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Abstract: Tree growth in power line corridors poses a threat to power lines and requires regular
inspections. In order to achieve sustainable and intelligent management of transmission line corridor
forests, a transmission line corridor tree barrier management system is needed, and tree species
classification is an important part of this. In order to accurately identify tree species in transmission
line corridors, this study combines airborne LiDAR (light detection and ranging) point-cloud data and
synchronously acquired high-resolution aerial image data to classify tree species. First, individual-
tree segmentation and feature extraction are performed. Then, the random forest (RF) algorithm is
used to sort and filter the feature importance. Finally, two non-parametric classification algorithms,
RF and support vector machine (SVM), are selected, and 12 classification schemes are designed to
perform tree species classification and accuracy evaluation research. The results show that after using
RF for feature filtering, the classification results are better than those without feature filtering, and
the overall accuracy can be improved by 3.655% on average. The highest classification accuracy is
achieved when using SVM after combining a digital orthorectification map (DOM) and LiDAR for
feature filtering, with an overall accuracy of 85.16% and a kappa coefficient of 0.79.

Keywords: light detection and ranging (LiDAR); individual tree crown delineation; transmission line
corridor; random forest (RF); support vector machine (SVM)

1. Introduction

Excessive growth of trees around the transmission line corridor tends to obstruct
transmission lines. Therefore, trees that grow to a height that threatens transmission lines
need to be regularly inspected and removed [1]. In order to achieve sustainable and smart
management of forests in transmission line corridors, trees in transmission line corridors
are not cut down all at once, but systematically through the establishment of a transmission
line corridor tree barrier management system. By inputting tree obstruction information
into the information base, a model of tree growth is created to facilitate inquiries about tree
obstruction hazards, so that planned felling can be developed. Therefore, it is important
to know the tree species. With the continuous development of remote-sensing technology,
tree species classification has also been applied to transmission line corridors. However,
most of the data sources used in the research on tree species classification of transmission
line corridors are single data sources [2], and the classification accuracy is not sufficient to
effectively prevent hidden dangers caused by trees in these corridors. The classification of
tree species based on multi-source remote sensing has advantages in other fields [3–7], so
this study considers using multi-source unoccupied aerial vehicle (UAV) data to classify
tree species in transmission line corridors to improve classification accuracy.

Machine learning (ML) algorithms can be used to solve the non-linear sample clas-
sification problem of tree species classification. Many scholars have used ML to identify
or classify tree species [8–11]. For instance, Franklin et al. [12] used the multi-spectral
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data obtained by drones combined with ML algorithms to classify deciduous tree species,
with an overall classification accuracy of 78%. Ahmed et al. [13] placed three multispectral
cameras on a UAV and used the acquired data to identify Sequoia; the results showed that
the identification accuracy was as high as 89%. Chan et al. [14] compared the classification
accuracy of different classification algorithms based on hyperspectral data, and the results
showed that the classification accuracy of AdaBoost classification and random forest (RF)
classification algorithm was almost the same (close to 70%); the difference was less than
1%, which was higher than that of the neural network classifier that has an overall accuracy
of 63.7%. Puttonen et al. [15] collected LiDAR data and hyperspectral data at the same
time based on the Sensei system of the Finnish Geodetic Institute to classify coniferous
and broad-leaved species. The results show that the classification accuracy using only
spectral features was 90.5%, while the overall accuracy of classification combined with
spectral and structural features reached 95.8%. Considering airborne hyperspectral and
LiDAR data obtained at the same time and the support vector machine (SVM) classifier,
Liu Yijun et al. [16] classified the dominant tree species in the Pu’er Mountain experimental
area forest. The results showed that the overall accuracy of the fusion data classification
reached 80.54%, compared with only using spectral information. In summary, the preceding
research shows that using multi-source remote-sensing data combined with ML can enable
effective identification of tree species. In the past, studies on tree species classification used
remote-sensing images with a low-resolution rate, and most of them used a single data
source. However, using multiple remote-sensing data sources and ML algorithms to classify
tree species represents a research hotspot [2,17–20]. In addition, relatively few studies have
been conducted on the classification of tree species in transmission line corridors.

Accurate spatial information on tree species is essential for forestry management
and is crucial for sustainable management of forest resources and effective monitoring of
species diversity, which can help solve a wide variety of application problems faced by
forestry management. In this study, experiments were conducted to address the issue of
how to improve the accuracy and efficiency of forest species classification using remote
sensing technology. On the one hand, the complementary effect of the superior features
of airborne LiDAR point clouds and DOMs (digital orthophoto maps) is realized, and the
classification accuracy of woody species is improved by feature screening. In addition,
various classification methods are analyzed and compared, which has important theoretical
significance. On the other hand, this helps to obtain finer tree species information of
the transmission channel more accurately and quickly and provides a reference basis for
the tree obstacle potential management system. It is of great practical significance for
establishing tree growth models, as well as querying and timely cleaning of tree barrier
hazards in transmission line corridors.

This study fully utilizes the advantages of machine classification algorithms in high-
dimensional feature classification and solves the problem of low classification accuracy
of tree species in transmission line corridors. First, the vertical information provided by
the LiDAR data and the horizontal information provided by the DOM are combined to
segment the canopy and extract the canopy features. Then, the RF algorithm is used in
feature selection. Finally, the RF and SVM algorithms are used to classify tree species, and
the high-precision classification of tree species in the transmission line corridor is achieved.

2. Materials and Methods
2.1. Study Area

The study area is located in the northeastern part of Chizhou city, Anhui Province,
with an altitude between 1.8 m and 112.2 m. The geographical position is 117◦46’–117◦56’
east longitude and 30◦39’–30◦41’ north latitude. It has a warm and humid subtropical
monsoon climate with four distinct seasons, sufficient rainfall, annual average temperature
of 16.5 ◦C, annual average precipitation of 1400–2200 mm, a long period of sunshine, a short
frost-free period, and approximately 40 rainy days. The study area is rich in vegetation
types. The dominant tree species include broad-leaved tree species such as fir, bamboo,
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maple, and oak, mainly in middle-aged and mature forests. The specific location of the
study area is shown in Figure 1.
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Figure 1. Location of the study area.

2.2. Aerial Image and LiDAR Data

The data used in this study include airborne LiDAR point-cloud data and synchronized
high-resolution digital orthophotos. The flight time was June 2016, under clear weather
conditions with good visibility. The airborne LiDAR point-cloud data were collected using
the Optech ALTM Galaxy system. The parameters are shown in Table 1. The downlink
channel of one of the towers in the study area was selected as the test area. The original
LiDAR point-cloud data and orthophotos of the specific study area are shown in Figure 2
and Supplementary Materials File S1.

Table 1. The parameters of airborne remote sensing system platform.

DOM LiDAR

Ground resolution 0.1 m Wavelength 1064 nm
Focal length 35 mm Laster beam divergence 0.25 mrad

Maximum point density 93 pts/m2

Minimum point density 0.6 pts/m2
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Figure 2. Data sources: (a) point-cloud data graph in the study area and (b) digital orthophoto map
of the study area.

2.3. Methods

This study combines the horizontal characteristics of the DOM and the vertical char-
acteristics of LiDAR data and selects ML algorithms to classify the tree species around
the transmission line corridor. The main steps are as follows: (1) LiDAR point-cloud data
are used to generate a CHM (canopy height model). (2) The watershed algorithm is used
in CHM-based single wood segmentation. (3) The RF algorithm is used to select the best
feature combination for individual-tree species classification and analyze and compare
the impact of feature se-lection on tree species classification. (4) A classification scheme
is designed, the effect of multi-source UAV data in individual-tree species classification
is studied, and the ability of different non-parametric learning algorithms is evaluated to
classify tree species at the individual tree level. The technical process is shown in Figure 3.

2.3.1. Data Preprocessing

In this study, the LiDAR point cloud data are already classified point clouds. The point
clouds of extraneous objects on the ground such as transmission lines and tower bases are
removed before the segmentation of individual tree canopies is performed. Only vegetation
points and ground points in the point cloud are retained. The ground points in the classified
point cloud data are used as feature points to perform interpolation operations to construct
a DEM. The first echo points of vegetation points are interpolated, and the difference
operation is performed to construct a DSM. The interpolation method uses Triangulation
Irregular Network Interpolation (TIN), which constructs triangles from a series of points.
The advantage of the TIN method is its ability to preserve surface details in topographically
complex areas. The difference operation is performed on the generated DSM and DEM
raster data to obtain the canopy height model after elevation normalization. There are black
or gray invalid holes in the original CHM caused by abnormal changes in height, which
will affect tree vertex detection and tree crown sketching. In this study, the median filter in
the smoothing filter is selected for smoothing, a new CHM is generated, and the invalid
value of the optimized CHM image is filled.

2.3.2. Individual-Tree Canopy Segmentation

Before individual-tree canopy segmentation, point clouds of irrelevant objects on the
ground such as transmission lines and tower bases are removed, and only vegetation points
and ground points in the point cloud are retained, thus improving the accuracy of tree
segmentation.

Watershed segmentation algorithm is a mathematical morphology segmentation
method based on topology theory proposed by Vincent [21]. This algorithm considers im-
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age segmentation according to the composition of the watershed and has a good response
to weak edges. It is one of the most common segmentation methods. In this paper, the
watershed segmentation algorithm is used to segment the single tree canopy for CHM, the
Gaussian smoothing factor is 1, and the smoothing window used is 5 × 5.
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2.3.3. Feature Extraction

In this study, three types of features are extracted based on DOM: spectral, textural,
and geometric features. Thereafter, point cloud and CHM features are extracted based on
LIDAR point clouds. The detailed list is shown in Tables 2–6.

Table 2. Spectral features.

Spectral Features Feature Description Symbolic Representation

Mean Average pixel value of an object
in a certain band Rmean, Gmean, Bmean 1

Standard deviation Degree of dispersion of the gray
value of pixels in the object area Rstd, Gstd, Bstd 2

1 Rmean, Gmean, and Bmean represent the mean values of the red, green, and blue bands, respectively. 2 Rstd,
Gstd, and Bstd represent the standard deviation of each band of red, green, and blue, respectively.
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Table 3. Texture features.

Texture Features Feature Description Symbolic Representation

Homogeneity Homogeneity of the image
Rhom3 (5,7,9,11),
Ghom3 (5,7,9,11),
Bhom3 (5,7,9,11) 3

Contrast Quality of image sharpness and
depth of texture grooves

Rcon3 (5,7,9,11),
Gcon3 (5,7,9,11),
Bcon3 (5,7,9,11) 3

Difference Texture feature of the local
image area

Rdis3 (5,7,9,11),
Gdis3 (5,7,9,11),
Bdis3 (5,7,9,11) 3

Information entropy Randomness measure of
all information

Rent3 (5,7,9,11),
Gent3 (5,7,9,11),
Bent3 (5,7,9,11) 3

Second order Uniformity of gray distribution of
image and thickness of texture

Rsec3 (5,7,9,11),
Gsec3 (5,7,9,11),
Bsec3 (5,7,9,11) 3

Correlation Similarity of image gray levels
Rcor3 (5,7,9,11),
Gcor3 (5,7,9,11),
Bcor3 (5,7,9,11) 3

3 These symbolic represent the texture characteristics of each of the red, green, and blue bands at different
window sizes.

Table 4. Geometric features.

Geometric Features Feature Description Symbolic Representation

Area Area of segmented object Area
Perimeter Perimeter of segmented object Perimeter

Area perimeter ratio Ratio of area of segmented
object to perimeter A_P

Table 5. Point-cloud features.

Point-Cloud Features Feature Description Symbolic Representation

Cumulative height percentile

Calculation of cumulative height
percentile at 10% interval and

calculation of its values at 25% and
75% intervals

H1, H10, H20, H25, H30, H40, H50, H60, H70,
H75, H80, H90, H99 4

Height percentile
Calculation of height percentile at 10%

intervals and calculation of its values at
25% and 75% intervals

HP1, HP10, HP20, HP25, HP30, HP40, HP50,
HP60, HP70, HP75, HP80, HP90, HP99 5

Cumulative intensity percentile

Calculation of cumulative echo intensity
percentile at 10% interval and

calculation of its values at 25% and
75% intervals

INT1, INT10, Int20, Int25, Int30, Int40, Int50,
Int60, Int70, Int75, Int80, Int90, Int99 6

Intensity percentile
Calculation of the percentile of echo

intensity at 10% interval and calculation
of its values at 25% and 75% intervals

IntP1, IntP10, IntP20, IntP25, IntP30, IntP40,
IntP50, IntP60, IntP70, IntP75, IntP80, IntP90,

IntP99 7

Mean intensity Mean intensity of all echoes INTmean

Intensity standard deviation Intensity standard deviation of
all echoes INTstd

Intensity variance Intensity variance of all echoes INTvar
4 These symbols represent the cumulative height percentile at different heights. 5 These symbols represent the
height percentile at different heights. 6 These symbols represent the cumulative intensity percentile at different
heights. 7 These symbols represent the intensity percentile at different heights.



Sustainability 2022, 14, 8273 7 of 15

Table 6. CHM features.

CHM Features Feature Description Symbolic Representation

Mean Mean height of divided tree canopy Hmean
Maximum Maximum height of divided tree canopy Hmax
Minimum Minimum height of split canopy Hmin

Standard deviation Standard deviation of height of divided tree canopy Hstd
Variance Division of height variance of canopy Hvar

Slope Division of the slope of the canopy Hslope

2.3.4. Feature Selection Based on the RF Algorithm

A large number of features bring about the problem of redundancy. Even a classifier
that is not sensitive to dimensionality decreases the classification accuracy, and feature
screening can solve this problem [22]. This study selects the RF algorithm for feature screen-
ing because the RF algorithm can sort the importance of variables before classification [23].
The most important features to participate in the classification must be retained to solve
the problem of excessive original features. The specific steps are the following:

First, the Gini index is calculated for each node k in each tree:

Gk = 2p̂k(1− p̂k) (1)

Gk represents the Gini index at node k. p̂k represents the estimated value of the
probability that the sample belongs to any class at node k.

The importance of a node is determined by the amount of change in the Gini index
before and after the node is split:

I∆k = Gk − Gk1 − Gk2 (2)

Gk1 and Gk2 represent the child nodes generated by Gk. For each tree in the forest, the
preceding criteria are used to recursively generate I∆k.

Finally, samples and variables are randomly selected to generate a forest. It is assumed
that the forest produces a total of T trees.

In the forest, if the variable Xi appears M times in the t-th tree, then the importance of
the variable Xi in the t-th tree is

Iit = ∑M
j=1 I∆j (3)

Then, the variable importance of Xi in the entire forest is

I(i) =
1
n ∑T

t=1 Iit (4)

Finally, the variables are selected according to the importance of the variables.

2.3.5. Tree Species Classification Based on Machine Learning

According to field survey data, the main tree species in the study area are paulownia,
oak, fir, moso bamboo, maple poplar, and others. The final classification system is divided
into four categories, namely, paulownia, oak, fir, and other tree species (including bamboo,
maple poplar, shrubs, and other relatively small tree species).

The RF algorithm integrates a large number of trees into a forest, avoiding the one-
sidedness and inaccuracy caused by the classification of a single decision tree, while the
SVM does not require large samples and has great advantages in high-dimensional feature
recognition. Therefore, this study applies RF and SVM in tree species classification.

The main steps of RF-based tree species classification are the following: (1) Random
samples are created. Each time with replacement, n samples are drawn from the original
sample set, and k extractions are performed in total. (2) A decision tree is established. In
each process of generating a decision tree, from the D features in the feature space, d (d < D)
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features are selected to form a new feature set, and the new feature set is used to generate a
decision tree. (3) The generated k decision trees are combined, and the classification results
of multiple decision trees are selected to obtain the final classification category.

The tree species classification process based on SVM is transforms the non-linear
sample space into a linear space through the kernel function to realize the division of
samples. In this study, the kernel function chooses the radial basis function [24], which is
expressed as

k(x, xi) = exp

(
−‖x− xi‖2

δ2

)
(5)

In the formula, x and xi refer to the unknown vector and the support vector, respec-
tively, and δ is the width of the function.

Based on the segmented image objects and the extracted features, 12 combinations
are formed. These twelve combination schemes are shown in Table 7. When DOM is used,
schemes I and II are unfeatured screening that use RF and SVM classifiers, respectively,
whereas schemes III and IV are featured screening that use RF and SVM classifiers, respec-
tively, after selection. When LiDAR is used, schemes V and VI are unfeatured screening
that use RF and SVM classifiers, respectively, whereas schemes VII and VIII are featured
screening that use RF and SVM classifiers, respectively, after selection. When LiDAR and
DOM are used, schemes IX and X are unfeatured screening that use RF and SVM classifiers,
respectively, whereas schemes XI and XII are featured screening that use RF and SVM
classifiers, respectively, after selection.

Table 7. Classification scheme.

Scheme Feature Select Type of Data Classifier

I No DOM RF
II No DOM SVM
III Yes DOM RF
IV Yes DOM SVM
V No LiDAR RF
VI No LiDAR SVM
VII Yes LiDAR RF
VIII Yes LiDAR SVM
IX No DOM, LiDAR RF
X No DOM, LiDAR SVM
XI Yes DOM, LiDAR RF
XII Yes DOM, LiDAR SVM

2.3.6. Accuracy Evaluation Indicators

In this study, stratified sampling is used to randomly select 40% of the data from each
tree species for inspection. A total of 232 training samples and 155 test samples are available
in the sample plots.

After obtaining the tree species classification results of different schemes, we need to
verify the correctness to evaluate the effect of the individual-tree species classification of
each scheme. The stratified sampling method is adopted, and the verification samples are
selected through a combination of field investigation and visual interpretation. Construct-
ing a confusion matrix is a common method to quantify classification accuracy [25]. In
addition, MAE is selected for metrics in this study [26–28]. The indicators used to measure
are shown in Table 8.
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Table 8. Evaluation index of classification accuracy.

Evaluation Index Calculation Formula Indicator Description

user accuracy, UA UA = xii
xi+

Ratio of number of samples correctly classified into category i
to the total number of samples in category i in the

classification result, which reflects the reliability of a certain
category being correctly identified

producer accuracy, PA PA = xii
x+i

Ratio of the number of correct classifications of a category to
the total number of that category in the reference sample

overall accuracy, OA
OA =

r
∑

i=1
xii

N

Proportion of correctly classified samples to the total sample,
reflecting the consistency between the classification results

and the actual features

Kappa coefficient K =
N ∑r

i=1 xii−∑r
i=1(xi+x+i)

N2−∑r
i=1(xi+x+i)

A precision statistic used to determine the matching degree
between the actual feature category and classification result,
which can weaken the influence of sample selection on the

accuracy verification

MAE MAE = 1
N ∑N

i=1|yi − ŷi|
Measure of the difference between the predicted and actual

values of the model.

xii is the number of samples that were correctly classified. xi+ is the total number of
samples classified into class i. x+i is the total number of samples in class i in the reference
samples. r is the total number of classes. N denotes the total number of samples drawn. yi
is the actual expected output, and ŷi is the model prediction.

3. Results
3.1. Optimized CHM Extraction Results

Due to the small canopy width, the use of a 3 × 3 filter window can retain the original
information to the greatest extent. This study uses a 3 × 3 filter window to perform median
smoothing filtering of the original CHM raster data. Comparing the local effect map of the
median filter algorithm (Figure 4), we find many discontinuously distributed low values at
the edge of the canopy in the original image. The image after median filtering is smoother,
and invalid values in the image can also be removed effectively. Therefore, the median filter
is selected to smooth the CHM data to reduce the impact of invalid values on accuracy. As
shown in the final canopy height model in Figure 5, as the height of the canopy increases,
and the image shows a brightness change from black to white. Figure 4b shows a partial
demonstration of Figure 5.
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3.2. Individual Tree Segmentation Results

The optimized CHM is segmented by the watershed segmentation algorithm. In
combination with the field survey, the optimized results of partial tree crown segmentation
and selected samples are shown in Figure 6.
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3.3. Feature Screening Results

In this study, the RF algorithm is used to sort and filter the importance of a feature
set composed of five types of 160 features based on DOM and LiDAR point-cloud data
extraction. In total, 15 and 13 features were retained by RF screening when using only
LiDAR and DOM, respectively, and 18 features were retained by feature screening after
combining the two types of data. The ranking of the importance of the features retained
after screening is shown in Figure 7. Analysis of feature importance revealed that the
spectral mean and standard deviation scores for each band in the spectral features were
the most stable and contributed the most, whether the classification was performed using
only DOM or DOM combined with LiDAR. The texture features also have important
contributions in the classification, where the contrast and correlation are the top ranked
features in importance among the texture features. In the combination of DOM and LiDAR,
point-cloud features, CHM features and geometric features all have more important roles
in the classification.
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feature sorting results.

3.4. Classification Results and Accuracy Evaluation of Individual Tree Species

According to the results of the previous individual tree crown segmentation and
feature extraction, the individual tree species are classified based on the designed four
schemes, and the classification algorithm is implemented using Python. Samples are
selected through a combination of field investigation and visual interpretation. Then, 60%
of the data are selected as the training set for training the model, and 40% of the verification
data are used to test the model reliability. After the tree species classification results are
obtained, the test samples are selected to evaluate the accuracy of the results, and the
best classification scheme is determined after analysis and comparison. The classification
accuracy is shown in Table 9. The results of classifying trees according to the scheme 12
with the highest overall accuracy are shown in Figure 8.
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Table 9. Evaluation of classification accuracy.

Scheme Accuracy
(%) Paulownia oak fir Other Tree

Species OA (%) Kappa MAE

I
PA 70.00 87.50 66.67 69.44

74.19 0.66 0.39UA 77.78 76.36 72.34 71.43

II
PA 60.00 83.33 64.71 72.22

71.61 0.60 0.42UA 75.00 67.80 73.33 74.29

III
PA 80.00 89.58 64.71 77.78

79.35 0.71 0.29UA 88.89 74.14 78.26 84.85

IV
PA 55.00 85.42 70.59 75.00

73.54 0.63 0.41UA 84.62 77.36 71.43 67.50

V
PA 55.00 70.83 45.10 47.22

52.26 0.34 0.74UA 55.00 57.63 52.27 53.13

VI
PA 55.00 56.25 54.90 36.11

50.97 0.39 0.73UA 52.38 55.10 44.44 59.10

VII
PA 45.00 66.67 43.14 55.56

53.55 0.36 0.69UA 50.00 51.61 52.38 60.61

VIII
PA 35.00 58.70 45.10 77.78

54.84 0.39 0.71UA 58.33 58.70 56.10 56.00

IX
PA 80.00 83.33 76.47 80.56

80.00 0.73 0.36UA 72.73 78.43 73.58 100.00

X
PA 75.00 81.25 84.31 69.44

78.21 0.70 0.30UA 83.33 82.98 72.88 80.65

XI
PA 90.00 85.75 74.51 86.11

83.23 0.77 0.23UA 85.71 77.78 82.61 91.18

XII
PA 85.00 85.42 86.27 83.33

85.16 0.79 0.21UA 89.47 89.13 80.00 85.71

3.5. Results Analysis

Analysis of the accuracy of the scenarios based on the data in Table 9 shows that:

(1) When using DOM only, scheme III had the highest classification accuracy with an
overall accuracy of 79,35%, Kappa coefficient of 0.71, and MAE of 0.29. After feature
selection, the accuracy of both classifiers improved. The classification schemes with
feature selection improved the accuracy of classification using RF and SVM by 5.16%
and 1.93%, respectively, compared to the schemes without feature selection.

(2) When using LiDAR only, none of the classification results of schemes V–VIII were
very good, and none of the overall accuracies reached 55%. For this study area, the
effect of using LiDAR only for tree species classification was not satisfactory.

(3) When using the combination of DOM and LiDAR for classification, scheme 12 had the
best classification results, with an overall accuracy of 85.16% and a Kappa coefficient
of 0.79. The accuracy of classification using RF and SVM improved by 3.23% and
6.45%, respectively, after feature selection compared to that in the scheme without
feature selection.

(4) In terms of tree species, Paulownia was more affected by feature selection, and in most
cases, PA, UA improved after feature selection. Oak and fir were more affected by
feature selection when LiDAR and DOM were combined for classification, and there
was a significant improvement in PA and UA. The classification accuracy of other
tree species was not ideal due to more internal species, and it may be necessary to
classify other tree species into several more detailed categories in order to improve
the accuracy.
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4. Discussion
4.1. The Impact of Feature Screening on Classification

Feature screening is very important for classification research. Feature screening
can reduce multicollinearity among features and improve computational efficiency and
classification accuracy. The results show that the accuracy and Kappa coefficient of RF and
SVM classification improved after feature screening, and RF feature screening achieved
good results in both RF and SVM classification. Therefore, the RF signature screening is
reliable. Using multispectral and LiDAR data for classification, Pham et al. [29] explored
the role of RF signature screening for classification. When the multi-source data were
combined, the AO after RF screening reached 85.4%, and the Kappa coefficient was 0.81,
which were 0.05 and 0.07 higher than those without feature screening, which is very similar
to the results of this study.

4.2. The Impact of the Classification Algorithm on the Accuracy

For this study, when DOM was combined with LiDAR for classification, the SVM
algorithm was more accurate after feature filtering. This may be because the SVM model
can solve high-dimensional problems well and is better for machine learning in the case of
small samples. The RF algorithm has been shown to overfit in some noisy classification or
regression problems.

4.3. Contribution of Different Features to Classification

When DOM was combined with LiDAR for classification, intensity and height features
were extracted from LiDAR, spectral and texture features are extracted from DOM, and
the performance of these features was evaluated. The results show that the spectral
features contributed the most to the classification. Among them, the green band was very
important in distinguishing tree species, probably because of the different pigment contents
of different tree species; the contents of chlorophyll, carotenoid, anthocyanin, and lutein
are closely related to the reflectance of the green band. Texture features also contributed
greatly, such as the contrast and correlation within the convolution kernel. Texture features
are global features that can describe the surface properties of the scene corresponding to
the image area, so they have great potential for classification. The LiDAR point cloud
features provided three-dimensional information of trees for classification. The first echo
intensity features and height features of LiDAR data were sensitive to canopy conditions,
well represented the tree canopy structure and morphological features, and contributed
greatly to tree species classification.

4.4. Effect of Observation Season on the Classification Accuracy

Huaipeng Liu [30] classified urban tree species based on four seasons of RedEdge-MX
data, and the results showed that among the four seasons of the year, the classification of
tree species based on spring data was the best. The accuracy of tree species classification
can be improved by combining data from two, three, and four seasons. Other studies on
tree species classification were conducted in summer or autumn and also achieved good
accuracy, very similar to the results of the present study [31,32]. In future studies, more
data from different periods will be applied to the study of tree species classification so
that the relationship between seasons and the accuracy of tree species classification can be
discussed in more depth.

5. Conclusions

To solve the problem of tree species classification in transmission line corridors, this
study used multi-source UAV data and ML methods to effectively overcome the problem
of low tree species classification accuracy and realized the extraction and classification of
individual trees in transmission line corridors. The results show that feature selection is
an important task in classification research on tree species. After feature screening, the
accuracy and kappa coefficient of RF and SVM classification improved. Thus, RF feature
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screening achieved good results in both RF and SVM classification, which shows that this
type of feature screening is reliable.

During the experiment, the extraction of features was the most important, and the
contribution of various features to the classification results was different. The research
results show that spectral features contributed the most to classification. In addition, texture
features played a very important role in classification, such as the correlation and contrast
in the convolution kernel of the green band and blue band. The features extracted from
LiDAR data were used to supplement the 3D information of the individual tree and were
also indispensable in the classification. The research results show that the first echo intensity
feature and height feature of LiDAR data also had a high contribution to the classification.
In future research, more data sources will be selected to achieve large combinations so
that more effective features can be extracted to distinguish tree species. This will provide
important information for the establishment of an intelligent early warning system for tree
barriers in transmission line corridor areas, thus enabling sustainable management of forest
resources and effective monitoring of species diversity in these corridors.
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