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Abstract: Urban drainage systems (UDSs) continue to face challenges, despite numerous efforts to
improve their sustainability through design, planning, and management. The goal of such initiatives
is to avoid and minimize flooding as well as maintain the UDS’s sustainable functionality, which
can be analyzed using a stormwater management model (SWMM). In this study, a multiobjective
automatic parameter-calibration (MAPC) framework was developed based on the SWMM. It con-
sisted of three steps: sensitivity analysis (Step I), objective selection (Step II), and SWMM parameter
calibration (Step III). The proposed MAPC framework was verified using the Yongdap drainage
network located in Seoul, South Korea. The resultant MAPC framework demonstrated that the
system characteristics (such as percent of impervious area and hillslope) and problems in UDS design,
planning, and management can be well reflected by the corresponding model. The MAPC framework
proposed in this study can contribute to UDS modeling sustainability.

Keywords: urban drainage systems; stormwater management model; multiobjective automatic
parameter-calibration framework; UDS modeling sustainability

1. Introduction

An urban drainage system (UDS) is a critical civil infrastructure that can drain rain-
water and/or used water collected in an urban sub-catchment without inundation [1,2].
Therefore, the objective of UDS design, planning, and management is to avoid and mini-
mize flooding and maintain the system’s sustainable functionality, which can be simulated
and validated through a stormwater management model (SWMM). Despite several efforts
to improve the sustainability of UDSs, challenges remain in their design, planning, and
management [3–5]. These challenges are well-known causes of unexpected system failures
that can lead to catastrophic losses of human lives and property [4,6,7].

Various studies have been performed on UDSs to improve system sustainability [2,3,5]
and these generally used physics-based models, such as SWMM [8–11]. To obtain reliable
model results, the SWMM parameter-calibration process should essentially improve system
sustainability. UDS parameter calibration is an iterative process that adjusts various model
parameters while minimizing and/or maximizing the predefined objectives (e.g., difference
between simulated and observed values) [12–16].

The parameter-calibration method can be primarily classified into manual and auto-
matic approaches. The manual parameter-calibration process is mostly based on technical
knowledge and reasoning; therefore, it can be adopted when sufficient system information
is available (e.g., pipe connection and roughness, land cover, etc.). However, the method
has a weakness that accurately generating a sub-optimal parameter set is difficult [13,16].
In contrast, the automatic parameter-calibration approach generally uses an optimization
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technique (e.g., metaheuristic algorithms) to identify the optimal parameter set from nu-
merous iterations. The ability to explore a wide search area and utilize some promising
regions ensures that a global optimal solution with a high likelihood is obtained [17–19].

Previous automatic parameter-calibration studies are either single objective or multi-
objective optimization approaches. These studies focused on improving model accuracy
using metaheuristic algorithms (e.g., genetic algorithm, harmony search algorithm) [20–27].
Perin et al. [25] developed and investigated the state-of-the-art standard package (i.e.,
parameter estimation (PEST) model) for SWMM automatic parameter calibration by consid-
ering a small drainage area. Swathi et al. [26] established a SWMM automatic-calibration
model using non-dominated sorting genetic algorithm-III (NSGA-III). Behrouz et al. [27]
proposed the single and multiobjective automatic calibration models that integrated SWMM
and an optimization software tool.

However, UDS parameter-calibration studies have several significant limitations.
Previous studies lacked a reasonable parameter quantification process (e.g., sensitivity
analysis), and thus considered a set of parameters to be calibrated based on the recommen-
dation from existing literature [22–24]. The sensitivity analysis is essential, particularly
because the parameter to be calibrated changes or differs depending on the objectives, sys-
tem characteristics (e.g., percent of impervious area, hillslope, etc.), and available datasets.
Limited efforts have been made to apply an objective selection process that computes the
regression line and R-squared coefficient [23–27]. Two objectives with a high correlation
(i.e., high R-squared coefficient) should not be simultaneously considered because minimiz-
ing one objective would minimize or maximize the other objective based on their inherent
correlation. To avoid these errors, an objective selection process (e.g., correlation analysis)
for two objectives is necessary.

Therefore, the UDS parameter-calibration process should be performed according
to the following four steps [16]: (1) identify important parameters to induce efficient
parameter-calibration model; (2) determine the upper and lower bounds for each parameter
based on the system characteristics; (3) analyze the correlation coefficient between two
objectives (e.g., model accuracy indicators); and (4) compute optimal parameter set obtained
from the UDS parameter-calibration model. To the best of the authors’ knowledge, few
studies have comprehensively investigated the UDS parameter-calibration framework.

To overcome these gaps, this study proposes a multiobjective optimization approach
based on the SWMM parameter-calibration framework. The proposed framework was
applied to the Yongdap drainage network in Seoul, South Korea. The method consists of
four steps: (1) determining the important influencing parameters by examining the change
in outflow (i.e., sensitivity); (2) determining two objective functions that are in a trade-off
relationship based on the correlation analysis of several objective functions considered
in this study; (3) establishing a non-dominated sorting harmony search (NSHS)-based
SWMM multiobjective automatic parameter-calibration (MAPC) model and obtaining the
optimal solution; and (4) comparing the Pareto-optimal solution obtained in Step (3) using
a predefined performance indicator. The MAPC framework proposed in this study can
contribute to UDS modeling sustainability.

2. Study Area and Datasets
2.1. Study Area

A real drainage area, namely the Yongdap drainage area, was used to demonstrate
the proposed MAPC framework. This real drainage area is a representative flooding area
located in Seoul, Korea (Figure 1), which receives an average annual rainfall of 1418 mm.
This drainage network consists of 101 nodes, 101 links, and 1 outlet. The total pipeline
length of the drainage network is 3.546 km, while the total subcatchment area is 0.347 km2.
The land-use characteristics of this network include 80% residential area and 16 and 4%
public and road areas, respectively.
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point. Two types of measurement data were obtained from the Korea Meteorological Ad-
ministration (https://data.kma.go.kr, accessed on 29 May 2022): rainfall (mm/10 min) and 
outflow (m3/10 min). One year of historical data for 13–14 July 2013 (i.e., historical urban 
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Figure 1. Configuration of Yongdap drainage area’s urban drainage network in Seoul, South Korea.

2.2. Datasets

This study utilized rainfall data obtained from 421 gauge-stations located in Seoul,
Korea and discharge data obtained at the outflow monitoring point in the Yongdap drainage
area. The system discharge data were measured in real-time at the outflow monitoring
point. Two types of measurement data were obtained from the Korea Meteorological
Administration (https://data.kma.go.kr, accessed on 29 May 2022): rainfall (mm/10 min)
and outflow (m3/10 min). One year of historical data for 13–14 July 2013 (i.e., historical
urban flood events in Korea) were used to develop the MAPC framework, including
rainfall and outflow (e.g., total system discharge). The measurement data (i.e., rainfall
(hyetograph) and outflow (hydrograph)) used in this study are shown in Figure 2. Notably,
two rainfall events were considered to calibrate and validate the results obtained using the
MAPC framework.

https://data.kma.go.kr
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Figure 3. Flowchart of the proposed multiobjective parameter-calibration framework based on 
SWMM. 

Figure 2. Two types of measurement data in the Yongdap drainage area: (a) calibration (13 July 2013);
(b) validation (14 July 2013). The input measurement data are two independent rainfall events,
comprising hyetograph (rainfall event) and hydrograph (outflow), respectively. The hyetograph is
depicted as a gray invert bar plot and the hydrograph is depicted as the black scatter plot.

3. Modeling Methodology

The MAPC framework was developed using NSHS linked with SWMM and consists
of four steps (Figure 3). Figure 3 shows a flowchart of the proposed MAPC framework.
Subsequent sections describe the details of SWMM, sensitivity analysis (SA), objective
selection process (OSP), NSHS, and the proposed SWMM parameter-calibration model
and PI.
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First, the impact of the relationship between all the parameters and the output in
the given UDS model was identified (Step I). Second, the correlation between various
model accuracy indicators (MAIs) was confirmed using correlation analysis, and a visual
inspection was performed to select two competing objectives to be considered in the
proposed SWMM parameter-calibration model (Step II). Third, model calibration was
performed based on several parameters and two MAIs (i.e., objective functions) obtained in
Steps I and II, respectively (Step III). Finally, based on the calibrated parameters obtained
from the SWMM parameter-calibration model for evaluating model accuracy (e.g., model
validation), the model results were compared using a predefined performance indicator
(PI) (Step IV).

3.1. Stormwater Management Model (SWMM)

The SWMM was first proposed by the United States Environmental Protection Agency
and is a rainfall-rainfall hydrological-hydraulic simulation UDS model [10,11]. It has two
characteristics: (1) hydrological runoff and (2) hydraulic runoff. The differences in runoff
characteristics are driven by climate, land cover, impervious and pervious configurations,
pervious area soil types, network topology, and pipe characteristics [28]. Hydrological
runoff is a computed path that connects subcatchments between the runoff outlets (e.g.,
nodes). In contrast, hydraulic runoff is routed downstream via the urban drainage network
that connects the node (i.e., hydrological runoff outlet) between an urban river. In SWMM,
the rainfall-runoff hydrological-hydraulic simulation is computed using a nonlinear reser-
voir routing method [29].

The proposed framework was developed on the basis of several SWMM parameters.
However, the SWMM parameters used in this study cannot be measured absolutely in
the real world. Consequently, the MAPC framework proposed herein considers several
sensitive and effective SWMM parameters that require model calibration.

3.2. Step I: Sensitivity Analysis (SA)

SA is a statistical analysis tool that quantifies the impact relationship between input
and output in a given model [30–32]. It is a process by which different components of
a model, such as parameters, forcing inputs, and model structure (e.g., grid resolution
in distributed models), are perturbed, and the resulting data are subsequently evaluated
to identify the factors that cause the largest variability in the model outputs [33]. For
example, SA can be used to determine the model parameters that have the greatest impact on
predictions to ensure that calibration efforts are focused on the most critical parameters [34,35].
In recent decades, SA has been widely used to identify the most important parameter
depending on the parameters in most UDS calibration studies [36].

SA was performed using Monte Carlo sampling (MCS). To construct the SWMM
parameter-calibration model, preselected parameters were identified via the SA approach.
Accordingly, uniform random sampling within the predefined upper and lower bound-
ary of parameters, which is determined by physically based model characteristics and
engineering knowledge, was used to generate random parameter sets based on the MCS.
The generated parameter sets were input into the SWMM, and the outputs (i.e., total
system discharge) of each parameter set were obtained. To demonstrate the impact of
the relationship between the input and output variables, a scatter plot was generated to
present the potential correlations (e.g., linear and nonlinear). Finally, the range of output
(i.e., total system discharge) according to all parameters was quantified and presented as a
box-whisker plot.

The impact relationship between the outflow and each parameter was then investi-
gated using SA. Six parameters were employed to perform SA, and their information (i.e.,
parameters, descriptions, and prior distributions) is summarized in Table 1. Notably, all
parameters in this study were strictly investigated using literature related to SWMM-SA
and/or calibration studies [23,36–39]. Furthermore, if the SWMM parameters in SA have
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no effect, their parameters are not considered for the SWMM parameter-calibration model
(Step III).

Table 1. Summary of the parameters used for the proposed MAPC model.

Parameter Description (Unit) Prior Distribution

kwidth Hillslope width factor (m) *U (30, 170)

φimp
Impervious fraction in urban

land (%) *U (60, 100)

CN Curve number (-) *U (53, 75)
nimp Manning’s n on impervious (-) *U (0.03, 0.05)
nperv Manning’s n on pervious (-) *U (0.03, 0.05)

nconduit
Manning’s n on pipe

roughness (-) *U (0.011, 0.017)

Note: *U (a, b) means the uniform distribution, a < b where is beginning of the interval and b is the end of the interval.

3.3. Step II: Objective Selection Process (OSP)

The accuracy of the proposed SWMM parameter-calibration model was evaluated
by comparing the observed and simulated outflow (i.e., total system discharge) values
at the outlet (the urban drainage network outlet is depicted as a black inverted triangle
in Figure 1). The SWMM parameters were calibrated to minimize model uncertainty,
which could be considered a physically based model (i.e., SWMM). Various MAIs have
been formulated and used in the SWMM automatic parameter-calibration problem of the
UDS model. Table 2 summarizes several MAIs used by the National Weather Service for
calibration of the Sacramento soil moisture accounting (SAC-SMA) model [40]. Several
indicators (i.e., Nash-Sutcliffe efficiency coefficient, root-mean-square error, total mean
squared error, and total volume error) have also been widely used in hydrological model
calibration studies [23,41–43]. To develop the SWMM parameter-calibration model, the
relationship between one indicator with the other indicators among the MAIs (i.e., objective
functions) considered in this study was identified. Note that the MAIs formulae presented in
Table 2 are well known by most hydrology researchers and do not require separate citations.

Table 2. Model accuracy indicators used in the proposed MAPC framework.

Indicator Names (Abbreviations) Formulations

Root-mean-square error
(RMSE)

√√√√ 1
n

1

∑
t=1

(
Qobs(t) − Qsim(t)

)2

Total volume error
(TVE)

1
Qsim(t)

1

∑
t=1

∣∣∣Qobs(t) − Qsim(t)

∣∣∣
RMSE of peak flow error

(PFE)

√√√√ 1
nP

1

∑
t=1

(Pobs − Psim)
2

Nash-Sutcliffe efficiency coefficient
(NSE) 1 −

1
n ∑1

t=1

(
Qobs(t) − Qsim(t)

)2

1
n ∑1

t=1

(
Qobs(t) − Qobs

)2

Absolute peak difference
(APD)

∣∣∣∣ max
1≤t≤n

(Oobs(t))− max
1≤t≤n

(Osim(t))

∣∣∣∣
Percent bias

(PB) 100 ×
∣∣∣∣∣

1
n (∑

n
t=1 Qobs(t) − ∑n

t=1 Qsim(t))
1
n ∑n

t=1 Qobs(t)

∣∣∣∣∣
Mean absolute error

(MAE) 1
n

n

∑
t=1

∣∣∣Qobs(t) − Qsim(t)

∣∣∣
Maximum absolute error

(MaxAE) max
1≤t≤n

∣∣∣Oobs(t) − Qsim(t)

∣∣∣
Total mean squared error

(TMSE) 1
n

1

∑
t=1

(Qobs(t)− Qsim(t))

Note: QObs(t) is the observed outflow at time t; Qsim(t) is the simulated outflow at time t; Qobs is the mean value of the
observed outflow during the period from t = 1 to n; Pobs is the observed peak outflow; and Psim is the simulated peak outflow.
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To construct a SWMM parameter-calibration model, two competing MAIs must be
identified. The two correlated indicators should not be simultaneously considered in
the model because minimizing/maximizing one indicator would have the same effect
on the other indicator [40]. Accordingly, uniform random sampling within the upper
and lower bounds of the parameters, which is conducted based on physical reasonability,
engineering knowledge, and Monte Carlo simulations (MCS), was used to generate random
parameter sets. A simulated hydrograph was obtained from the rainfall-runoff simulation
using each generated parameter set, with the calculated MAIs listed in Table 1. Finally, a
scatter plot of each pair of MAIs in Table 1 and their linear regression lines were drawn
and inspected to detect potential correlations. Note that the linear regression line and
R-squared coefficient (R2) were used to confirm inherent correlation between MAIs. A set
of two MAIs should not be simultaneously considered in the multiobjective calibration
model if they are highly correlated and aligned with the regression line (i.e., high R-
squared coefficient). Considering one indicator in the objective function can automatically
minimize/maximize the other indicator by their inherent correlation without explicitly and
additionally considering the other in the formulation.

3.4. Step III: SWMM Parameter-Calibration Model

The SWMM parameter-calibration model proposed in this study explores for an
optimal parameter set based on NSHS. The NSHS is a multiobjective optimization method,
considering the nondominated sorting and crowding distance approach [44–46] within the
harmony search algorithm developed by Geem et al. [47]. The harmony search algorithm
is a metaheuristic algorithm based on the musical performance process that occurs when
a musician searches for a better state of harmony during jazz improvisation. The NSHS,
which includes the nondominated sorting and crowding distance approach, was used with
the harmony search algorithm in this study. In addition, various water engineering studies
have shown that this algorithm is better than conventional optimization algorithms with
respect to the convergence performance [48].

The SWMM parameter-calibration model searches for the trade-off relationship be-
tween the MAI pair selected via the goal selection procedure. The values of these MAIs
were determined using the SWMM parameters identified in SA. Jung et al. [40] formulated
the multiobjective parameter-calibration model as follows:{

Minimize f1 = MAI1(xn)
Minimize f2 = MAI2(xn)

(1)

where MAI1 and MAI2 are a pair of MAIs optimized by the multiobjective parameter-
calibration model, x is the model parameter that determines the MAI value, and n is the
number of parameter types.

The SWMM parameter-calibration model provides parameter sets in which the MAI
pair has a trade-off relationship as a Pareto-optimal solution. The SWMM constructed
in this study simulates the outflow based on the parameters suggested by the SWMM
parameter-calibration model. The result is then compared with the observed outflow curve
to examine the performance of the MAPC framework proposed in this study.

3.5. Step IV: Performance Evaluation

The Pareto-optimal solution obtained in Step III was evaluated using a predefined
PI. The PI was only selected as a representative indicator in the aforementioned MAIs
(summarized in Table 2). In addition, note that several indicators can be excluded for
defining MAI 1 and 2, respectively (e.g., objective functions 1 and 2 in Step III). The final
optimal solutions obtained from the proposed model were compared and evaluated with
other optimal solutions using the PI.
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4. Application Results
4.1. Sensitivity Analysis (SA)

In this section, the change in total outflow (i.e., sensitivity) based on the parameters is
examined, and the types of parameters to be entered in the SWMM parameter-calibration
model are determined. SA was performed according to the MCS, and the individual
parameters had different values. In this study, 100 of the 500 SWMM simulation results
were extracted. Figure 4 shows the scatterplots of the SWMM outputs based on the
parameters extracted from the MCS.
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kwidth, φimp, and CN were identified as the parameters that increase the outflow. kwidth
is multiplied when calculating the surface runoff in the SWMM governing equation [29].
Therefore, an increase in kwidth may lead to an increase in outflow. An increase in φimp
and CN, which determine the infiltration amount, influences the increase in outflow [49].
As nimp, nperv, and nconduit increase, the total outflow decreases. As nimp, nperv, and nconduit
increase, losses caused by friction occur [50], which reduce the outflow. Figure 4 shows
that all the parameters considered in the sensitivity analysis were consistently altered.
Therefore, even if the parameter search range is entered as a continuous range in the
SWMM parameter-calibration model, this range would not have a large impact on the
result [39].

Figure 5 shows a box and whisker plot of the outflow variation for each parameter.
φimp and CN were found to be highly sensitive to the model output. These two parameters
directly affect the amount of rainfall that is converted to surface runoff through infiltration.
In contrast, kwidth, nimp, nperv, and nconduit did not show large changes in outflow compared
to parameter changes. However, because these parameters affect the peak outflow, further
investigation is required. When the characteristics of the study network (urban catchment)
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were considered, a lack of influence of kwidth, nimp, and nconduit could not be determined.
Although outliers were found for nperv, their impact was not large because the target
network had the characteristic of a high infiltration rate. Therefore, nperv was excluded
from the parameters calibrated using the SWMM parameter-calibration model.
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4.2. Selection of Two Objectives

The SWMM parameter-calibration model searches for the optimal solution set for the
two goals that form a trade-off relationship. Therefore, this section describes the determina-
tion of the two MAIs to be used as objective functions in the SWMM parameter-calibration
model. The two objective functions were selected as follows: (1) First, various MAIs used
to check the hydrological modeling performance were selected, and their applicability
to SWMM was examined. (2) Based on the SA results, the parameters were randomly
confounded to create multiple SWMM runs. (3) Samples were extracted through sampling,
and the MAIs of each sample SWMM were calculated. (4) The MAIs were displayed and
examined using scatterplots, regression lines, and coefficients of determination (R2).

Figure 6 shows scatterplots, linear regression lines, and R2 for the relationships be-
tween 500 MAI calculation results extracted randomly from 1000 SWMM runs with ran-
domly adjusted parameters. In the results, for a pair of MAIs considered good, objective
functions of the SWMM parameter-calibration model should be depicted in a space where
the trade-off relationship shows the optimum value of each MAI. Among the pairs of MAIs
considered in this study, 18 sets exist, including RMSE-PB, RMSE-MaxAE, TVE-PFE, and
TVE-NSE, which can be selected as two objective functions. Most pairs of MAIs show the
trade-off relationship on the lower left side. However, if NSE is included, the trade-off
relationship is shown on the upper right side; this is because among the MAIs considered in
this study, NSE is the only MAI with good model performance when large. The coefficient
of determination (R2) of these sets is between 0.1 and 0.8.

In this study, TVE and PFE were selected as the two objective functions of the SWMM
parameter-calibration model. The two MAIs have the same unit (m3/s), enabling an easy
analysis of the derived solutions. Furthermore, as the MAIs show the characteristics of the
outflow curve intuitively, the hydrographs of the validation and calibration SWMMs are
expected to be easily examined.
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4.3. Comparison between Pareto-Optimal Solutions

Pareto-optimal solutions of the SWMM parameter-calibration model were assessed to
examine the calibrated SWMM. First, the targets to be examined were selected from among
the Pareto-optimal solutions provided by the SWMM parameter-calibration model. The
hydrograph simulation result of the SWMM, in which the selected parameter combination
was entered, was finally compared to the observed outflow.

Figure 7 shows the Pareto-optimal solutions provided by the SWMM parameter-
calibration model. A total of 30 solutions were obtained; however, examining all solutions
is inefficient. Therefore, we used the reference solution to determine the solution that should
be examined (the reference solution refers to the solution derived by optimizing only one of
the two objective functions (TVE and PFE)). The reference solution of each objective function
is represented by a blue line in Figure 7 (TVE = 0.09 m3/s, PFE = 0.59 m3/s). In this study,
three solutions (S-1, S-6, and S-30) were selected based on the reference solutions. S-1
and S-30 are the closest solutions to the reference solutions of TVE and PFE, respectively.
S-6 is the ideal solution to the intersection point where the reference solutions meet the
Pareto-optimal solutions.

Figure 8 shows the calibration results of the Pareto-optimal solutions, which were
normalized based on the maximum and minimum values of the parameter search range. In
S-30, kwidth and nimp are highly calibrated compared with the other solutions. Thus, it was
confirmed that the peak flow of the study network can be adjusted using kwidth and nimp. As
the characteristics of the urban network were well reflected, φimp of all solutions, including
S-1, S-6, and S-30, was calibrated to be high. CN and nconduit were calibrated to be high in S-6,
unlike S-1 and S-30, implying that CN and nconduit are parameters that play a decisive role
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in the search for the trade-off section between TVE and PFE. The overall results revealed
that the calibrated value of each parameter obtained from the Pareto-optimal solutions
displayed a consistent tendency for the system characteristics (e.g., hillslope width factor,
curve number, etc.).
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4.4. Multiobjective Calibration and Validation

Figure 9 compares the simulated outflow from the calibrated SWMM with the observed
outflow. S-1 shows the lowest RMSE of 0.244 for the observed outflow used for calibration
(Figure 9a). However, the RMSE for the validation (Figure 9b) observed outflow is 0.162,
which is the worst performance among all. In contrast, S-30 shows the highest RMSE for
the calibration observed outflow of 0.287, but the result for the validation observed outflow
is the best at 0.135. The ideal solution, S-6, has RMSEs of 0.245 and 0.146 for the two
observed outflows. The RMSE of S-6 is not significantly different from that of the solution
that performed well for each observed outflow. The hydrograph used for calibration has a
longer outflow than that used for validation.
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This is why the RMSE values in Figure 10a and Figure 10b show a large overall differ-
ence result, respectively. Figure 10 shows graphs comparing the simulated and observed
outflows for the validation and calibration rainfalls of S-1, S-6, and S-30. Visually, all three
solutions simulated outflows that are similar to the observed outflow. Four peaks were
observed, and the peak values were found to be not equal in the rainfall events used for cal-
ibration. In S-1 and S-6, where TVE is low, the hydrograph model is adequately simulated.
For S-30, the simulated outflow is large, and the outflow variation in the section of the
third peak (5:00–7:00) is barely simulated. However, in a network where the hydrograph is
simple and the peaks occur evenly, as in the validation hydrograph, the simulated outflow
is closer to the observed outflow. When a peak occurs, the simulation results for not only
the outflow but also the time of occurrence are close to the observed values. However,
for S-1, the peak occurrence time is not accurate, and an under-simulated hydrograph
is shown.
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This implies that a solution with low TVE should be selected for a complex rainfall
event. Conversely, for a simple rainfall event, a solution with a low PFE is a more advan-
tageous choice. In a real drainage network, how rainfall falls is unknown [51]. Therefore,
a SWMM that can respond flexibly to various rainfall events is required. S-6 shows a
hydrograph that adequately reflects the characteristics of S-1 and S-30. The ideal solution,
such as S-6, is thus a SWMM that can respond to various rainfall events.

5. Summary and Conclusions

This study proposed a multiobjective automatic parameter-calibration (MAPC) frame-
work based on the stormwater management model (SWMM). The proposed MAPC frame-
work consists of four steps: sensitivity analysis (Step I), objective selection (Step II), SWMM
parameter calibration (Step III), and comparison with Pareto-optimal solutions using perfor-
mance indicator (Step IV). The proposed MAPC framework was verified using the Yongdap
drainage network in Seoul, South Korea.

In summary, the calibrated parameter sets obtained from the Pareto-optimal solu-
tions displayed a consistent tendency based on model performance. The simulated out-
flow obtained by the proposed framework was confirmed to be almost similar to the
observed outflow. In fact, the root-mean-square error, computed using all optimal solutions,
was in the range of 0.244–0.287 (calibration model) and 0.135–0.162 (validation model).
The resultant MAPC framework demonstrated that the system characteristics (such as
percent of impervious area and hillslope) and problems in UDS design, planning, and
management can be well reflected by the corresponding model. The MAPC framework
provided a series of processes for UDS modeling and is expected to contribute to UDS
modeling sustainability.

This study has several limitations that may be addressed in future research. First,
in a real drainage area, each parameter has a different value depending on the model
components (e.g., links, nodes, and subcatchments). However, this study considered
that the components have uniform distribution for each parameter. Second, this study
considered only two objective functions (i.e., peak flow and total volume errors), such
that only specific characteristics of the optimal solution are localized in two objective
functions. In addition, further study must investigate three or more objective functions
(e.g., model accuracy indicators) to improve the SWMM parameter-calibration model
compared to the proposed framework. Third, this study focused on matching the outflow
hydrographs at the network outlet with real-time measurements. A follow-up study can
calibrate the overland flow from each sub-catchment by considering the corresponding
measurements at each manhole (i.e., sub-catchment outlet). Finally, although the proposed
MAPC framework focused only on hydrological parameters, it can be enhanced to obtain
an advanced MAPC framework by considering hydrological, hydraulic, and water quality
parameters simultaneously.
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Abbreviations

UDS Urban drainage system
SWMM Stormwater management model
NSHS Non-dominated sorting harmony search
MAPC Multiobjective automatic parameter-calibration
MAIs Model accuracy indicators
PI Performance indicator
SA Sensitivity analysis
OSP Objective selection process
MCS Monte Carlo sampling
RMSE Root-mean-square error
TVE Total volume error
PFE RMSE of peak flow error
NSE Nash-Sutcliffe efficiency coefficient
APD Absolute peak difference
PB Percent bias
MAE Mean absolute error
MaxAE Maximum absolute error
TMSE Total mean squared error
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31. Akdoğan, Z.; Güven, B. Assessing the sensitivity of SWMM to variations in hydrological and hydraulic parameters: A case study
for the city of Istanbul. Glob. NEST J. 2016, 18, 831–841.

32. Tsai, L.Y.; Chen, C.F.; Fan, C.H.; Lin, J.Y. Using the HSPF and SWMM models in a high pervious watershed and estimating their
parameter sensitivity. Water 2017, 9, 780. [CrossRef]

33. Ahmadisharaf, E.; Camacho, R.A.; Zhang, H.X.; Hantush, M.M.; Mohamoud, Y.M. Calibration and validation of watershed
models and advances in uncertainty analysis in TMDL studies. J. Hydrol. Eng. 2019, 24, 03119001. [CrossRef]

34. Campolongo, F.; Saltelli, A.; Tarantola, S. Sensitivity analysis as an ingredient of modeling. Stat. Sci. 2000, 15, 377–395. [CrossRef]
35. White, K.L.; Chaubey, I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J. Am.

Water Res. Assoc. 2005, 41, 1077–1089. [CrossRef]
36. James, W. Rules for Responsible Modeling; CHI: Guelph, ON, Canada, 2005.
37. Barco, J.; Wong, K.M.; Stenstrom, M.K. Automatic calibration of the US EPA SWMM model for a large urban catchment. J. Hydraul.

Eng. 2008, 134, 466–474. [CrossRef]
38. Lim, O.; Yoo, D.G.; Lee, E.H.; Kim, J.H. A study on the parameter estimation of sewer network model using sewer level data. J.

Korean Soc. Hazard. Mitig. 2018, 18, 261–269. [CrossRef]
39. Chung, G.; Yeon, J.S.; Sim, K.B.; Kim, E.S. The sensitivity and uncertainty analysis of SWMM water quality parameters. J. Korean

Soc. Hazard. Mitig. 2015, 15, 247–253. [CrossRef]
40. Jung, D.; Choi, Y.; Kim, J. Multiobjective automatic parameter calibration of a hydrological model. Water 2017, 9, 187. [CrossRef]
41. Krebs, G.; Kokkonen, T.; Valtanen, M.; Koivusalo, H.; Setälä, H. A high resolution application of a stormwater management

model (SWMM) using genetic parameter optimization. Urban Water J. 2013, 10, 394–410. [CrossRef]
42. Liong, S.Y.; Chan, W.T.; Lum, L.H. Knowledge-based system for SWMM runoff component calibration. J. Water Resour. Plan.

Manag. 1991, 117, 507–524. [CrossRef]
43. Khu, S.T.; Madsen, H. Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model

calibration. Water Resour. Res. 2005, 41. [CrossRef]
44. Yazdi, J.; Sadollah, A.; Lee, E.H.; Yoo, D.G.; Kim, J.H. Application of multi-objective evolutionary algorithms for the rehabilitation

of storm sewer pipe networks. J. Flood Risk Manag. 2017, 10, 326–338. [CrossRef]
45. Kougias, I.P.; Theodossiou, N.P. Multiobjective pump scheduling optimization using harmony search algorithm (HSA) and

polyphonic HSA. Water Resour. Manag. 2013, 27, 1249–1261. [CrossRef]
46. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
47. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
48. Yazdi, J.; Choi, Y.H.; Kim, J.H. Non-dominated sorting harmony search differential evolution (NS-HS-DE): A hybrid algorithm for

multi-objective design of water distribution networks. Water 2017, 9, 587. [CrossRef]
49. Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM

and MIKE URBAN: A case study. Nat. Hazard. 2016, 84, 749–776. [CrossRef]

http://doi.org/10.14796/JWMM.R220-18
http://doi.org/10.1029/2011WR011534
http://doi.org/10.1016/j.advwatres.2012.01.005
http://doi.org/10.1080/02626660903526292
http://doi.org/10.1007/s10596-019-09870-3
http://doi.org/10.1002/hyp.14446
http://doi.org/10.1007/s10661-020-08338-7
http://www.ncbi.nlm.nih.gov/pubmed/32417975
http://doi.org/10.2166/hydro.2019.033
http://doi.org/10.1016/j.jhydrol.2019.124436
http://doi.org/10.1029/2021WR031603
http://doi.org/10.1016/S0309-1708(02)00092-1
http://doi.org/10.3390/w9100780
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001794
http://doi.org/10.1214/ss/1009213004
http://doi.org/10.1111/j.1752-1688.2005.tb03786.x
http://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466)
http://doi.org/10.9798/KOSHAM.2018.18.3.261
http://doi.org/10.9798/KOSHAM.2015.15.5.247
http://doi.org/10.3390/w9030187
http://doi.org/10.1080/1573062X.2012.739631
http://doi.org/10.1061/(ASCE)0733-9496(1991)117:5(507)
http://doi.org/10.1029/2004WR003041
http://doi.org/10.1111/jfr3.12143
http://doi.org/10.1007/s11269-012-0236-5
http://doi.org/10.1109/4235.996017
http://doi.org/10.1177/003754970107600201
http://doi.org/10.3390/w9080587
http://doi.org/10.1007/s11069-016-2455-1


Sustainability 2022, 14, 8350 16 of 16

50. Zaghloul, N.A. Flow simulation in circular pipes with variable roughness using SWMM-EXTRAN model. J. Hydraul. Eng. 1998,
124, 73–76. [CrossRef]

51. Pretorius, H.; James, W.; Smit, J. A strategy for managing deficiencies of SWMM modeling for large undeveloped semi-arid
watersheds. J. Water Manag. Model. 2013, R246-01. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(73)
http://doi.org/10.14796/JWMM.R246-01

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 

	Modeling Methodology 
	Stormwater Management Model (SWMM) 
	Step I: Sensitivity Analysis (SA) 
	Step II: Objective Selection Process (OSP) 
	Step III: SWMM Parameter-Calibration Model 
	Step IV: Performance Evaluation 

	Application Results 
	Sensitivity Analysis (SA) 
	Selection of Two Objectives 
	Comparison between Pareto-Optimal Solutions 
	Multiobjective Calibration and Validation 

	Summary and Conclusions 
	References

