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Abstract: The new millennium has witnessed a pervasive shift of trend from AC to DC in the
residential load sector. The shift is predominantly due to independent residential solar PV systems
at rooftops and escalating electronic loads with better energy saving potential integrated with
diminishing prices as well as commercial availability of DC-based appliances. Comprehensive
sensitivity analysis considering the real load profile is missing in the present body of knowledge. In
order to fill that gap, this paper is an attempt to include a comprehensive sensitivity analysis of the
DC distribution system and its simulation-based comparison with its AC counterpart, considering
the real load profile. The paper uses the Monte Carlo technique and probabilistic approach to add
diversity in residential loads consumption to obtain an instantaneous load profile. Various possible
scenarios such as variation of standard deviation from 5% to 20% of mean load value, PV capacity
variation from 1000 W to 9000 W, and variation in power electronic converter (PEC) efficiencies are
incorporated to make the system realistic as much as possible maintaining a fair comparison between
both systems. The paper concludes with the baseline efficiency advantage of 2% to 3% during the
day for the case of the DC distribution system as compared to the AC distribution system.

Keywords: sensitivity analysis; DC distribution networks; DC vs. AC; efficiency; load modeling;
renewable energy sources; Monte Carlo

1. Introduction

DC distribution and its utilization for residential/industrial loads are totally depen-
dent on renewable energy resources. Thus, the power sources are pollution free and are
equally important for the sustainable development of the socio-economic situations of the
human race. The first power system ever designed in the history of electricity was DC in
nature [1,2]. However, it incurred huge power loss, and the portability of power became a
major issue over long distances. DC could not enjoy the rule over the power system for
a long time and was soon overthrown by AC with the invention of transformers. It was
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the time when the rivalry between the two pioneers of electricity began—Nikola Tesla in
support of AC and Thomas Edison in support of DC. The victory of AC in Edison’s and
Westinghouse’s turn-of-the-century “war of currents” relegated DC to the museums of
electricity [2,3].

Efficiency was the parameter that wiped DC out of the power system, and history was
made [3,4]. The invention of transformers was the backbone in providing an efficiency
advantage to AC over DC. DC did not possess any means of voltage level transformation
and therefore lost the war of currents in the first place, and the rule of AC began.

However, this supremacy of AC was not everlasting, and after several decades, it
was possible to transform the voltage levels of DC with the invention of semiconductor-
based converters, and the war of current ignited once again [5]. However, this time DC
struck back in full swing, capturing almost all the sectors of power system generation,
transmission, and utilization [6]. The generation side witnessed a shift to renewable energy
resources comprising majorly solar PV and wind-based generation [7–10]. Solar PV systems
produce power in the form of DC, and wind can also be better optimized with DC. The
HVDC transmission has been proved to be a better choice for bulk transmission of power
as compared to its AC counterpart [11,12]. Apart from generation and transmission, the
utilization has witnessed a major shift of loads towards DC. The DC-based loads are proved
to be efficient as compared to AC loads at a reduced cost [13,14]. The modern trend of
DC-inverter-based air conditioning systems is also DC in nature, providing energy savings
as compared to conventional air conditioning systems [15]. The brushless DC (BLDC) motor
is replacing the conventional induction motor in appliances with an added advantage of
energy savings [16,17].

Research in the field of DC distribution is still in the continuation phase. Comparative
analyses of AC and DC distribution systems have been presented by various authors in
the past, with efficiency as the base of comparison. The efficiency analysis of distribution
systems depends on several factors, i.e., load profiles, PEC efficiencies, solar capacity, solar
power variation with time, PEC efficiency variation with loading, etc. Authors of the
research presented in the past have considered the role of the stated factors based upon
assumptions, which directly or indirectly support either of the two mediums of power
transfer (AC or DC). For example, all loads in a premise are DC—clearly supporting DC
in the comparative analysis [13]. Several studies presented in the past assumed different
voltage levels for DC systems [18–22]. Voltage levels of 24 V, 48 V, 325 V, and 380 V are
common. A group of authors has considered scenarios that are nonrealistic or futuristic, re-
sulting in more confusion. For example, the authors assumed fixed or very high efficiencies
of the installed PECs [22–25]. Various authors have considered a small set of appliances to
perform the comparative analysis, which limits the scope of the analysis [19,26–28]. For
example, the authors assumed only lighting loads in the analysis; and the authors assumed
selective residential and office loads. Many authors did not consider the load variation and,
in turn, PEC efficiency variation with respect to time. The results of analyses presented
with assumptions or limited scenarios generate conflicting results.

As far as the results of the studies presented in the past are concerned, the situation
is quite perplexing. The authors of [29] concluded that if a residence is supplied by a
fuel cell or another dc generator, then the total conversion efficiency within a residential
DC distribution system could be better than that for AC distribution. The authors of [30]
concluded that if the semiconductor losses are reduced to half of their original losses, then
the DC system can present better efficiency. The authors of [20] stated that a medium-sized
office building using a DC system had an expected baseline of 12% saving, which may also
save up to 18% with system alterations.

The authors of [22] concluded that with DC, an efficiency advantage of 9% can be
achieved against AC with fixed values of the installed PECs. The authors of [31] presented
comparable efficiency values for AC and DC at a residential scale, assuming 100% efficiency
of PECs. The studies of [32–37] are the analyses presented by two of the current authors.
In [35], the authors arbitrarily divided the day into three parts and, in turn, arbitrarily
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developed load profiles for the appliances based upon assumptions. The efficiency of the
main DC–DC converter was concluded to be the decisive parameter for the adoption of
DC at the distribution scale. In [33], the authors performed a comparative analysis with a
fixed PEC efficiency range. The authors concluded the AC system is found to be superior
to DC, with a minimum efficiency advantage of around 2% and a maximum of around
6%. However, taking the air-conditioning as a DC load roughly doubles the DC power
demand of the building, and the DC system showed slightly (around 1%) higher efficiency
values. In [34], the authors concluded with a verdict that DC presents better efficiency
values as compared to AC: with an efficiency edge of 2.3%, neglecting the instantaneous
load profiling. In [37], the authors concluded that DC is better than AC on a residential
scale with an efficiency lead of around 4%, with an assumption that all loads are DC. In [32],
the authors presented a specific case of a Bakersfield, CA, USA, home (not the distribution
system) and concluded that an AC home presents better efficiency values as compared
to the DC counterpart except during the time periods when solar power is available and
when the penetration of variable speed drive (VSD) based loads is high.

Innovative Aspects of the Current Research Effort

Table 1 presents a detailed literature review as regards the work presented in various
research efforts. The earlier stated discussion reveals the confusion that is present in the
literature regarding the efficiency comparison of AC and DC on the distribution scale. The
efficiency of one is better than the other, provided that this/these parameter(s) are assumed
to be of this/these value(s). This calls for a detailed sensitivity analysis that is generic,
realistic, and capable of presenting a comprehensive/clear picture so that a definite verdict
can be devised against the question: Is DC better than AC on the distribution scale or not?

Table 1. Summarized form of various research efforts mentioning around a dozen points of compari-
son in the approaches of various research efforts.
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[30] - - - 4 - - - Commercial 4 - -
AC is better than DC. The study is

performed on low and medium
voltage networks

[29] 4 - - - - 4 - Residential 4 - - DC is better. The study is performed
with fixed PEC efficiency

[35] 4 - 4 - - - 4 Residential - 4 - DC is feasible. Loss comparison is
performed allowing load variation.

[18] 4 - - 4 4 4 4 Residential 4 4 -

DC is feasible up to some extent. The
authors proposed almost equal
efficiency for AC and DC at low

voltage distribution scale.

[38] - - 4 - 4 4 4 Residential 4 4 -

DC is better. The study is performed
by considering all loads as DC

without considering PEC
efficiency variation

[25] - - 4 - 4 4 4 Residential 4 - -
DC is better. The study is performed

by considering and PEC
efficiency variation
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[33] 4 - 4 - - - - Residential 4 4 -
AC and DC are comparable.
Efficiency of PECs is varied

in fix range.

[24] - - - - - - - Residential 4 - - DC is better. Limited loads selection
and fixed PEC efficiency

[23] - - 4 - - 4 - Residential 4 - -

AC is better. Load variation is
considered, however, the effect of
load variation on PEC efficiency is

not considered

[27] - 4 4 - - 4 - Commercial 4 - -
DC is better. Hardware based

analysis is performed with
limited loads

[19] - - 4 - - 4 - Commercial 4 - -

DC is better. Seasonal effect is
considered, however, certain basic

parameters related to load and PEC
are missing.

[26] - - - 4 - 4 - Commercial 4 - -
DC is better. A total of 230 V AC is
compared against 380 V Dc with

limited scenarios and loads.

[21] 4 4 - - - - - Residential 4 - -
DC is feasible. Limited scenario with

constant loads and fixed
PEC efficiency

[34] 4 - 4 4 - 4 - Residential 4 4 4

DC is better. Time based study is
performed with averaged load

models, the loads are categorized
according to the power demand

[22] - 4 - 4 - 4 - Residential 4 - -

DC shows better efficiency at
different voltage levels. The

comparative analysis is performed
on the basis of voltage levels.

[13] 4 4 - - - - - Residential/Commercial - - -

DC shows better energy savings with
DC loads. The comparison is

performed with futuristic approach,
by considering DC loads only.

[20] 4 - 4 4 4 4 4 Commercial 4 - 4
DC shows better efficiency about
9.9% in base case while 17.9% in

best case.

[23] - - 4 - - 4 - Residential 4 - - AC shows better efficiency as
compared to DC

[28] - 4 4 4 4 4 - Commercial 4 - -
Efficiency of AC and DC is

comparable and depend upon
voltage level of DC mainly.

[31] - 4 4 4 - - - Distribution level 4 - -
With DC is more efficient regarding
energy losses, voltage profiles than

its AC counterpart

[32] 4 - 4 - - 4 - Residential 4 4 4
AC System shows better efficiency

during the presence of
PV solar system

[37] 4 - 4 - - - - Residential 4 - - DC shows better efficiency with
separate and bulk PEC topologies.

This paper performs sensitivity analysis on PV capacity variation and PEC efficiency
variation in the residential sector with normally distributed data. The realistic effect of the
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variation in the efficiency of installed power electronic converters with loading as well as
the realistic variation of solar insolation throughout the day is considered in the analysis.
Furthermore, a sensitivity analysis is performed to encompass the effect of all the stated
factors on the comparative AC and DC distribution system efficiencies.

The data from [39] are utilized to model the energy consumption of residential loads
with realistic daily load profiles throughout the year. The load curves are passed through
the normal distribution process with the help of Monte Carlo simulations to convert
the average load profile into an instantaneous load profile, thereby presenting a realistic
scenario. The PEC efficiency variation with loading as well as the solar variation with
time of the day is also considered. In order to present a more realistic scenario, the load
consumption during weekdays and weekends are dealt with separately. Furthermore, each
building’s load consumption is dealt with in a unique fashion, i.e., it is not necessary that a
specific load is ON in one building and it is also ON in other buildings at the same time or
a specific load is ON in two or more buildings consuming same power.

The rest of the paper is organized as follows. Section 2 describes system modeling,
Section 3 analyses the results, and a discussion is presented. Finally, a conclusion is drawn
based on the presented results, and future recommendations are made.

2. Modeling of the Systems

The US residential electrical energy data presented in Table 2 are utilized for sys-
tem modeling [40]. The loads are characterized according to their power demand into
four categories.

Table 2. US Residential Electrical Energy End-Use Splits.

Serial No. Category Energy Used
(Quad. Btu)

Energy Usage
Converted to %

1 Space Heating 0.42 8.8
2 Water Heating 0.48 10
3 Space Cooling 1.02 21.3
4 Lighting 0.53 11.1
5 Refrigeration 0.45 9.4
6 Electronics 0.33 6.9
7 Wet Cleaning 0.33 6.9
8 Cooking 0.11 2.3
9 Computers 0.19 4
10 Other 0.94 19.6

‘A’ category
The natively AC loads, i.e., which can operate directly in an AC system. However, in

the case of the DC system, these require a DC–AC PEC for operation.
‘D’ category
The natively DC loads can operate directly in a DC system (provided the voltage level

demand of the appliance) or require a DC–DC PEC for operation, and, in case of AC system
these require an AC–DC PEC for operation.

‘I’ category
‘I’ category loads are independent of the type of medium of power and can work on

both AC and DC voltages, e.g., heating loads.
‘VSD’ category
The modern loads operate via variable speed drive (VSD).
The instantaneous data from Electric Power Research Institute (EPRI) load shape li-

brary are utilized to perform realistic analysis as compared to averaged analyses performed
in the past research works. As stated earlier, this paper presents a detailed distribution
model with load categorization as well as takes into account the load diversity factor—
compared to the analyses presented in the past. In order to achieve this, the current research
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uses the Monte Carlo simulation technique on the data for distributing the loads using nor-
mal distribution in the building blocks. Table 3 presents the power consumption of various
loads; taken from [41–44]. In contrast, PEC converters and their efficiency curves are taken
from [45–55]. The PV solar curve is extracted from [56]. In addition to the classification
of loads according to the type of power demand, the loads are categorized according to
their consumption, i.e., “Fixed” and “Non-Fixed”, the purpose of which will be cleared in
successive subsections.

Table 3. Loads ratings of different home appliances with categorization.

Serial No. Appliances Load Ratings (W) Category Load Type

1 Indoor Lights 13 W per light Fixed D
2 Television 120–130 Fixed D
3 Computer 4–250 Non-Fixed D
4 Dishwasher 1200–1500 Fixed A
5 Clothe Dryer 1000–4000 Non-Fixed A
6 Clothe Washer 500 Fixed A
7 Air Conditioner 1000–6000 Non-Fixed VSD
8 Refrigerator 100–220 Non-Fixed VSD
9 Cooking Equip. 2150 Fixed I

10 Water Heater 3000 Fixed I
11 Space Heater 2000–3000 Fixed I

2.1. Distribution of Load Using Normal Distribution for Non-Fixed Category of Load

For non-fixed loads, normal distribution algorithm is employed on average value of
each hour for various standard deviations. As an example, the air-conditioner is taking
1100 W at a particular time on the day of the month of November, as depicted in Figure 1a.
The rated minimum and maximum values of the air-conditioner, as specified by the manu-
facturer, are 1000 W and 6000 W, respectively. Designating the 1100 W value as the mean
value, the variation possible for this value will be 1100 − 1000 = 100 W from its mean for
the lower end, and the standard deviation will be 100/3 = 33.3 W. All the building blocks
(BB) supplied by a single SST would obtain air-conditioner data normally distributed with
the mean 1100 W, and standard deviation is 33 W, as shown in the Figure 1b.
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2.1.1. Off Load Method

The margin for deviation described above is quite narrow. For higher standard
deviation, i.e., to allow wider spread in the distribution, it may be assumed that BBs
supplied by a particular SST are not using air-conditioners at the specific time—which
definitely presents a realistic picture as it is quite probable that a load is ON in some BBs
and OFF in other BBs. Following mathematics is developed to analyze the scenario.

The existing mean power value of load at time t1 is given as:

ui(t1) = xi(t1) (1)

Provided the limits:
xmin−i < xLi(t1) < xmax−i

where uLi(t1) represents the averaged value at t1, xLi(t1) represents the power consumption,
xmin−i represents the minimum power consumption of and xmin−i represents instantaneous
maximum power consumption of the ith load.

For wider standard deviation value, the mean value should be increased to new mean
value as indicated in (2):

NON−i(t1) = m− bi (2)

where NON−i(t1) represents the number of BBs for which ith load is at ON sate while m
represents the total number of buildings against each SST and bi represents the number of
BBs in which ith load is at OFF state.

The new mean value is depicted in (3) as

u′i(t1) =
ui(t1)

NON−i(t1)
(3)

By utilizing the normal distribution technique, the data will be distributed between
the NON−i(t1) BBs.

2.1.2. On/Off Method for Fixed Category Load

This subsection explains the distribution of the loading of fixed loads in BBs. Since
these loads are either ON or OFF at their rated and zero power, respectively, the mean
power value of fixed load at time ‘t1’ is presented in (4).

uFi(t1) = xFi(t1) (4)

Provided the limits:
xFi(t1) < xFmax−i

where uF-i(t1) denotes the power t1 and xFmax−i represents the rated value of the ith load.
Total mean power consumption of ith load for ‘m’ number of BBs against each SST can

be calculated using (5):
xtotal mean−i(t1) = uF−i(t1)×m (5)

where xtotal mean−Fi(t1) represents the total mean power consumption of ith load for all BBs.
Hence, the number of buildings for which the ith load is ON can be represented as (6):

NON−Fi(t1) =
xtotal mean−Fi(t1)

xFmax−i
(6)

where NON−Fi(t1) represents the number of BBs for where the ith load is ON.

2.2. Mathematical Modeling

In case of AC distribution system, the grid voltage is at primary distribution level,
which is stepped down via ‘k’ number of transformers (XMFR) supplying power to ‘j’
number of buildings. Each building is subsequently connected to ‘i’ number of loads. Each
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house is equipped with rooftop solar panels, and loads are connected to the in-house bus
according to their load categorization defined earlier.

Similarly, in case of DC distribution system, the grid is DC which is connected to solid
state transformers (SSTs), and the in-house source bus is DC, as presented in Figure 2. The
equations for calculating the system efficiency at given time “t1” are taken from [57], which
is the effort of two of current authors.
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2.2.1. DC System

For the total power consumption of a single BB (say jth building), the input power
pj(t1) may be calculated as the total sum of all four types of load categories at time t1, as
shown in (7)

pj(t1) =

(
n1

∑
i=1

pDijk−in(t1)

)
+

(
n2

∑
i=1

pAijk−in(t1)

)
+

(
n3

∑
i=1

pIijk−in(t1)

)
+

(
n4

∑
i=1

pVSDijk−in(t1)

)
(7)

where pj(t1) is the input power demanded by the jth building block at time t1; pDijk−in(t1),
pAijk−in(t1), pIijk−in(t1) and pVSDijk−in(t1) are the ith DC, AC, independent and VSD input
powers in jth building block of kth SST, respectively. Normalized load data obtained by
the process explained in Section 2.1 is used for the loads in Equation (1) with realistic load
ratings from manufacturer’s data (given in Table 3). The appliance rating load matrix for
DC loads is presented as:

RatingDC_loads =

 13 W 120 W 250 W
250 W 13 W 120 W
120 W 250 W 13 W

 (8)

Similar rating matrix for other load categories may be constructed by using Table 4.
DC–DC, AC–DC, DC–AC, and VSD PECs are chosen based on their corresponding rating
matrices with 10% oversize ratio. Since PEC efficiency varies with respect to the loading,
therefore, the PEC curve equations (from loading-efficiency curves) are obtained using
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GRABIT tool using MATLAB, and efficiency equation for one of the DC/DC converter is
presented in (9).

ηdd−ijk(t1) = −41.4 ×
(

pDijk(t1)/ rddijk

)4
+360.4 ×

(
pDijk(t1)/ rddijk

)3

− 335.8 ×
(

pDijk(t1)/ rddijk

)2
+ 134.4 ×

(
pDijk(t1) / rddijk

)
+ 74.83

(9)

where ηdd−ijk is the efficiency of DC–DC converter for each ith load category in jth building
block of kth SST. The DC efficiency matrix is obtained for other DC loads as well. Similar
technique is employed for other load categories.

Table 4. Required PEC Rating for Each Residential Load.

Serial No. Appliances Category Required PEC Ratings
(Maximum)

PEC for DC
System

PEC for AC
System

1 Indoor Lights D 300 W DC/DC AC/DC
2 Television D 150 W DC/DC AC/DC
3 Computer D 300 W DC/DC AC/DC
4 Dishwasher A 1700 W DC/AC N/A
5 Clothe Dryer A 5000 W DC/AC N/A
6 Clothe Washer A 600 W DC/AC N/A
7 Air Conditioner VSD 8000 W DC/AC VSD
8 Refrigerator VSD 300 W DC/AC VSD

Since each building block is installed with a solar PV system whose PV curve equation
is obtained through same procedure of curve fitting and is presented mathematically in (10)

psolar−j(t1) =
{

λSD−j ×
[
αj(t1)

4 + β j(t1)
3 + γj(t1)

2 + δj(t1) + ε j(t1)
]}

(10)

where psolar−j(t1) is the output power of solar system installed in jth building at time t1
and λSD−j is the associated DC–DC conversion loss. αj, β j, γj, δj, ε j are the co-efficiencies
obtained through curve fitting tool. λSD−j is assumed to be constant for different power
generation because this loss has negligible effect on system efficiency. It is also assumed
that each building has same PV generation capacity; hence, the equation for PV system in
all BBs is same. Subsequently, the input power drawn (or output power supplied in case of
excess generation) by the system SST can be evaluated from (11):

pin−SSTa(t1) =
pout−SSTa(t1)

ηSSTa(t1)
(11)

η DC System(t1) =

(
pLoad−total(t1)

pDG(t1) + psolar−total(t1)

)
(12)

where pDG(t1) is the required power from the DC grid at time t1, which is calculated by
summing the input power of each SST. ηDC System(t1) is the efficiency of DC system, which
is calculated by the dividing the sum of grid power pDG(t1) and the total solar power
psolar−total(t1) to the total load power pLoad−total(t1) at time t1, and pLoad−total(t1) is the
total load power obtained by the summation of the power of each load category present in
each building of each SST at time t1.

2.2.2. AC System

Continuing the system modeling on similar lines as for the DC system, the AC system
model is presented in Figure 3.
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The total load power for jth building is expressed in (13).

pj(t1) + qj(t1) =

( n1
∑

i=1
pDijk−in(t1)

)
+

( n2
∑

i=1

(
pAijk−in(t1) + qAijk−in(t1)

))
+

( n3
∑

i=1
pIijk−in(t1)

)
+

( n4
∑

i=1
pVSDijk−in(t1)

) (13)

where pj(t1) and qj(t1) are the required powers of jth building while pDijk−in(t1),
pAijk−in(t1)q(t1), pIijk−in(t1) and pVSDijk−in(t1) represent the ith DC, AC, independent,
and VSD input powers in jth building block of kth XMFR, respectively. Similar procedure is
performed for rating and efficiency matrices in AC system using curve fitting tool.

The solar power generated by jth building in the AC system is expressed mathemati-
cally in (14):

psolar−j(t1) =
{

λSA−j ×
[
αj(t1)

4 + β j(t1)
3 + γj(t1)

2 + δj(t1) + ε j(t1)
]}

(14)

where λSA−j represents DC–AC inverter losses associated with solar system installed in jth

building. Similar to the case of DC, λSA−j is assumed constant. The consideration of the
reactive component is presented in (15).

qsolarj(t1) = µ× psolarj(t1) (15)

where, qsolar−j(t1) is reactive output power of solar system delivered to each building,
while the reactive power supplied by the solar inverters is treated as a fractional factor µ of
the real power. The difference compared to the DC model is the use of λSA variable, which
represents solar to AC power conversion.

The power drawn by the distribution transformer Sin-XMFR, can be evaluated using (16):∣∣∣SinX f mr (t1)
∣∣∣ = ∑m

j=1(|pdemand−j(t1)+jqdemand−j(t1)|)
ηxm f r(t1)

< SinX f mr (t1)= tan−1 pdemand−j(t1)

qdemand−j(t1)

(16)
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where,

pdemand−j(t1) =
m
∑

j=1

[(
pj(t1) + psolar−j(t1)

)]
qdemand−j(t1) =

m
∑

j=1

[(
qj(t1) + qsolar−j(t1)

)]
where Sin−X f mr(t1) is complex power available at input side of the transformer, which is
calculated by the sum of real power demand pdemand−j(t1) and reactive power demand
qdemand−j(t1); by utilizing the transformer efficiency ηxm f r(t1) at time t1

The system efficiency values can be determined using (17):

η AC System(t1) =

(
pLoad−total(t1)

pAG(t1) + psolar−total(t1)

)
(17)

where ηAC System(t1) is the efficiency of AC system, which is calculated by the dividing
the sum of grid power pAG(t1) and real solar power psolar−total(t1) to the total load power
pLoad−total(t1) at time t1.

A single BB is designed and simulated in MATLAB/Simulink environment. A total of
27 residential BBs (9 buildings per phase, giving a total of 27 for the three-phase system)
are assumed to be combined and connected with a single distribution transformer. For
the DC distribution system, this transformer is replaced with a DC–DC PEC SST. In the
secondary DC system, the voltage level of 326 V (peak of 230 Vrms AC) is chosen, which
draws its support from [33].

2.3. Sensitivity Analysis

The basic purpose of the sensitivity analysis is to evaluate the effect of variation in the
individual load type PEC efficiency, main grid tie PEC efficiency, and PV system capacity
on overall the system’s efficiency. Following mathematical model is devised for studying
the effect of the efficiency variation of each component in DC system. Similar process shall
be adopted with the AC system.

2.3.1. PV Capacity Variation

The generalized equation of psolar−j for jth building is given in (18):

psolar−j(t1) =
{

λj × Cs×
[
αj(t1)

4 + β j(t1)
3 + γj(t1)

2 + δj(t1) + ε j

]}
(18)

where λj is the associated PEC efficiency factor and Cs is the installed PV capacity in jth BB.
The installed capacity is varied to see the effect of PV capacity on overall system efficiency.
For this purpose, Cs is considered 1pu (normalized form), and variable ‘x’ is taken as
scaling factor for capacity; thereby, (18) takes the form of (19) and (20).

psolar−j(t1)
′ =

{
λj × Cs × x×

[
αj(t1)

4 + β j(t1)
3 + γj(t1)

2 + δj(t1) + ε j

]}
(19)

psolar−j(t1)
′= psolar−j(t1)× x (20)

for x = 1
psolar−j(t1)

′= psolar−j(t1)

for x > 1
psolar−j(t1)

′> psolar−j(t1)

for 0 < x < 1
psolar−j(t1)

′< psolar−j(t1)

and the rest of mathematical model takes the form, as shown in (21) to (25):

pdemand−j(t1)
′ = pj(t1)− psolar−j(t1)

′ (21)
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pout−SSTa(t1)
′ =

(
m

∑
j=1

pdemand−j(t1)
′
)

(22)

pdemand−j(t1)
′ = pj(t1)− psolar−j(t1)

′ (23)

pout−SSTa(t1)
′ =

(
m

∑
j=1

pdemand−j(t1)
′
)

(24)

η DC System(t1)
′ =

(
pout(t1)

pin(t1)

)
=

(
pLoad−total(t1)

pDG(t1) + psolar−total(t1)
′

)
(25)

2.3.2. PEC Efficiency Variation

The generalized PEC curve equation in both distribution systems is presented in (26)

ηPEC−ijk(t1) = aijk

(
pijk(t1)

rPECijk

)4

+ bijk(. . .)3cijk(. . .)2 + dijk(. . .) + eijk (26)

In order to observe the effect of varying efficiency of PEC, a factor is required which
can decrease or increase the efficiency of PEC at any given time t1 from its original value.

Let that factor be a constant shift “K”, mathematically presented in (27) and (28)

ηPEC−ijk(t1)
′ = aijk

(
pijk(t1)

rPECijk

)4

+ bijk(. . .)3 + cijk(. . .)2 + dijk(. . .) + eijk + K (27)

ηPEC−ijk(t1)
′ = ηPEC−ijk(t1) + K (28)

Since the overall system efficiency is indirectly related to efficiency curve of PEC,
hence the mathematical model is maneuvered accordingly in (29) to (36).

pj(t1) =

(
n1

∑
i=1

pD−ijk(t1)

ηdd−ijk(t1)

)
+

(
n2

∑
i=1

pA−ijk(t1)

ηda−ijk(t1)

)
+

(
n2

∑
i=1

pVSD−ijk(t1)

ηvsd−ijk(t1)

)
+

(
n3

∑
i=1

pI−ijk(t1)

)
(29)

η′PEC= ηPEC + K (30)

In order to achieve variation, the K factor is added into ηdd,ηda,ηvsd, ηSST to assess the
effect of variation in the PEC efficiency. Utilizing (29) for η′PEC

pj(t1)
′ =

(
n1

∑
i=1

pD−ijk(t1)

ηdd−ijk(t1)
′

)
+

(
n2

∑
i=1

pA−ijk(t1)

ηda−ijk(t1)
′

)
+

(
n2

∑
i=1

pVSD−ijk(t1)

ηvsd−ijk(t1)
′

)
+

(
n3

∑
i=1

pI−ijk(t1)

)
(31)

pdemand−j(t1)
′ = pj(t1)

′ − psolar−j(t1) (32)

pout−SSTa(t1)
′ =

(
m

∑
j=1

pdemand−j(t1)
′
)

(33)

pin−SSTa(t1)
′ =

pout−SSTa(t1)
′

ηSSTa(t1)
′ (34)

pDG(t1)
′ =

x

∑
k=a

pin−SSTa(t1)
′ (35)

η DC System(t1)
′ =

(
pout(t1)

pin(t1)

)
=

(
pLoad−total(t1)

pDG(t1)
′ + psolar−total(t1)

)
(36)

Similar approach is developed for AC system by making appropriate changes in
Equation (27).
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3. Main Results

For the comparison of AC and DC systems, this paper focused mainly on efficiency
factors for different sets of scenarios such as weekends and weekdays for seasonal and
hourly load profiles and variations in PEC efficiencies.

3.1. Structural Visualization of Scenarios in Both Systems

Figures 4 and 5 demonstrate structural visualization of the scenarios on both systems.
The hourly load profile is extracted from [34] for both weekdays and weekends of various
months in order to achieve diversity. After normalizing the load data, the efficiency analysis
was performed for both systems using computer software MATLAB in accordance with the
mathematical equations presented in Section 2.
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3.2. Comparative Efficiency Analysis of Both Systems

Following are the results for comparative efficiency analysis with normalized data and
without any variation of other parameters such as PEC efficiency or PV capacity. The base
value of PV capacity is chosen to be 1000 W, installed on each BB. Figure 6 shows the result
of the comparative analysis for six months with 10%, 15%, and 20% standard deviation
percentages for the AC and DC systems, respectively.
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The maximum efficiency values for the AC system are 96.82%, 96.87%, and 96.8%, at a
standard deviation of 10%, 15%, and 20%, respectively. Similarly, the maximum efficiency
values for the DC system are 97.63%, 97.58%, and 97.72%, at a standard deviation of 10%,
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15%, and 20%, respectively. Hence, in the base case scenario, the DC system possesses a
minute efficiency advantage over the AC system (see Figure 7).
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3.3. Comparative Sensitivity Analysis on Both Systems

Figures 8 and 9 present the results of main XFMR and main SST efficiency variation
for the AC and DC systems, respectively, incorporating a variation of −10% to 1%. The
upper limit of 1% draws support from the fact that the main PEC’s maximum efficiency
gain for the selected PEC cannot exceed 1% at the rated load.
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The results depict the AC system efficiency varying between 81% and 96% for week-
days, whereas, for weekends, the efficiency variation is between 81% and 97%.

Similarly, the maximum system efficiency in the DC system is 98.5%, whereas the min-
imum efficiency value is 80% during the weekday scenario. The maximum and minimum
efficiency values for weekends are 98% and 80%, respectively. The results depict strong
dependence of systems efficiencies on main converters, i.e., transformer in AC case and
SST in DC case. The reason for the direct dependence of the efficiency values on main
converters lies in the fact that bulk power transfers from these converters to the rest of
the system up to the load end. The higher efficiency of these converters presents overall
lower losses and improves overall system efficiency. The effect of each of the in-house PEC
efficiency variations is shown in Appendix A.
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3.4. Discussion

This work aims to assist and inform an industry decision on whether to adopt DC
power distribution in residential buildings or not. In comparison to previous research
efforts, this work employs detailed mathematical modeling-based implementation to com-
pare equivalent AC and DC residential building distribution networks powered through
utility as well as a renewable energy source (RES). The electrical building models are com-
posed of realistic load profiles and converter efficiency curves based on market data. The
findings of this study are helpful in making a conclusion about the current position of AC
and DC distribution systems and how it may change in the future with the improvement
of technology in the future.

This research found that the baseline efficiency saving in the case of the DC distribution
system is about 2% to 3% during the period of the day. The efficiency of the DC distribution
system was found to be much better with larger solar PV capacity. In the practical world,
where the load is always unpredictable and RER generation is stochastic in nature, extreme
component condition variations are incorporated, i.e., variation of standard deviation
ranging from 5% to 20% of mean load value, solar PV capacity variation between 1000 W
to 9000 W and variation in PEC efficiencies for the sake of a fair comparison between both
systems to make the system realistic as much as possible.

In the first case scenario, the efficiency of AC–DC PEC for inheriting the DC load
in an AC system is varied from a 10% decrement to a 5% increment in a step of 5% to
evaluate any possible effect on the whole AC system efficiency for 10%, 15% and 20%
standard deviation of load, respectively for both weekdays and weekends. This is to
account for future PEC technologies growth and higher penetration of inherited DC loads.
The results in Figure A1A,B show an insignificant 0.8% decrease in overall system efficiency
for weekdays, and for weekends, it is less than 0.5%. This is due to the reason that at each
individual load, the AC–DC converter is already operating close to its nominal ratings, and,
in comparison to the main XFMR, a very small current pass through it. Hence system loss
is much smaller, and system efficiency is not notably affected.

In the second scenario, the efficiency of VSD in the AC system varied from 10% to
1% increments in steps of 5%. The mere 1% increment increase is due to the fact that the
currently available VSD converter was already reaching efficiencies close to 100%. Therefore,
a further increment was not needed here. Similar to the first case, the standard deviation of
the load varied from 10% to 20% for both weekdays and weekends. Figure A2A,B shows
a significant effect of VSD efficiency variation on AC system efficiency, in some months
reaching as high as 13% for both weekdays and weekends. This was to be expected as most
of the VSD loads are high-powered loads that draw extensive amounts of current. With as
high as 20% load variation, this effect becomes more evident as a higher number of currents
causes greater heat losses.

In the third case, PV capacity size is varied to evaluate the impact of higher onsite RER
power injection into the AC system in the range of 1 kW to 9 kW in four equal intervals
for 10%, 15%, and 20% standard deviation of load, respectively for both weekdays and
weekends. It can be observed from Figure A3A,B that increasing the PV capacity has a
notable effect on AC system efficiency as more power is readily available onsite. Hence less
power is required from the utility, and ultimately less power flows through the main XFMR,
and fewer transmission losses are incurred. Thus, the efficiency of the system increases
with PV capacity. It can also be perceived from the weekend results that system efficiency
is much lower at the start of the day as compared to weekdays. This can be attributed to
the fact that load demand is reduced, and the main XFMR operates under nominal ratings
and shows low efficiency at reduced loading.

Similar to AC systems, all case scenarios are performed for DC–DC, DC–AC, VFD PEC,
and PV capacity for the DC system. As expected in the case of the DC–DC converter, system
efficiency remains insensitive to the DC–DC converter efficiency variations because of the
same reason as AC–DC for very low DC load. In the case of DC–AC efficiency variation,
DC system efficiency is noticeably affected by it, ranging from 4% to 6% on weekdays and
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weekends, respectively, as shown in Figure A5A,B. For VFD loads, variation in efficiencies
of VFD converters had a significant effect on DC system efficiency as VFD PEC is used
for high power loads. Since VFD PEC is a two-stage converter in which first DC voltage
is shifted to the required voltage level and then transformed into desired AC voltage for
VFD loads. Thus, this two-stage conversion leads to higher efficiency losses. However,
VFD PEC in the DC system is more efficient in comparison to VFD converters in the AC
system because of the AC–DC rectifiers that are used in the first stage, which results in high
power loss as compared to the DC–DC stage. The efficiency variation in VFD converters for
the DC system varied between 7% and 8% in the worst case for weekdays and weekends,
respectively, as shown in Figure A6A,B. In the last case for variations in PV capacity size, it
had very little effect, roughly less than 3% variation in DC system efficiency in comparison
to AC system, as shown in Figure A7A,B.

4. Conclusions and Future Recommendations

It can be concluded that the efficiency of the main PEC plays a major role in the
superiority decision of one system over the other. In the authors’ opinion, since the
transformer design field is well saturated already and its efficiency improvement is at its
pinnacle; hence, further improvement in its efficiency may not occur soon in the future
with the current technology. However, there is still room for improvement in the SST
converters as regards efficiency, resulting in further enhancement in DC system efficiency.
The current effort establishes a baseline for efficiency dominancy with DC; other factors
which affect the system’s efficiency must be examined in order to reach a concrete decision.
After performing the sensitivity analysis, the results of both AC and DC systems for all case
scenarios are compared. It is evident that maximum system efficiency variation occurs with
variation in main converter efficiency, and minimum system efficiency variation occurs
with variation in solar PV capacity. The effect of variation in load end PECs is intermediate
between that of main converters and solar PV capacity. The baseline efficiency advantage
of 2% to 3% during the day exists for the case of the DC distribution system as compared to
the AC distribution system.

For future work, the analyses of this work might be performed for different voltage
levels for BB bus and with the respective voltage level PECs. Our analysis was based on
230 V AC. Ultimately, a comprehensive techno-economic analysis is required to thoroughly
measure the savings of DC distribution and the decision that: are the savings obtained
enough to justify the replacement of the AC system.

In summarizing, the current effort has attempted to highlight the shortcomings in
the area of DC distribution efficiency analyses and has also attempted to partly fill in this
gap by providing a variety of simulation studies comprising many comparative (AC vs.
DC) sensitivity analyses. Nevertheless, limitations exist in this work, such as expanding
averaged data to instantaneous data—a better option is to use actual instantaneous data of
each individual load in a locality. Similarly, using a specific set of ratings of different loads
can also is a limitation—a real-life-based wider set can yield closer to actual results. Future
efforts in this direction can take guidance from the approach of the current work and try to
overcome the shortcomings of this work as well as expand the scenarios presented in the
current study.
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Nomenclature

Power Electronic Converter PEC
High Voltage Direct Current HVDC
Brushless Direct Current BLDC
Variable Speed Drive VSD
Electric Power Research Institute EPRI
Building Block BB
Transformer XFMR
Solid State Transformer SST
time t
Input Power Pi
AC Load A
DC Load D
Independent Load I
Efficiency η

Standard Deviation SD
Loss Factor λ

DC to DC dd
AC to DC ad
DC to AC da
Reactive Power q
Active Power p
Load l
Inverter loss-installed at solar SA
Coefficients of curve fitting tool equation αj, β j, γj, δj, ε j
Output out
Input in

Appendix A. Sensitivity Analysis Curves of AC and DC Distribution Systems

Figures A1–A3 present the sensitivity analysis of AC system with different param-
eters such as PV capacity variation, individual PECs variations attach to each load cate-
gory etc., while Figures A4–A7 present the sensitivity analysis of DC system.
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