SOM content lower
than 20 g/kg was improved significantly in the CARS-PLSR models. The predicted and
measured values were concentrated around the 1:1 line (Figures 9i–l and 10i–l). In this
study area, the average SOM content of the Shajiang black soil was 21.60 ± 3.94 g/kg and
the SOM content of 34% in the samples was lower than 20 g/kg (Table 1). For models using
full spectral data of Shajiang black soil, the predicted and measured values were relatively
dispersed near the 1:1 line, regardless of whether the SOM content was lower or higher than
20 g/kg (Figure 10a–d). The corresponding LCCC values were between 0.54 and 0.74 and
the RPD values ranged from 1.17 to 1.59, indicating the poor predictive ability of the models.
The accuracy of the CARS-PLSR models was significantly improved. The corresponding
LCCC values were between 0.84 and 0.92 and the predicted and measured values were
uniformly distributed near the 1:1 line (Figure 10i–l). The RPD values were all higher than
2, indicating the high accuracy and superior predictive capabilities of the models.

According to previous studies, soil spectral characteristics are not recommended for
modeling and prediction when SOM is lower than 20 g/kg [48,49]. This might be because
when there is a low SOM content, the spectral reflectance of the soils is dominated by other
factors [48,50]. This study established optimal SOM prediction models for Shajiang black
soil after CARS algorithm, suggesting that the CARS algorithm is an effective means to
improve prediction precision for soils with low SOM contents.

3.4. SVR and RF Modeling Based on Characteristic Wavelengths

The SVR and RF models of SOM were established based on the characteristic wave-
lengths and the full spectra data (Tables 3 and 4). For different soil types and spectral
transformation data, the results of SVR modeling were superior to those of RF modeling.
On the whole, the accuracy of the SVR models was similar to that of PLSR models, while
the accuracy of the RF models was notably worse than that of PLSR models. RF models
performed worse for two soil types, with the R2 values of validation ranging from 0.22 to
0.68 and RPD values ranging from 1.01 to 1.60. The SVR and RF modeling accuracies of
Paddy soil were better than that of Shajiang black soil.
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Table 3. SOM modeling results based on SVR using selected wavelengths and spectral transformation
datasets.

Soil Type Model (a)
Best Parameters Calibration Sets Validation Sets

RPD LCCC
(C) R2

c RMSEc (g/kg) R2
p RMSEp (g/kg)

Paddy
soil

R-F-SVR 16 0.99 0.66 0.75 4.03 1.87 0.85
R-UVE-SVR 2 0.81 3.09 0.77 3.93 1.92 0.85

R-CARS-SVR 16 0.89 2.57 0.88 2.85 2.70 0.92

LR-F-SVR 4 0.95 1.60 0.83 3.20 2.36 0.90
LR-UVE-SVR 16 0.93 1.91 0.89 2.57 2.93 0.93

LR-CARS-SVR 16 0.94 1.72 0.92 2.33 3.24 0.95

CR-F-SVR 0.0625 0.99 0.68 0.79 3.56 2.12 0.86
CR-UVE-SVR 0.0625 0.90 2.20 0.85 3.08 2.45 0.91

CR-CARS-SVR 8 0.98 1.04 0.91 2.24 3.37 0.96

FDR-F-SVR 0.0625 0.99 0.65 0.76 3.96 1.90 0.86
FDR-UVE-SVR 0.0625 0.95 1.56 0.78 3.61 2.09 0.88

FDR-CARS-SVR 0.0625 0.93 1.94 0.91 2.37 3.18 0.94

Shajiang
black
soil

R-F-SVR 1 0.91 1.23 0.63 2.30 1.64 0.76
R-UVE-SVR 8 0.87 1.46 0.66 2.20 1.71 0.79

R-CARS-SVR 16 0.94 1.00 0.77 1.79 2.10 0.86

LR-F-SVR 1 0.92 1.17 0.61 2.36 1.60 0.75
LR-UVE-SVR 2 0.79 1.81 0.70 2.09 1.80 0.81

LR-CARS-SVR 16 0.94 1.00 0.82 1.58 2.38 0.90

CR-F-SVR 0.0625 0.99 0.37 0.29 3.20 1.18 0.48
CR-UVE-SVR 0.0625 0.95 0.91 0.63 2.34 1.61 0.77

CR-CARS-SVR 1 0.97 0.71 0.69 2.16 1.74 0.83

FDR-F-SVR 0.0625 0.99 0.38 0.36 3.07 1.23 0.58
FDR-UVE-SVR 0.0625 0.91 1.18 0.67 2.23 1.69 0.77

FDR-CARS-SVR 0.0625 0.99 0.45 0.83 1.58 2.38 0.91

Note: (a) R, LR, CR, and FDR stand for different spectral data. F stands for full spectral wavelengths; UVE
stands for selected wavelengths by UVE algorithm; CARS stands for selected wavelengths by CARS algorithm.
Model R-F-SVR stands for SVR model using full spectral wavelength reflectance data; R-UVE-SVR stands for SVR
modeling using selected reflectance wavelength by UVE algorithm.

The accuracies of the SVR models combined with the CARS algorithm (CARS-SVR)
and UVE algorithm (UVE-SVR) were higher than those of the SVR models using full
spectral data, and CARS-SVR models were best. In Paddy soil, the R2

p values of the CARS-
SVR models ranged from 0.88 to 0.92, the RPD values ranged from 2.70 to 3.37 and the
LCCC value ranged from 0.92 to 0.96 (Table 3). The R2

p values of SVR models using full
spectral data ranged from 0.75 to 0.83, the RPD values ranged from 1.87 to 2.36 and the
LCCC value ranged from 0.85 to 0.90. These results indicated that a combination of the
UVE and CARS algorithms could significantly improve the accuracy of SVR modeling.

For the R spectra of Paddy soil, LR, CR and FDR improved the SVR and RF modeling
accuracy moderately. For example, the CARS-SVR models of Paddy soil (model LR-CARS-
SVR, CR-CARS-SVR and FDR-CARS-SVR), with R2

p and RPD values greater than 0.90
and 3 and RMSEp lower than 2.37 g/kg, outperformed R-CARS-PLSR (with R2

p value of
0.88, RDP value of 2.70, RMSEp value of 2.85 g/kg). LCCC values increased moderately.
Additionally, the UVE-SVR models of Paddy soil (model LR-UVE-SVR, CR-UVE-SVR and
FDR-UVE-SVR) also outperformed R-UVE-SVR moderately. In Shajiang black soil, spectral
transformation could not improve the SVR and RF modeling accuracy.

The results showed that the improvement of SVR and PLSR modeling accuracy by
characteristic wavelength screening was superior to that of spectral transformation. CARS-
PLSR and CARS-SVR using CR spectra produced the best predictions (hightest R2 and
RPD, lowest RMSE) for SOM modeling of Paddy soil. CARS-PLSR and CARS-SVR using
LR and FDR spectra were optimal for Shajiang black soil.
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Table 4. SOM modeling results based on RF model using selected wavelengths and spectral transfor-
mation datasets.

Soil Type Model (a)
Best Parameters Calibration Sets Validation Sets

RPD LCCC
(mtry, ntree) R2

c RMSEc (g/kg) R2
p RMSEp (g/kg)

Paddy
soil

R-F-RF 9, 200 0.43 5.28 0.51 5.44 1.39 0.63
R-UVE-RF 10, 500 0.52 5.19 0.35 5.30 1.10 0.63

R-CARS-RF 6, 100 0.43 5.65 0.25 5.78 1.17 0.45

LR-F-RF 8, 100 0.40 5.45 0.48 5.60 1.35 0.60
LR-UVE-RF 10, 1500 0.43 5.26 0.48 5.50 1.37 0.63

LR-CARS-RF 10, 100 0.47 5.07 0.50 5.56 1.36 0.58

CR-F-RF 6, 200 0.47 5.16 0.64 5.05 1.49 0.65
CR-UVE-RF 10, 100 0.59 4.88 0.34 5.48 1.02 0.69

CR-CARS-RF 8, 100 0.52 5.22 0.50 4.69 1.01 0.70

FDR-F-RF 7, 100 0.52 4.86 0.65 4.80 1.57 0.70
FDR-UVE-RF 10, 100 0.53 4.80 0.68 4.70 1.60 0.71

FDR-CARS-RF 6, 100 0.51 4.87 0.66 4.76 1.57 0.70

Shajiang
black
soil

R-F-RF 1, 1000 0.07 4.05 0.30 3.14 1.20 0.46
R-UVE-RF 5, 100 0.08 4.06 0.26 3.26 1.19 0.48

R-CARS-RF 2, 100 0.10 3.96 0.22 0.52 1.12 0.36

LR-F-RF 1, 500 0.06 4.08 0.28 3.19 1.18 0.45
LR-UVE-RF 7, 200 0.04 4.17 0.31 3.13 1.20 0.48

LR-CARS-RF 1, 200 0.08 3.95 0.20 3.37 1.12 0.34

CR-F-RF 10, 100 0.12 3.75 0.14 3.51 1.07 0.20
CR-UVE-RF 8, 100 0.21 3.56 0.28 3.28 1.15 0.33

CR-CARS-RF 8, 200 0.20 3.64 0.21 3.41 1.09 0.26

FDR-F-RF 10, 100 0.30 3.39 0.51 2.84 1.33 0.53
FDR-UVE-RF 4, 100 0.52 2.84 0.46 2.79 1.40 0.61

FDR-CARS-RF 10, 100 0.56 2.93 0.60 2.73 1.38 0.56

Note: (a) R, LR, CR, and FDR stand for different spectral data. F stands for all spectral wavelengths; UVE stands
for selected wavelengths by UVE algorithm; CARS stands for selected wavelengths by CARS algorithm. Model
R-F-RF stands for RF model using all spectral wavelength reflectance data; R-UVE-RF stands for RF modeling
using selected reflectance wavelength by UVE algorithm.

4. Discussion

This study selected effective spectral wavelengths using the CARS and UVE algo-
rithms. The two algorithms decreased the number of input variables for modeling and
increased the modeling accuracy and robustness. In this study, the CARS algorithm reduced
the number of wavelengths from the original 2141 to 40–125 for R, LR, CR and FDR, and
the UVE algorithm selected 257–884 wavelengths from the full spectral data of two soil
types. The screened wavelengths were mainly distributed in the ranges of 400–900 nm,
1400–1700 nm and 2000–2400 nm, which was consistent with the research conclusions of
Yu et al. (2016) [32], Tang et al. (2021) [33] and Bao et al. (2020) [26]. This further proved the
importance of eliminating uninformative variables from full spectral data during spectral
modeling [26–28,32,33].

After combining with the CARS algorithm, the modeling precision were remarkably
improved compared to models combined with UVE algorithm. This was consistent with
the studies reported by Vohland et al., Yu et al. and Tang et al. [27,32,33]. The CARS
algorithm was superior to the UVE algorithm during SOM spectral modeling, which was
mainly related to the different principles of the two algorithms. The CARS algorithm
selects variables with relatively high absolute regression coefficient values in the PLSR
model based on adaptive reweighted sampling technology and eliminates wavelengths
with small weights [29]. The UVE algorithm selects variables based on the stability of the
PLSR coefficient. It can avoid model overfitting and increase the prediction abilities of
the models [43,44]. This approach differs from previous wavelength selection methods
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(i.e., according to prior knowledge or the correlation with SOM). For example, in the R
spectral data of Paddy soil, a total of 61 wavelengths selected by the CARS algorithm were
mainly distributed within 1990–2495 nm, with the absolute value of correlation coefficient
between reflectance and SOM content being lower than 0.46.

SVR and RF methods have advantages over other prediction models, as they are
able to model complex, non-linear and linear relationships between variables [10]. Rossel
and Behrens [10] reported that predictions by SVR using all VNIR wavelengths produced
the smallest RMSE values, with RF performing weakly. Ji et al. [25] reported that SVR
using all VNIR wavelengths produced the best prediction (R2 of validation: 0.64 and
RPD: 2.16.), while the precision of RF was poor (R2 of validation: 0.40 and RPD: 1.61).
Terra et al. (2015) [51] also modeled SOM accurately based on SVR with a linear kernel
function. Dotto et al. [23] found that the SVR model yielded robust predictions while the
overall predictive ability of RF models was considered insufficient. The R2 of RF model
was 0.47 to 0.77. Our study was consistent with the above studies, and proved that the UVE
and CARS algorithms can improve SVR modeling accuracy, even though the accuracy is
poor when combined with the RF model. For example, Paddy soil SVR modeling produced
greater R2 and RPD values, from 0.75 to 0.92 and from 1.87 to 3.24.

However, Knox et al. [52] showed that the RF model produced an R2 from 0.63 to
0.88 when using different spectral preprocessing only in the VNIR range. The RF model
combined with CARS produced more accurate SOM predictions, with R2 values ranging
from 0.65 to 0.89, as reported by Bao et al. [26]. In that study, the SOM content ranged from
4.25 to 80.32 g/kg, with a mean of 39.5± 13.21 g/kg. In our study, the RF models performed
worse for two soil types, with the R2 values ranging from 0.22 to 0.68, RPD values ranging
from 1.01 to 1.60 and mean SOM contents of 32.13 ± 7.21 g/kg and 21.60 ± 3.94 g/kg for
Paddy soil and Shajiang black soil, respectively. The difference in soil types and SOM
content levels might be a reason that RF models performed differently.

The PLSR and SVR models for Shajiang black soil using full spectral domain of R, LR,
CR and FDR produced poor results. The R2 in validation ranged from 0.26 to 0.63 and
the RPD ranged from 1.17 to 1.64. The poor model performance was consistent with the
conclusions of Lu et al. [53]; their research was mainly related to low SOM content and its
weak correlation with the spectra. In this study, there were no significant differences in the
correlations between the SOM and different wavelengths, with the absolute value of the
correlation coefficient ranging between 0.30 and 0.48 (Figure 5b). Moreover, there were
few differences in the characteristics among the spectral curves of different SOM contents
(Figure 4b). After screening the wavelengths with the CARS algorithm, the PLSR and SVR
models were significantly improved, with RPD values greater than 2.0.

For soils with low SOM contents, different spectral transformation approaches can
improve the precision of spectral modeling. Nawar et al. [35] reported that CR and FDR
spectral transformation improved SOM prediction models, to varying degrees, based on
PLSR, SVR and MARS. In that study, the SOM content ranged between 0.2 and 23.0 g/kg,
averaging 8.9 g/kg. Wang et al. [54] found that discrete wavelet transformation of the
original spectra improved the modeling precision of SOM in northern China. The R2 of
the optimal model reached as high as 0.72. In that study, the average SOM was 15.76 g/kg
and about 70% of samples had SOM contents lower than 20 g/kg. Yang et al. [55] used
spectral characteristic indexes to efficiently predict SOM content of Shajiang black soil in
the eastern China, achieving a high degree of precision (R2: 0.81). That study included 45
soil samples with SOM contents ranging from 2.07 g/kg to 21.21 g/kg. Further spectral
processing, wavelength screening algorithms and modeling techniques were applied to
hyperspectral modeling of soil properties. For different soil types and SOM content levels,
the optimal spectral treatment might be different, although this requires more comparative
studies in the future.
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5. Conclusions

(1) The CARS and UVE algorithms reduced the extent of the soil hyperspectral data
and the complexity of SOM spectral modeling. The CARS algorithm had a relatively
high compression ratio and selected 40–125 characteristic wavelengths from all VNIR
wavelengths of R, LR, CR and FDR. The selected wavelengths of the two soil types were
mainly distributed in the near-infrared wavelength range.

(2) For the two soil types and four full spectral domains (R, LR, CR, and FDR), the
CARS and UVE algorithms improved the SOM modeling precision based on the PLSR
and SVR methods. PLSR and SVR combined with the CARS algorithm displayed the best
prediction power, providing an important reference for band selection. The improvement
of SVR and PLSR modeling accuracy by CARS and UVE was superior to that of spectral
transformation.

(3) CARS-PLSR and CARS-SVR using CR spectra produced the best predictions (high-
est R2 and RPD, lowest RMSE) for SOM modeling of Paddy soil. CARS-PLSR and CARS-
SVR using LR and FDR spectra were the optimal models for Shajiang black soil. The
modeling accuracies of PLSR and SVR of Paddy soil were better than those for Shajiang
black soil. RF models performed poorly for both soil types. The CARS algorithm improved
predictions considerably for soil samples with low SOM contents.
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