
Citation: Singh, P.; Kaur, R.;

Rashid, J.; Juneja, S.; Dhiman, G.;

Kim, J.; Ouaissa, M. A Fog-Cluster

Based Load-Balancing Technique.

Sustainability 2022, 14, 7961. https://

doi.org/10.3390/su14137961

Academic Editor: Petra Poulová

Received: 1 April 2022

Accepted: 20 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Fog-Cluster Based Load-Balancing Technique
Prabhdeep Singh 1,2 , Rajbir Kaur 3, Junaid Rashid 4,* , Sapna Juneja 5 , Gaurav Dhiman 1,6,7 ,
Jungeun Kim 4,8,* and Mariya Ouaissa 9

1 Department of Computer Science and Engineering, Graphic Era Deemed to be University,
Dehradun 248002, India; ssingh.prabhdeep@gmail.com (P.S.); gdhiman0001@gmail.com (G.D.)

2 Department of Computer Science and Engineering, Punjabi University, Patiala 147001, India
3 Department of Electronics & Communication Engineering, Punjabi University, Patiala 147001, India;

rajbir277@yahoo.in
4 Department of Computer Science and Engineering, Kongju National University, Cheonan 31080, Korea
5 Department of Computer Science, KIET Group of Institutions, Delhi NCR, Ghaziabad 201206, India;

sapnajuneja1983@gmail.com
6 Department of Computer Science, Government Bikram College of Commerce, Patiala 147001, India
7 University Centre for Research and Development, Department of Computer Science and Engineering,

Chandigarh University, Mohali 140413, India
8 Department of Software, Kongju National University, Cheonan 31080, Korea
9 Department of Computer Science, Moulay Ismail University, Marjane 2, BP: 298, Meknes 50050, Morocco;

ouaissa.maria04@gmail.com
* Correspondence: junaidrashid062@gmail.com (J.R.); jekim@kongju.ac.kr (J.K.)

Abstract: The Internet of Things has recently been a popular topic of study for developing smart
homes and smart cities. Most IoT applications are very sensitive to delays, and IoT sensors provide a
constant stream of data. The cloud-based IoT services that were first employed suffer from increased
latency and inefficient resource use. Fog computing is used to address these issues by moving cloud
services closer to the edge in a small-scale, dispersed fashion. Fog computing is quickly gaining
popularity as an effective paradigm for providing customers with real-time processing, platforms,
and software services. Real-time applications may be supported at a reduced operating cost using an
integrated fog-cloud environment that minimizes resources and reduces delays. Load balancing is a
critical problem in fog computing because it ensures that the dynamic load is distributed evenly across
all fog nodes, avoiding the situation where some nodes are overloaded while others are underloaded.
Numerous algorithms have been proposed to accomplish this goal. In this paper, a framework was
proposed that contains three subsystems named user subsystem, cloud subsystem, and fog subsystem.
The goal of the proposed framework is to decrease bandwidth costs while providing load balancing
at the same time. To optimize the use of all the resources in the fog sub-system, a Fog-Cluster-Based
Load-Balancing approach along with a refresh period was proposed. The simulation results show that
“Fog-Cluster-Based Load Balancing” decreases energy consumption, the number of Virtual Machines
(VMs) migrations, and the number of shutdown hosts compared with existing algorithms for the
proposed framework.

Keywords: load balancing; cloud computing; fog computing

1. Introduction

Cloud computing relies on the internet to run huge applications and data servers for
customers or end-users as a new technology. It refers to the control of workloads remotely
in a data center through the Internet. On-site data centers are no longer required since cloud
computing removes the need for hardware, software, and controls and manages them. The
cloud provider’s network allows for data to be replicated across many spare locations. In
a catastrophe, it enables data backup, disaster recovery, and business continuity. Cloud
computing services are provided to customers, and they are charged depending on the

Sustainability 2022, 14, 7961. https://doi.org/10.3390/su14137961 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14137961
https://doi.org/10.3390/su14137961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7632-2271
https://orcid.org/0000-0002-1485-0757
https://orcid.org/0000-0003-4601-7679
https://orcid.org/0000-0002-6343-5197
https://doi.org/10.3390/su14137961
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14137961?type=check_update&version=1

Sustainability 2022, 14, 7961 2 of 14

amount of time spent using these services. Some programs are unable to function effectively
on the cloud because of an inherent difficulty. Problems with bandwidth develop when
data are not being transported to the cloud quickly enough. Due to the high volume of
data that must be transmitted back to the edge nodes after processing in the cloud, delays
cannot be allowed in critical scenarios such as smart healthcare. As a result, fog computing
was developed as a solution to this problem.

A new identity for cloud computing, “fog computing”, or “fogging”, was coined
by CISCO. The Internet of Things (IoT) network paradigm uses it to make it easier for
scattered devices to send data wirelessly. Computing resources and application services
are brought to the edge where data are created through fog computing, making them more
accessible to end-users. Fog computing significantly reduces the quantity of data that must
be transferred to the cloud for processing and analysis. As a result, quality of service and
security are improved because of the reduced traffic on the cloud (i.e., the primary server).

Cloud data centers and end-users are in the midst of the fog computing virtual
platform, which provides networking, processing, and storage capabilities near where data
are created. These services serve as a bridge between cloud computing and fog computing.
Only summarized information will be sent to the cloud, and bandwidth will be reduced to
a considerable degree since most of the information is being processed locally in a foglet.
As a result, packet loss and latency will be reduced. When it comes to performance, cloud
computing is not replaced with fog computing; rather, both must co-exist to complement
one other. Customers make requests to the fog layer or middleware for communication
and storage reasons, which are processed on the fog server before being communicated
back to customers. Requests requiring more computational power will be sent to the cloud.

To load the status of every fog node is a dynamic phenomenon, and therefore, the
state of every fog node needs to be refreshed periodically. Then it needs to compute an
optimal refresh period to optimize the load-balancing approach. Therefore, there is a need
for a strategy to obtain the Optimal Refresh Period dynamically from time to time.

The fog nodes are very small and smart devices. They have very limited storage
capacity. So, we need to make sure that these nodes are not over burdened with data. Data
should be short-lived on these nodes and should be flushed/removed at a regular interval.
However, a key concern in a distributed system is that if you remove data from one node,
then there might be data inconsistency and inaccuracy. Therefore, an algorithm is needed
that can effectively flush the data from fog nodes while making sure that this data flushing
does not cause any data inconsistency.

The primary contribution of this paper is to provide the following:

• Firstly, an architecture of cloud-based fog-paradigm for real-time (delay-sensitive)
applications was proposed. In this proposed architecture, a fog layer is designed to
design a fog layer in such a manner that it can take advantage of the fog concept as
well as reduce the delay for mission-critical applications.

• Secondly, a load-balancing algorithm for effective distribution of the task load to fog
nodes placed in fog cluster. This algorithm covers the solution to the problem of
determining Optimal Refresh Period.

• Finally, the data flushing algorithm effectively flushes the data from fog nodes.

Section 2 discusses the related work and the proposed framework explained in
Section 3. The experimental results and the conclusion are explained in Sections 4 and 5.

2. Related Work

In ref. [1], a hybrid routing approach and a multiple mesh ring (MMR) topology archi-
tecture. As part of the load-balancing network design process, three stages are completed:
leader selection, role determination, and scattered building. To begin, each master seeks
out his nearby slaves to choose a coordinator for the network. Then calculate the number
of scattered links needed for each master and sends the information to the coordinator.
Finally, to build the sparse balanced link MMR, each chose master links to its related nodes,
including slaves, intrabridges, and internal bridges. When an API request is received,

Sustainability 2022, 14, 7961 3 of 14

ref. [2] proposes task chain-based load balancing for microservices, which examines the
system resource utilization of each service instance and selects target services for all tasks in
this call of APIs. Data transfers between physical machines are reduced with the help of the
proposed microservice, which speeds up API responses. The author concludes that Genetic
Algorithm (GA) outperforms Particle Swarm Optimization (PSO), Simulated Annealing
(SA), and Genetic Algorithm (GA) when task chain-based load balancing for microser-
vices is adopted. Using TCLBM, the author performed service instance load balancing
and minimized API response times by up to 10%. A new hybrid power amplifier load
modulation (LM) design that employs three amplifiers coupled in phase via a quadrature
couplerDoherty PA (DPA) and load-modulated balanced amplifier (LMBA) modes may be
used at various power levels in conjunction with the well-aligned turning-on sequence [3].
High-linearity design compatibility is further enhanced by this unique hybrid LM mode,
which widens the dynamic power range for efficiency improvement. Two stages of genetics
are used to balance a load of virtual machine hosts (VMHs) in cloud computing, as this
article shows [4]. Previous solutions often assume that this is a problem of optimizing
work assignment and simply take into account current loads of VMHs; however, these
methods may only acquire limited efficacy in actual systems without addressing the loads
of VMHs after balancing. Genetic-based approaches are combined and provided. Virtual
machine (VM) performance models are first generated from the parameters used to create
them and their accompanying performance measurements in a cloud computing envi-
ronment. Regression models based on gene expression programming (GEP) characterize
virtual machine performance and are used to estimate the load of VMHs after a shift in
workload. To further aid in moving and distributing VMs, GEP estimates the VMH load
and uses this information to determine which VMs should be assigned to each of the
available VMAs. An open-source dynamic load-balancing library is introduced in this
study, and it incorporates effective literature-based scheduling techniques [5]. LB4OMP is
a research framework that encourages and supports research programming for the benefit
of multi-threaded applications.

Ref. [6] utilized the MPI library to develop an automated load-balancing solution for
the discontinuous Galerkin time-domain (DGTD). There is a depicts the connection between
computational burden (CPU time) and the number of DoFs in the hex and tetrahedral
meshes, respectively, from numerical studies. To reduce CPU time discrepancies across
subdomains, an automated iteration load-balancing approach was then used to optimize
the placements of the interfaces using the diagram created in the first stage. Using a
greedy method, a one-click solution is provided when the original model is divided,
which is the only external action required. Ref. [7] presents an active charge modulation
power amplifier (PA) design known as Hybrid Asymmetric Charge Modulated Balanced
Amplifier (HALMA) (H-ALMBA). The LMBA Control Amplifier (CA) can be used as a
carrier amplifier, while the Balanced Amplifier (BA) can be used as a peaking amplifier with
different threshold settings for two sub-amplifiers BA1 and BA2. With the correct control
of amplitude and phase and the cooperative alignment of the firing sequence of BA1 and
BA2, the entire H-ALMBA can achieve better efficiency over a longer power interruption
range, comparable to a Doherty PA.

Ref. [8] presented a model in which distributed systems store data in several locations
to share the burden. An evaluation of the load-balancing performance of storage systems
in which d distinct nodes store the same amount of items for each object is performed.
The proposed model uses a fixed cumulative value to sample evenly at random from
all of the load vectors for the objects. As a result, increasing the number of nodes in
an n-node system can exponentially improve load balancing, as long as the number of
nodes is o(log(n)). We show that using XOR objects of r instead of object copies improves
load balancing in the same way as d. In such redundant systems, r multiplicatively
reduces storage overhead. However, the material from nodes r must be unloaded to
obtain an object. The load balance also increases by r, but additively. Ref. [9] proposed
a dynamic load-balancing solution evaluated using the computational paradigm related

Sustainability 2022, 14, 7961 4 of 14

to the spatially related Cellular Automata. The major contribution of this research is
the development of simple closed-form equations that enable the calculation of the best
workload assignment dynamically, intending to assure a perfectly balanced workload
distribution throughout the parallel execution. The MPI technology is used to develop
an algorithm for balancing the execution of cellular automata based on these expressions.
A concentrate on the use of multi-server load-balancing solutions for request migration.
A disutility function is defined for each server and its response time is lowered as much
as possible [10]. Server availability is also concentrated, which directly influences the
server’s processing capacity and, consequently, its usefulness. The author utilized the
concept of variational inequality theory (VI) to tackle the issue and argue that the defined
game has a set of Nash equilibrium solution set. An iterative proximal algorithm (IPA) is
presented to calculate a Nash equilibrium solution. Ref. [11] proposed a load-balancing
routing method for wireless mesh networks to balance the network’s traffic. Load-balancing
routers that meet QoT restrictions are selected using the principles of software-defined
networking (SDN). Ref. [12] proposed a technique that utilized the concept of multiple
metrics, which were used to monitor controllers’ load, and an ideal target was selected
based on its available resources. This resulted in better load-balancing performance. HESM
chooses switches based on minimizing migration expenses and lowering extra migration
expenditures. Additional advantages include the ability to migrate numerous controllers
concurrently, which enhances the overall efficiency of switch migration. According to
simulation data, HESM greatly outperforms current systems and lowers the migration cost
when it comes to controller load-balancing.

Ref. [13] analyzed radio efficiency power efficiency and average network power
savings in various network configurations to address the core challenges of time-spatial
traffic intensity dynamics and renewable energy (RE). A network utility, such as the use
of green energy and user association based on a group coordination strategy, is fairly
maintained as a result of this effort. During periods of low arrivals, lightly loaded Base
Stations (BS) can be turned off to further save energy. The proposed CoMP-based load-
balancing algorithm increases energy efficiency compared with traditional location- and
traffic-centric strategies by efficiently controlling the allocation of resources to new users.
Ref. [14] proposed an inter-domain communication system (DOLPHIN) which is a tailored
solution for various SDN controllers. It expands the programmability of wireless devices,
such as the Internet of Things or vehicle networks, beyond the virtual switch components
in intra and interdomain communication. According to extensive simulation findings, the
traffic load is evenly dispersed over several connections linking distinct domains. Load
balancing may considerably increase the flow completion times of various kinds of network
traffic in data centers and 5G vehicle networks.

In ref. [15], security measures for the combined load balance and computation offload-
ing (CO) approach were proposed for MEC systems. Algorithms to distribute MDUs across
network switches are presented first. To protect data during transmission, an Advanced
Encryption Standard (AES) cryptographic approach based on electrocardiogram (ECG)
signal-based encryption and the decryption key is also provided as a security layer. It is
also structured as an integrated balance, CO, and security model to save time and resources.
Ref. [16] presented a Power-efficient and Load-balanced Online Flow Route architecture
based on software-defined networking to accomplish the necessary tradeoff between power
saving and load balancing. An optimization problem is defined that considers both power
conservation and load balancing. A flow scheduling method is proposed to solve the
NP-hard issue after it is NP-hard. A route updating technique is also proposed to allow
flow scheduling induced path updates. Moreover, the experimental findings show that the
suggested method is superior to other algorithms when it comes to power conservation
and load balancing.

According to [17], and the work scheduling may be improved by using a combination
of chimpanzee optimization (ChOA), marine predators (MPA), and the disruption operator.
The key limitations of the newly created algorithm, known as CHMPAD, are its inability

Sustainability 2022, 14, 7961 5 of 14

to resist being sucked into local optima and to increase the original ChOA’s exploitation
capacity. CHMPAD’s efficiency and applicability are shown by conducting experiments
on both synthetic and actual workloads from the Parallel Workload Archive. To illustrate
how the cost of computing resources can be reduced [18]. The analytical model uses a
network of queues to determine the bare minimum amount of computing resources needed
to ensure that service-level agreement is met. Ref. [19] analyzed the performance of Fog
computing and the analytical model that the author developed. Discrete event simulator
simulations are used to evaluate the analytical model. By analyzing network tasks and
transferring them to physical machines over the network, ref. [20] utilize a profit function
phase to enhance the quality of service (QoS). In ref. [21] the simulation of discrete events
was employed to evaluate and cross-validate our analytical model. According to our
analytical models, this model can reliably and effectively anticipate how many computing
resources are needed for health data services to meet the response time requirements under
varied workload situations. To avoid data starvation in a scalable fog architecture, ref. [22]
suggested an effective scheduling method based on complicated event processing. The cost
resources reduced and performance requirements are still being met. The First, the author
provided an arrival–service model for FoT data traffic based on multilayer waiting for
lines with finite-size intervals. The proposed policy was compared to first-in-first-out and
multi-priority-discipline queue strategies with the help of a complete study of wait times
and gaps in wait times [23–25]. Machine learning and Clustering based various methods
are used for the text analysis [26], internet of things [27–33], and disease detection [34].
Under any given IoT workload, the mathematical model estimates the minimum number
of fog nodes required to meet QoS requirements. Formulas for performance indicators
such as response time, system loss rate, and average number of messages requested from
the model.

3. Proposed Framework

The architectural view of the proposed framework is shown in Figure 1, which contains
three subsystems: (1) User subsystem and (2) Fog subsystem and (3) Cloud subsystem. The
user subsystem is responsible for collecting user data.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 14

Figure 1. Proposed framework.

3.1. User Subsystem
The user subsystem is a data generator system consisting of sensor nodes/IoT de-

vices. The critical area of interest is to provide remote monitoring and data collection. The
sensors are made as small and energy efficient as possible; they do not have the computing
power to preprocess any data, and so send all collected data to the fog subsystem [35–37].

The fog subsystem contains fog cluster and fog storage that have the processing ca-
pability and storage capability, respectively, to organize the data generated with the var-
ious devices. It is responsible for collecting data from the user subsystem [38,39]. In this
subsystem, every fog cluster contains multiple clusters where each cluster can have a cer-
tain number of hosts and associated VMs.

The fog cluster has a load-balancer program [40]; the load-balancer program takes
care of scheduling jobs while keeping the load in mind. However, the clusters’ state needs
to be refreshed from time to time. The problem here is to determine a cluster-based load-
balancing technique with an optimal refresh period [41–43]. Evaluation of the refresh pe-
riod to have a refresh threshold is very important for optimizing load balancing using the
fog clustering approach.

The controller in the Fog cluster-based approach needs to have such a mechanism for
better performance. Since Quality of Service (QoS) is very important in fog computing,
load balancing plays a crucial role in it [32–34].

Each Fog cluster is associated with a load balancer to schedule given jobs to different
VMs. A load status, i.e., BUSY, WORKING, and FREE, is associated with each cluster. This
will have an intuitive meaning, as BUSY reflects the fact that the VMs in the cluster is busy
and they are working with the fullest capacity possible. In other words, the cluster is in-
capable of accommodating more jobs unless the jobs being processed are completed in
this state. WORKING indicates the state of the cluster, which reflects that the VMs associ-
ated with the cluster are not free, but the load is normal. In other words, the cluster can
accommodate more jobs until the state turns out to be BUSY. Whereas, FREE indicates
that the cluster is idle [43–45] and it has many VMs that are presently not processing any
jobs. All the clusters are controlled by a controller. The controller can take jobs and sched-
ule them to various clusters based on the cluster’s state. There might be several clusters
made in the fog cluster. Each cluster can have a different number of VMs and a load

Figure 1. Proposed framework.

Sustainability 2022, 14, 7961 6 of 14

The fog subsystem processes the data, and finally, it is stored in cloud repositories
placed in the cloud subsystem.

3.1. User Subsystem

The user subsystem is a data generator system consisting of sensor nodes/IoT devices.
The critical area of interest is to provide remote monitoring and data collection. The sensors
are made as small and energy efficient as possible; they do not have the computing power
to preprocess any data, and so send all collected data to the fog subsystem [35–37].

The fog subsystem contains fog cluster and fog storage that have the processing
capability and storage capability, respectively, to organize the data generated with the
various devices. It is responsible for collecting data from the user subsystem [38,39]. In
this subsystem, every fog cluster contains multiple clusters where each cluster can have a
certain number of hosts and associated VMs.

The fog cluster has a load-balancer program [40]; the load-balancer program takes
care of scheduling jobs while keeping the load in mind. However, the clusters’ state needs
to be refreshed from time to time. The problem here is to determine a cluster-based load-
balancing technique with an optimal refresh period [41–43]. Evaluation of the refresh
period to have a refresh threshold is very important for optimizing load balancing using
the fog clustering approach.

The controller in the Fog cluster-based approach needs to have such a mechanism for
better performance. Since Quality of Service (QoS) is very important in fog computing,
load balancing plays a crucial role in it [32–34].

Each Fog cluster is associated with a load balancer to schedule given jobs to different
VMs. A load status, i.e., BUSY, WORKING, and FREE, is associated with each cluster. This
will have an intuitive meaning, as BUSY reflects the fact that the VMs in the cluster is
busy and they are working with the fullest capacity possible. In other words, the cluster
is incapable of accommodating more jobs unless the jobs being processed are completed
in this state. WORKING indicates the state of the cluster, which reflects that the VMs
associated with the cluster are not free, but the load is normal. In other words, the cluster
can accommodate more jobs until the state turns out to be BUSY. Whereas, FREE indicates
that the cluster is idle [43–45] and it has many VMs that are presently not processing
any jobs. All the clusters are controlled by a controller. The controller can take jobs and
schedule them to various clusters based on the cluster’s state. There might be several
clusters made in the fog cluster. Each cluster can have a different number of VMs and a
load balancer for each cluster. Each cluster in turn is linked to a controller which takes
care of the proposed Optimal Refresh Period and load-balancing algorithms. The dynamic
situations that prevail at runtime are considered to understand the number of clusters and
the status of each cluster to make load-balancing decisions. Two algorithms are proposed:
fog-cluster-based load-balancer algorithm and the optimal refresh period computation
algorithm, respectively [46–48].

3.1.1. Overall Strategy of Fog Cluster-Based Load Balancing (FCBLB)

Jobs arrive at the main controller. Since jobs come in large quantities, an iterative
approach is applied to each job that arrives at the controller. Fog clusters are chosen as
they are available [49], and then any one of the clusters is considered for verification. If the
cluster is found with a state BUSY/WORKING, that cluster is not considered for allocation
of jobs. It is skipped for the time being, and another cluster is considered. If the cluster is
found to be FREE, it is considered to be the cluster to which the jobs are to be sent. After
reaching a cluster, an associated load-balancer program will make further decisions. The
controller also makes intelligent decisions on the REFRESH period of clusters to reflect the
true state that improves load-balancing efficiency [50].

Sustainability 2022, 14, 7961 7 of 14

3.1.2. Fog Cluster-Based Load-Balancing (FCBLB) Algorithm

FCBLB Algorithm 1 is responsible for balancing the load when the jobs arrive at the
main controller. The algorithm should be aware of the number of clusters and the number
of jobs that arrive. It is supposed to take stock of the states of different Fog clusters. The
states in turn reveal the VMs that are associated with hosts of clusters and their relative load
with jobs assigned. The algorithm and decisions verify each cluster are made to send jobs
to a specific cluster based on the load of the cluster then. The allocation of jobs to clusters
is not a static or trivial thing, as it is very dynamic due to the arrival of jobs in fog from
various users across the globe. FCBLB provides the necessary steps to deal with the load
that arrives at the controller in the fog clustering architecture. These algorithm steps are to
be executed iteratively for jobs arriving at the controller. Provided the number of clusters
and the number of jobs that arrive at the controller, the algorithm has a search mechanism to
find out candidate clusters and then make job allocation decisions at the cluster level based
on the state of the given cluster. The variable cluster State holds one of the three states as
BUSY, WORKING, and FREE and is not static. It does mean that the state of a cluster may
change from time to time. Thus, it is essential to have a triggering state change. If there is
no guidance for triggering the state change, it will affect load-balancing performance. The
load-balancing algorithm will lead to mediocre performance if the states are not refreshed
to reflect the new load dynamics. When the refresh period is less, it may have unnecessary
overhead on the system. If the refresh period is greater, it may lead to inefficiency in
load balancing. Therefore, the problem of the Optimal Refresh Period is considered. The
following subsection deals with the algorithm required for the determination of the optimal
refresh period.

3.1.3. Determination of Refresh Period

This section sheds light onto optimizing load balancing by determining the Optimal
Refresh Period. When the Optimal Refresh Period is determined, the controller will have
the states correctly reflected besides getting rid of overhead on the system. When the time
interval is large, certain important aspects may surface and go unnoticed, besides being
incapable of reflecting true load dynamics. Therefore, Optimal Refresh Period computation
is a dynamic phenomenon that is provided in the Optimal Refresh Period Computation
(ORP) Algorithm 2.

The ORP has important considerations for the refresh period. It is a dynamically
adjusted value based on the computed load factor. The refresh period threshold Tr is
determined at run-time to update the state of clusters. This algorithm is executed by the
controller, where it must make use of states of clusters from time to time for load balancing.
ORP reduces the burden on the system while leveraging efficiency in load balancing.

Algorithm 1: Fog cluster Based Load Balancing (FCBLB).

Result: Balanced load leading to efficiency
Input: Jobs, clusters
Output: Balanced load leading to efficiency

1. if PS=FREE || PS=WORKING then
2. Allocate j to FP
3. job j processing
4. else
5. Trace job cluster
6. end

Algorithm 2 takes D, α, γ, init method, numPre$ as inputs and generates Tr as output.
Both α and γ help to minimize the error rate.

Sustainability 2022, 14, 7961 8 of 14

Algorithm 2: Calculation of the Optimal Refresh Period.

Result: Optimal Refresh Period Computation
Output: Tr

1. Create vector original based on length of dataset plus number of predictions
2. Create vector smoothed based on the length of dataset
3. Create vector b based on the length of dataset
4. I=1
5. J=1
6. Sum=0
7. original[0]=smoothed[0]+D[0]
8. if (!Avail initMethods=0) then
9. b[0]=D[1]-D[0]
10. if !initmethod = landD.length > 4) then
11. b[0]=D[3]-D[0]/3
12. else
13. b[0]=D[D.length]-D[0]/D]D.length
14. end
15. end
16. for Each d in D do
17. Calculate smoothed[i]
18. Calculate b[i]
19. Calculate original[i+l]
20. i=i+1
21. end
22. for each prediction in numPre do
23. Calculate original[j]
24. j=j+1
25. sum=sum+original[j]
26. end

Computations of smoothed[i], b[i], and original[i+1] are made as follows.

i← 10
if i > 6 then
i← i − 1
else
if i < 3 then
i← i + 2
end if
end if

Our proposed fog model is designed to make retrieving data faster and lower the
delay for time-sensitive applications. The fog is intended to store only recent data, not
historical data. The threshold value has been set by the proposed algorithm. If the amount
of data on the fog nodes goes above this threshold value, the older data would be remotely
flushed from the fog nodes by the cloud, given the data have reached the cloud. Data at the
fog nodes are short-lived as there is a physical limitation of data storage. So, data need to
be flushed from the fog nodes regularly. In our fog model, the cloud monitors and controls
this data flushing operation as a supreme authority in the architecture.

3.2. Cloud Sub-System

In this subsystem, data received from the fog sub-system are processed as well as
stored inefficiently. Various cloud repositories are placed for data storage with their unique
ID, whereas high-end cloud servers are responsible for the processing. The cloud repository
is capable enough of storing long-term storage. The cloud repository is designed with
proper authentication and authorization such that no one can access the user’s personal
information except the user himself/herself. In our proposed model, the cloud maintains

Sustainability 2022, 14, 7961 9 of 14

two types of storage, Temporary and Permanent. These two storages are internally syn-
chronized. Once a file that comes from any of the lower nodes in the hierarchy pops
up in the Temporary storage, it is copied to Permanent storage. Temporary storage is
synchronized with the fog nodes as well. So, the data from the fog nodes directly come to
the temporary storage.

4. Experiment Setup & Results

iFogSim was used to demonstrate the efficiency of load balancing with the fog clus-
tering approach with the determination of the Optimal Refresh Period. iFogSim has the
capability to support fog system-level components and model behaviors such as load
balancing, job scheduling, and so on. The components it accommodates include data cen-
ters, hosts, VMs, various baseline algorithms, and resource-provisioning policies. iFogSim
has an essential set of classes written in Java programming language. The former is for
balancing load, while the latter is meant for determining of Optimal Refresh Period to
have effective load balancing. The application has the provision to have dynamically taken
some clusters and jobs at run-time to have different sets of experiments. Figure 2 shows the
performance comparison of execution time. The baseline approach provided by iFogSim to
balance the load was compared with that of the proposed method. Optimal load-balancing
decisions were made based on the runtime experience in terms of the number of clusters
available and the number of jobs that arrive at the controller. Load balancing at the cluster
level was handled by the local load balancer that considers VMs and their capacities to
balance the load. The main observations here were the controller functionalities concerning
the states associated with clusters. There is evidence of making decisions to send jobs to
various clusters. The way tasks are assigned to clusters was based on the FCBLB algo-
rithm, while the determination of the optimal refresh period to increase efficiency in load
balancing was handled by the ORP algorithm.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 14

When both the algorithms are associated by the controller and executed from time to
time, the results revealed the performance enhancement of the proposed methodology
when compared with that of the baseline method provided by iFogSim by default. The
job allocation patterns can be traced to know the effectiveness of the proposed approach
based on cloud clusters for load balancing. The first two clusters were overloaded, then
the controller decided to use the third cluster. When all three clusters were overloaded,
the fourth cluster was used for further job allocation. The third cluster was almost over-
loaded. As the simulation continued, the first and second clusters became normal once
the allocated jobs were completed. In such cases, the controller decisions changed dynam-
ically at run-time for effective balancing of load.

The simulation study carried out with the proposed algorithms using iFogSim re-
vealed that the fog clustering-based approach for load balancing is effective due to the
benefits of clusters, the load-balancing algorithm FCBLB, and the optimal refresh period
algorithm ORP. The algorithms resulted in an improvement of job execution and CPU
utilization. Figure 3 shows the performance comparison of CPU cycles. When the number
of VMs changed, the execution time of jobs and the utilization of CPU cycles changed. The
observations recorded with varying numbers of VMs shown on the horizontal axis. In the
vertical axis, the execution time is presented. The number of VMs considered was 25 to
200 increasing by 25. There were two trends found in the results. The first trend is that for
all VMs, the proposed approach’s execution time was lower, while the existing approach
was greater. The second trend is that when the number of VMs was greater, the execution
time was decreased. The CPU cycles used are presented for the proposed and baseline
approaches with varying numbers of VMs used in experiments.

The usage of VMs with varying numbers is presented on a horizontal axis, while the
vertical axis shows the percentage of CPU usage. Experiments were carried out with 25 to
200 VM increasing by 25. The results revealed that the number of VMs has an impact on
the usage of CPU. When the number of VMs increased, the percentage of CPU usage also
increased linearly. The proposed load-balancing approach outperformed the baseline
load-balancing approach in terms of using less CPU usage. The observations showed the
efficiency of the proposed methodology. Figures 4 and 5 demonstrate the results of make
span and throughput, which are better for the proposed approach. Figure 6 shows that
the proposed approach takes less energy consumption compared with the traditional ap-
proach. The key consideration of load balancing based on cluster states and refreshing the
states by determining the optimal refresh period made a significant difference in the en-
hancement of load-balancing performance.

Figure 2. Performance comparison in terms of execution time.

Figure 2. Performance comparison in terms of execution time.

When both the algorithms are associated by the controller and executed from time
to time, the results revealed the performance enhancement of the proposed methodology
when compared with that of the baseline method provided by iFogSim by default. The
job allocation patterns can be traced to know the effectiveness of the proposed approach
based on cloud clusters for load balancing. The first two clusters were overloaded, then the
controller decided to use the third cluster. When all three clusters were overloaded, the
fourth cluster was used for further job allocation. The third cluster was almost overloaded.
As the simulation continued, the first and second clusters became normal once the allocated
jobs were completed. In such cases, the controller decisions changed dynamically at
run-time for effective balancing of load.

Sustainability 2022, 14, 7961 10 of 14

The simulation study carried out with the proposed algorithms using iFogSim revealed
that the fog clustering-based approach for load balancing is effective due to the benefits of
clusters, the load-balancing algorithm FCBLB, and the optimal refresh period algorithm
ORP. The algorithms resulted in an improvement of job execution and CPU utilization.
Figure 3 shows the performance comparison of CPU cycles. When the number of VMs
changed, the execution time of jobs and the utilization of CPU cycles changed. The
observations recorded with varying numbers of VMs shown on the horizontal axis. In the
vertical axis, the execution time is presented. The number of VMs considered was 25 to
200 increasing by 25. There were two trends found in the results. The first trend is that for
all VMs, the proposed approach’s execution time was lower, while the existing approach
was greater. The second trend is that when the number of VMs was greater, the execution
time was decreased. The CPU cycles used are presented for the proposed and baseline
approaches with varying numbers of VMs used in experiments.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 14

Figure 3. Performance comparison in terms of CPU cycles.

Figure 4. Make span comparison using workload.

Figure 3. Performance comparison in terms of CPU cycles.

The usage of VMs with varying numbers is presented on a horizontal axis, while
the vertical axis shows the percentage of CPU usage. Experiments were carried out with
25 to 200 VM increasing by 25. The results revealed that the number of VMs has an impact
on the usage of CPU. When the number of VMs increased, the percentage of CPU usage
also increased linearly. The proposed load-balancing approach outperformed the baseline
load-balancing approach in terms of using less CPU usage. The observations showed the
efficiency of the proposed methodology. Figures 4 and 5 demonstrate the results of make
span and throughput, which are better for the proposed approach. Figure 6 shows that the
proposed approach takes less energy consumption compared with the traditional approach.
The key consideration of load balancing based on cluster states and refreshing the states by
determining the optimal refresh period made a significant difference in the enhancement of
load-balancing performance.

Sustainability 2022, 14, 7961 11 of 14

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 14

Figure 3. Performance comparison in terms of CPU cycles.

Figure 4. Make span comparison using workload.

Figure 4. Make span comparison using workload.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 14

Figure 3. Performance comparison in terms of CPU cycles.

Figure 4. Make span comparison using workload.

Figure 5. Thoughput comparison.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 14

Figure 5. Thoughput comparison.

Figure 6. Energy consumption of devices.

5. Conclusions
This paper aimed to investigate how to minimize bandwidth costs and manage re-

sources efficiently in a cooperative IoT fog-clod computing environment. This paper cov-
ered the solution to the problem of determining the optimal refresh period with a fog
clustering-based load-balancing approach. The fog clustering-based load-balancing algo-
rithm named FCBLB and an algorithm named ORP were designed and implemented. The
developed methodology exploits the knowledge at runtime to determine the optimal re-
fresh period to be rid of problems with either a too long refresh period or too short a
refresh period. It strikes a balance between them to increase the efficiency of load balanc-
ing and reduce overhead on the system. iFogSim-based implementation is presented with
visualization to let users intuitively observe the proposed approach’s functioning. The
baseline load-balancing approach provided by iFogSim was compared with the proposed
method. The results shown in the view of execution time and CPU usage revealed the
advantages of the proposed methodology that solve the problem of optimal refresh period
for changing states in clustering-based load balancing. In the future, more optimization
techniques could be applied for load balancing.

Author Contributions: Conceptualization, P.S., R.K., J.R. and S.J.; funding acquisition, J.K. and J.R.;
investigation, P.S., R.K., J.R. and G.D.; methodology, P.S., R.K., J.R., S.J., G.D., J.K. and M.O.; re-
sources, P.S., R.K., J.R., S.J., G.D., J.K. and M.O.; visualization, P.S., R.K., J.R., S.J., G.D., J.K. and M.O.;
writing—review and editing, P.S., R.K., J.R., S.J., G.D., J.K. and M.O. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partly supported by the Technology Development Program of MSS [No.
S3033853] and by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. 2021R1A4A1031509).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Acknowledgments: The authors thank the anonymous reviewers who helped to improve the qual-
ity of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 6. Energy consumption of devices.

Sustainability 2022, 14, 7961 12 of 14

5. Conclusions

This paper aimed to investigate how to minimize bandwidth costs and manage re-
sources efficiently in a cooperative IoT fog-clod computing environment. This paper
covered the solution to the problem of determining the optimal refresh period with a
fog clustering-based load-balancing approach. The fog clustering-based load-balancing
algorithm named FCBLB and an algorithm named ORP were designed and implemented.
The developed methodology exploits the knowledge at runtime to determine the optimal
refresh period to be rid of problems with either a too long refresh period or too short a
refresh period. It strikes a balance between them to increase the efficiency of load balancing
and reduce overhead on the system. iFogSim-based implementation is presented with
visualization to let users intuitively observe the proposed approach’s functioning. The
baseline load-balancing approach provided by iFogSim was compared with the proposed
method. The results shown in the view of execution time and CPU usage revealed the
advantages of the proposed methodology that solve the problem of optimal refresh period
for changing states in clustering-based load balancing. In the future, more optimization
techniques could be applied for load balancing.

Author Contributions: Conceptualization, P.S., R.K., J.R. and S.J.; funding acquisition, J.K. and J.R.;
investigation, P.S., R.K., J.R. and G.D.; methodology, P.S., R.K., J.R., S.J., G.D., J.K. and M.O.; resources,
P.S., R.K., J.R., S.J., G.D., J.K. and M.O.; visualization, P.S., R.K., J.R., S.J., G.D., J.K. and M.O.; writing—
review and editing, P.S., R.K., J.R., S.J., G.D., J.K. and M.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partly supported by the Technology Development Program of MSS
[No. S3033853] and by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. 2021R1A4A1031509).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Acknowledgments: The authors thank the anonymous reviewers who helped to improve the quality
of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yu, C.-M.; Ku, M.L.; Wang, L.-C. Joint topology construction and hybrid routing strategy on load balancing for Bluetooth low

energy networks. IEEE Internet Things J. 2021, 8, 7101–7102. [CrossRef]
2. Liang, Y.; Lan, Y. Tclbm: A task chain-based load balancing algorithm for microservices. Tsinghua Sci. Technol. 2020, 26, 251–258.

[CrossRef]
3. Lyu, H.; Chen, K. Hybrid load-modulated balanced amplifier with high linearity and extended dynamic range. IEEE Microw.

Wirel. Compon. Lett. 2021, 31, 1067–1070. [CrossRef]
4. Hung, L.-H.; Wu, C.-H.; Tsai, C.-H.; Huang, H.-C. Migration-based load balance of virtual machine servers in cloud computing

by load prediction using genetic-based methods. IEEE Access 2021, 9, 49760–49773. [CrossRef]
5. Korndörfer, J.H.M.; Eleliemy, A.; Mohammed, A.; Ciorba, F.M. Lb4omp: A dynamic load balancing library for multithreaded

applications. arXiv 2021, arXiv:2106.05108. [CrossRef]
6. Mi, J.; Ren, Q.; Su, D. Parallel subdomain-level dgtd method with automatic load balancing scheme with tetrahedral and

hexahedral elements. IEEE Trans. Antennas Propag. 2020, 69, 2230–2241. [CrossRef]
7. Cao, Y.; Chen, K. Hybrid asymmetrical load modulated balanced amplifier with wide bandwidth and three-way-doherty efficiency

enhancement. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 721–724. [CrossRef]
8. Aktas, M.F.; Behrouzi-Far, A.; Soljanin, E.; Whiting, P. Evaluating load balancing performance in distributed storage with

redundancy. arXiv 2021, arXiv:1910.05791. [CrossRef]
9. Giordano, A.; De Rango, A.; Rongo, R.; D’Ambrosio, D.; Spataro, W. Dynamic load balancing in parallel execution of cellular

automata. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 470–484. [CrossRef]
10. Liu, C.; Li, K.; Li, K. A game approach to multi-servers load balancing with load-dependent server availability consideration.

IEEE Trans. Cloud Comput. 2018, 9, 1–13. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3051561
http://doi.org/10.26599/TST.2019.9010032
http://doi.org/10.1109/LMWC.2021.3083235
http://doi.org/10.1109/ACCESS.2021.3065170
http://doi.org/10.1109/TPDS.2021.3107775
http://doi.org/10.1109/TAP.2020.3026489
http://doi.org/10.1109/LMWC.2021.3068613
http://doi.org/10.1109/TIT.2021.3054385
http://doi.org/10.1109/TPDS.2020.3025102
http://doi.org/10.1109/TCC.2018.2790404

Sustainability 2022, 14, 7961 13 of 14

11. Duong, T.-V.T.; Binh, L.H. Load balancing routing under constraints of quality of transmission in mesh wireless network based
on software defined networking. J. Commun. Netw. 2021, 23, 12–22.

12. Liu, Y.; Gu, H.; Yan, F.; Calabretta, N. Highly-efficient switch migration for controller load balancing in elastic optical inter-
datacenter networks. IEEE J. Sel. Areas Commun. 2021, 39, 2748–2761. [CrossRef]

13. Jahid, A.; Alsharif, M.H.; Uthansakul, P.; Nebhen, J.; Aly, A.A. Energy efficient throughput aware traffic load balancing in green
cellular networks. IEEE Access 2021, 9, 90587–90602. [CrossRef]

14. Latif, Z.; Sharif, K.; Li, F.; Karim, M.M.; Biswas, S.; Shahzad, M.; Mohanty, S.P. Dolphin: Dynamically optimized and load balanced
path for inter-domain SDN communication. IEEE Trans. Netw. Serv. Manag. 2020, 18, 331–346. [CrossRef]

15. Zhang, W.-Z.; Elgendy, I.A.; Hammad, M.; Iliyasu, A.M.; Du, X.; Guizani, M.; Abd El-Latif, A.A. Secure and optimized load
balancing for multitier IoT and edge-cloud computing systems. IEEE Internet Things J. 2020, 8, 8119–8132. [CrossRef]

16. Zhao, Y.; Wang, X.; He, Q.; Zhang, C.; Huang, M. Plofr: An online flow route framework for power saving and load balance in
SDN. IEEE Syst. J. 2020, 15, 526–537. [CrossRef]

17. Attiya, I.; Abualigah, L.; Elsadek, D.; Chelloug, S.A.; Abd Elaziz, M. An Intelligent Chimp Optimizer for Scheduling of IoT
Application Tasks in Fog Computing. Mathematics 2022, 10, 1100. [CrossRef]

18. El Kafhali, S.; Salah, K. Performance modelling and analysis of Internet of Things enabled healthcare monitoring systems. IET
Netw. 2019, 8, 48–58. [CrossRef]

19. Dhankhar, A.; Juneja, S.; Juneja, A.; Bali, V. Kernel parameter tuning to tweak the performance of classifiers for identification of
heart diseases. Int. J. E-Health Med. Commun. 2021, 12, 1–16. [CrossRef]

20. Lakzaei, M.; Sattari-Naeini, V.; Sabbagh Molahosseini, A.; Javadpour, A. A joint computational and resource allocation model for
fast parallel data processing in fog computing. J. Supercomput. 2022, 78, 12662–12685. [CrossRef]

21. El Kafhali, S.; Salah, K.; Alla, B.S. Performance evaluation of IoT-fog-cloud deployment for healthcare services. In Proceedings of
the 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), Brussels, Belgium, 26–28
November 2018.

22. Serdaroglu, K.C.; Baydere, S. An Efficient Multipriority Data Packet Traffic Scheduling Approach for Fog of Things. IEEE Internet
Things J. 2021, 9, 525–534. [CrossRef]

23. Mekala, M.S.; Dhiman, G.; Srivastava, G.; Nain, Z.; Zhang, H.; Viriyasitavat, W.; Varma, G.P.S. A DRL-Based Service Offloading
Approach Using DAG for Edge Computational Orchestration. IEEE Trans. Comput. Soc. Syst. 2022. [CrossRef]

24. Yadav, K.; Jain, A.; Ahmed, O.S.N.M.; Hamad, S.A.S.; Dhiman, G.; Alotaibi, S.D. Internet of Thing based Koch Fractal Curve
Fractal Antennas for Wireless Applications. IETE J. Res. 2022, 1–10. [CrossRef]

25. Sumathy, B.; Chakrabarty, A.; Gupta, S.; Hishan, S.S.; Raj, B.; Gulati, K.; Dhiman, G. Prediction of Diabetic Retinopathy Using
Health Records with Machine Learning Classifiers and Data Science. Int. J. Reliab. Qual. E-Healthc. 2022, 11, 1–16. [CrossRef]

26. Rashid, J.; Shah, S.M.A.; Irtaza, A. An efficient topic modeling approach for text mining and information retrieval through
K-means clustering. Mehran Univ. Res. J. Eng. Technol. 2020, 39, 213–222. [CrossRef]

27. Zeidabadi, F.A.; Dehghani, M.; Trojovský, P.; Hubálovský, Š.; Leiva, V.; Dhiman, G. Archery algorithm: A novel stochastic
optimization algorithm for solving optimization problems. Comput. Mater. Contin. 2022, 72, 399–416. [CrossRef]

28. Singh, N.; Houssein, E.H.; Singh, S.B.; Dhiman, G. HSSAHHO: A novel hybrid Salp swarm-Harris hawks optimization algorithm
for complex engineering problems. J. Ambient Intell. Humaniz. Comput. 2022, 1–37. [CrossRef]

29. Kanwal, S.; Rashid, J.; Kim, J.; Juneja, S.; Dhiman, G.; Hussain, A. Mitigating the Coexistence Technique in Wireless Body Area
Networks by Using Superframe Interleaving. IETE J. Res. 2022, 1–15. [CrossRef]

30. Juneja, S.; Dhiman, G.; Kautish, S.; Viriyasitavat, W.; Yadav, K. A Perspective Roadmap for IoMT-Based Early Detection and Care
of the Neural Disorder, Dementia. J. Healthc. Eng. 2021, 2021, 6712424. [CrossRef]

31. Dhiman, G.; Kaur, G.; Haq, M.A.; Shabaz, M. Requirements for the Optimal Design for the Metasystematic Sustainability of
Digital Double-Form Systems. Math. Probl. Eng. 2021, 2021, 2423750. [CrossRef]

32. Das, S.R.; Sahoo, A.K.; Dhiman, G.; Singh, K.K.; Singh, A. Photo voltaic integrated multilevel inverter based hybrid filter using
spotted hyena optimizer. Comput. Electr. Eng. 2021, 96, 107510. [CrossRef]

33. Kansal, L.; Gaba, G.S.; Sharma, A.; Dhiman, G.; Baz, M.; Masud, M. Performance Analysis of WOFDM-WiMAX Integrating
Diverse Wavelets for 5G Applications. Wirel. Commun. Mob. Comput. 2021, 2021, 5835806. [CrossRef]

34. Rashid, J.; Batool, S.; Kim, J.; Wasif Nisar, M.; Hussain, A.; Juneja, S.; Kushwaha, R. An Augmented Artificial Intelligence
Approach for Chronic Diseases Prediction. Front. Public Health 2022, 10, 860396. [CrossRef] [PubMed]

35. Bangare, S.L.; Prakash, S.; Gulati, K.; Veeru, B.; Dhiman, G.; Jaiswal, S. The Architecture, Classification, and Unsolved Research
Issues of Big Data extraction as well as decomposing the Internet of Vehicles (IoV). In Proceedings of the 2021 6th International
Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October 2021; pp. 566–571.

36. Dhiman, G.; Soni, M.; Pandey, H.M.; Slowik, A.; Kaur, H. A novel hybrid hypervolume indicator and reference vector adaptation
strategies based evolutionary algorithm for many-objective optimization. Eng. Comput. 2021, 37, 3017–3035. [CrossRef]

37. Oliva, D.; Esquivel-Torres, S.; Hinojosa, S.; Pérez-Cisneros, M.; Osuna-Enciso, V.; Ortega-Sánchez, N.; Dhiman, G.; Heidari, A.A.
Opposition-based moth swarm algorithm. Expert Syst. Appl. 2021, 184, 115481. [CrossRef]

38. Kumar, R.; Dhiman, G. A comparative study of fuzzy optimization through fuzzy number. Int. J. Mod. Res. 2021, 1, 1–14.
39. Vaishnav, P.K.; Sharma, S.; Sharma, P. Analytical review analysis for screening COVID-19 disease. Int. J. Mod. Res. 2021, 1, 22–29.
40. Chatterjee, I. Artificial intelligence and patentability: Review and discussions. Int. J. Mod. Res. 2021, 1, 15–21.

http://doi.org/10.1109/JSAC.2021.3064664
http://doi.org/10.1109/ACCESS.2021.3091499
http://doi.org/10.1109/TNSM.2020.3045725
http://doi.org/10.1109/JIOT.2020.3042433
http://doi.org/10.1109/JSYST.2020.3010971
http://doi.org/10.3390/math10071100
http://doi.org/10.1049/iet-net.2018.5067
http://doi.org/10.4018/IJEHMC.20210701.oa1
http://doi.org/10.1007/s11227-022-04374-x
http://doi.org/10.1109/JIOT.2021.3084502
http://doi.org/10.1109/TCSS.2022.3161627
http://doi.org/10.1080/03772063.2022.2058631
http://doi.org/10.4018/IJRQEH.299959
http://doi.org/10.22581/muet1982.2001.20
http://doi.org/10.32604/cmc.2022.024736
http://doi.org/10.1007/s12652-022-03724-0
http://doi.org/10.1080/03772063.2022.2043788
http://doi.org/10.1155/2021/6712424
http://doi.org/10.1155/2021/2423750
http://doi.org/10.1016/j.compeleceng.2021.107510
http://doi.org/10.1155/2021/5835806
http://doi.org/10.3389/fpubh.2022.860396
http://www.ncbi.nlm.nih.gov/pubmed/35433587
http://doi.org/10.1007/s00366-020-00986-0
http://doi.org/10.1016/j.eswa.2021.115481

Sustainability 2022, 14, 7961 14 of 14

41. Gupta, V.K.; Shukla, S.K.; Rawat, R.S. Crime tracking system and people’s safety in India using machine learning approaches. Int.
J. Mod. Res. 2022, 2, 1–7.

42. Sharma, T.; Nair, R.; Gomathi, S. Breast Cancer Image Classification using Transfer Learning and Convolutional Neural Network.
Int. J. Mod. Res. 2022, 2, 8–16.

43. Shukla, S.K.; Gupta, V.K.; Joshi, K.; Gupta, A.; Singh, M.K. Self-aware Execution Environment Model (SAE2) for the Performance
Improvement of Multicore Systems. Int. J. Mod. Res. 2022, 2, 17–27.

44. Shao, C.; Yang, Y.; Juneja, S.; GSeetharam, T. IoT data visualization for business intelligence in corporate finance. Inf. Process.
Manag. 2022, 59, 102736. [CrossRef]

45. Juneja, S.; Jain, S.; Suneja, A.; Kaur, G.; Alharbi, Y.; Alferaidi, A.; Alharbi, A.; Viriyasitavat, W.; Dhiman, G. Gender and Age
Classification Enabled Blockschain Security Mechanism for Assisting Mobile Application. IETE J. Res. 2021. [CrossRef]

46. Sharma, S.; Gupta, S.; Gupta, D.; Juneja, S.; Singal, G.; Dhiman, G.; Kautish, S. Recognition of Gurmukhi Handwritten City Names
Using Deep Learning and Cloud Computing. Sci. Program. 2022, 2022, 5945117. [CrossRef]

47. Juneja, S.; Juneja, A.; Dhiman, G.; Jain, S.; Dhankhar, A.; Kautish, S. Computer Vision-Enabled Character Recognition of Hand
Gestures for Patients with Hearing and Speaking Disability. Mob. Inf. Syst. 2021, 2021, 4912486. [CrossRef]

48. Gadekallu, T.R.; Pham, Q.V.; Nguyen, D.C.; Maddikunta, P.K.R.; Deepa, N.; Prabadevi, B.; Pathirana, P.N.; Zhao, J.; Hwang, W.J.
Blockchain for edge of things: Applications, opportunities, and challenges. IEEE Internet Things J. 2021, 9, 964–988. [CrossRef]

49. Priya RM, S.; Bhattacharya, S.; Maddikunta, P.K.R.; Somayaji, S.R.K.; Lakshmanna, K.; Kaluri, R.; Hussien, A.; Gadekallu, T.R.
Load balancing of energy cloud using wind driven and firefly algorithms in internet of everything. J. Parallel Distrib. Comput.
2020, 142, 16–26.

50. Pan, X.; Cai, X.; Song, K.; Baker, T.; Gadekallu, T.R.; Yuan, X. Location Recommendation Based on Mobility Graph with Individual
and Group Influences. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]

http://doi.org/10.1016/j.ipm.2021.102736
http://doi.org/10.1080/03772063.2021.1982418
http://doi.org/10.1155/2022/5945117
http://doi.org/10.1155/2021/4912486
http://doi.org/10.1109/JIOT.2021.3119639
http://doi.org/10.1109/TITS.2022.3149869

	Introduction
	Related Work
	Proposed Framework
	User Subsystem
	Overall Strategy of Fog Cluster-Based Load Balancing (FCBLB)
	Fog Cluster-Based Load-Balancing (FCBLB) Algorithm
	Determination of Refresh Period

	Cloud Sub-System

	Experiment Setup & Results
	Conclusions
	References

