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Abstract: Determination of plastic leakage sources and pathways is essential in plastic pollution
mitigation. Finding ways to stem land-sourced plastic waste leakage requires understanding its
sources. Spatial analysis conducted in a geographic information system (GIS) environment and
remote sensing investigation uncovered insights into the distribution of plastic leakage in the lower
Mekong River basin (LMRB). The main objectives of this approach were: (i) to map plastic leakage
density using multi-source geospatial data; and (ii) to identify plastic leakage source hotspots and
their accumulation pathways by incorporating hydrological information. Mapping results have
shown that plastic leakage density was highly concentrated in urban areas with a high intensity
of human activities. In contrast, the major pathways for plastic leakage source hotspots were the
high morphometric areas directly influenced by facilities, infrastructure, and population. The overall
efforts in this study demonstrate the effectiveness of the proposed novel method used for predicting
plastic leakage density and its sources from land-based activities. It is also accomplished using
multi-geospatial data with GIS-based analysis to produce a graphical model for plastic leakage waste
density in each region that non-technical personnel can easily visualize. The proposed method can
be applied to other areas beyond the LMRB to improve the baseline information on plastic waste
leakage into the river.

Keywords: land-based plastic leakage; plastic reduction; marine litter

1. Introduction

The East Asian Pacific region, which encompasses Southeast Asia, is regarded as the
new global hotspot of plastic waste [1]. Here, plastic waste was estimated to exceed over
8 million tons in 2021, including inputs due to the global COVID-19 pandemic [2]. Increased
reliance on single-use plastics without proper waste management directly impacts plastic
waste found in the environment [3]. Rivers exacerbate the issue by providing a direct
route to oceans, with the river-to-ocean pathway accounting for 52% of ocean plastic waste
globally [4]. With the lower Mekong River basin (LMRB) recognized as one of the largest
contributors to oceanic plastic waste, efforts are underway to stymie the situation.

Geospatial technologies for plastic waste issues, such as GIS and remote sensing, are
used to monitor the life cycle of plastic material. Previous geospatial-based approaches
have global coverage at the country level [5,6] and city level [7] to understand the potential
of plastic waste discharge. In addition, previous studies only looked at distribution based
on several factors such as population and activities distribution on land area. However,
there has yet to be a focus on the land-to-water plastic leakage pathway.

One relatively unexplored approach to understanding the transport of plastic pollu-
tion from land-based sources into waterways is through an integration of plastics waste
management analysis and topographical study of its transport. Instance hydrological
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characterization makes it possible to define hydrological responses with consideration to
topography through flow classification [8]. Flow classes, including low, moderate, and
high, make for a simplified classification system that can be integrated into further analysis.
Alternatively, morphometric analysis is regarded as the prominent solution for plastic
waste transport in river modelling. Morphometric analysis requires a digital elevation
model (DEM) as input in order to characterize hydrological responses to identify drainage
basin and sub-basin characteristics [9] which align with the hydrological response in the
river [10].

Based on the above mentioned, in this study, we aim to spur evidence-based policy
making by defining an approach to identifying the leakage pathways, sources, and amount
of plastic litter along the value chain. To that end, we addressed plastic leakage based
on waste management practices and an actual distribution by: (i) performing material
flow analysis to compile leakage hotspots; and (ii) completing a hydrological study to
understand the leakage in the waterway. The aim of this study is to derive baseline
information for city-level plastic waste leakage, which may be used as an indicator for
potential risks of plastic leakage distribution. Both general daily activities taking place near
waterways as well as activities occurring on and in the waterways were considered.

2. Materials and Methods
2.1. Study Area

The study site comprises the lower Mekong basin, an area home to nearly 65 million
individuals dependent on the Mekong River sources [11]. Two cities located at intersections
of the Mekong River and the Mun River, two important rivers in Southeast Asia, were
investigated: Ubon Ratchathani, Thailand and Vientiane, Laos, as shown in Figure 1 below.
The two cities feature differing topography and waste management practices which were
taken into account. Our approach overlays plastic leakage distribution with the existing
city-level waste management and regulation.
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A macroplastic survey was conducted with assistance from local partners from the
Ubon Ratchathani University in Ubon Ratchathani and the National University of Laos in
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Vientiane. The macroplastic survey involved visual interpretation of plastic material found
in the environment using a mobile application. The survey took place during two seasons
(wet and dry seasons) and focused on three types of areas where litter commonly occurs
near or along the river: littering spots, uncontrolled dumps, and artificial barriers.

Ubon Ratchathani, a provincial in Thailand, creates 838.6 tons of solid waste daily,
which is collected and disposed of at 28 dumpsites, 2 sanitary landfills, and 10 controlled
dumpsites [12]. Most plastic waste disposal includes plastic bags, beverage bottles, and
food wrappers. Ubon Ratchathani is responsible for 88.03% of accumulated plastic waste in
the dry season (May–June 2021). Plastic waste profoundly affects the conditions of tourism
and community residences, which is also prone to leakage in the weirs alongside the river.

Vientiane is the national capital of Laos PDR and generates approximately 760 tons of
solid waste per day. The waste is managed in landfills [13], of which plastic waste accounts
for 11.02% of solid waste in Vientiane [14]. Although waste collection service has doubled
in the last ten years, some waste management facilities are poorly managed, leading to the
leakages in the Mekong River.

2.2. Methodology

Plastic leakage was monitored according to the following designations: plastic leakage
density, plastic leakage source hotspots, and leakage pathway accumulation. “Plastic
leakage density” refers to an estimated quantity of plastic leakage in an area. However, the
quantity was uncountable because the input parameters were normalized with a standard
range from “0” to “1” for the fuzzy model concept. Areas were classified as either “0” for
very low plastic leakage occurrence or “1” for very high plastic leakage occurrence. “Plastic
leakage source hotspots” are the results of overlay analysis for the plastic leakage density
map, the morphometric drainage map, and the distance to the nearest main river. Results
ranged from very low (“0”) to very high (“1”). For example, areas featuring high or very
high plastic leakage density along with high or very high drainage morphometric value
(high value of drainage density, stream length, slope, etc.) would indicate a condition that
contributes plastic to rivers. The final result of analysis was restricted to the subdistrict level
as this was the finest-level data available. Furthermore, “leakage pathway accumulation”
refers to scenarios that introduce plastic leakage inputs to waterways, such as a river,
tributary, and canals.

To map and identify plastic leakage source hotspots and their pathways in the LMRB,
the methodology was developed in three major phases (Figure 2): (1) data acquisition,
(2) data analysis, and (3) plastic leakage source hotspots mapping. Moreover, an additional
phase, (4) scenario development, was added to improve pathway accumulation in the
waterway through scenario development. Data collection benefitted from the addition of
ancillary data, mobile-app utilization, and macroplastic survey. Data analysis sought to
determine indicators for plastic waste leakage through instances of plastic waste occurrence.
Subsequently, plastic leakage source hotspot mapping was carried out using a combination
of fuzzy overlay analysis along with hydrological analysis. Hydrological analysis led to
development of a scenario to improve understanding of how plastic waste material is
transported in the waterway at the sub-basin level.
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2.2.1. Data Acquisition

Invariably, leakage of plastic litter into the marine environment is significantly trig-
gered by anthropogenic activities that include: (i) general (intentional and unintentional)
littering; and (ii) mismanaged or unmanaged plastic waste management systems that
encompass phases such as production, use, collection, handling, storage, treatment, and
disposal. Leaked plastic from the various aspects of the value chain may be washed away
by surface runoff or blown by the wind into water environments via storm drains, canals,
and rivers. Characteristically, artificial and other topographic barriers often create accumu-
lation points for leaked plastic litter in rivers and canals before eventually being released
into the ocean.
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Understanding plastic leakage source hotspots are essential to assess the quantities
of macro- and micro-plastics entering the ocean. This knowledge is required to indicate
regional or local hotspots of occurrence and to determine the options for developing preven-
tative measures. Therefore, a suite of indicators that presents a high potential correlation
with plastic leakage was collected, including demographic information; topographic infor-
mation; land use information; infrastructure; and satellite-based information. In addition,
waste management information is also an essential indicator of reducing plastic waste
entering the river and marine environment. Thus, it was collected and incorporated into
the model to produce a plastic leakage source hotspots map. The leakage source hotspot
map was created by overlaying the above indicators with the sub-basin morphometric
analysis result. Moreover, the primary data (littering spots and uncontrolled dumpsites)
collected using a mobile application have also been added as indicators. As the result of
data acquisition, all the input indicators for the analysis are shown in Table 1.

Table 1. Selected indicators for plastic leakage source hotspots mapping.

Indicators *
Study Sites

Data Type Data Source
Ubon Ratchathani Vientiane

Static,
Increase

Population Density X X Raster
GIC-AIT

WorldPop [15]
Vientiane Capital Statistics Center [16]

POIs Location X X Point Local Partners
OSM [17]

Land Use Information X X Polygon Local Partners

Factory Location X X Point Local Partners

Nighttime Image X X Raster USGS—VIIRS [18]

Resident Types X Raster Local Partners

Road X X Line Local Partners

Slope X X Raster USGS—SRTM [19]

Waste Generation X X Polygon Local Partners

Open Dumpsite Location X Point PCD [12]

Static,
Decrease

Waste Collection Coverage X Line VCOM [13]

Waste Collection Route X Line VCOM [13]

Waste Collection Service X Point VCOM [13]

Dynamic,
Increase Littering Spots X X Point Primary Data Collection

by Local Partners

* See the complete list of indicators in Appendix A.

According to the Guidelines for the Monitoring and Assessment of Plastic Litter in the
ocean [20], all indicators for plastic leakage mapping were divided into three categories:
static, dynamic, and natural. In addition, each leading indicator was also divided into
two types according to the impact of the plastic leakage: increase and decrease. Increase
indicates higher waste leakage potential, while decrease refers to some activity or condition
that could reduce plastic waste leakage, such as waste collection service.

To verify the plastic leakage density map, the city-scale plastic litter heatmap for Ubon
Ratchathani generated by the pLitter platform was used to assess the accuracy of the overlay
map. The pLitter platform is a standardized, deep learning-friendly dataset and pre-trained
model used to detect plastic litter in streets, roadsides, and other outdoor locations [21]. The
predicted result is used to produce the plastic litter heatmap for Ubon Ratchathani.

2.2.2. Fuzzy Overlay Analysis

Fuzzification is a comprehensive method to normalize multi-variable data parameters.
As it is utilized to improve the function of multi-criteria spatial modelling, fuzzy overlay
uses weighted parameters [22] to summarize the multi-variate data analysis, such as the
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plastic waste leakage issue [23]. Fuzzy overlay analysis in a GIS environment consists of
three steps: (i) fuzzification of input variables by conversion into raster; (ii) assignment of
fuzzy membership functions; and (iii) final fuzzy overlay and defuzzification to obtain the
final output map.

• Fuzzification of Input Indicators

Datasets obtained for the selected indicators in Table 1 consisted of either point, line,
or polygon vectors which were converted into raster values in each cell (fuzzification
of input indicators) to run the fuzzy overlay analysis in the GIS. The datasets in point
form were converted into raster using a kernel density to develop density information in
spatial distribution. In GIS, kernel density computes the density of the point features in the
neighborhood around them. In theory, a smooth curved surface is fit over each of the points,
where the value is given to the highest point, which then decreases when it goes further up
to 0, building up a circular neighborhood [24]. To address the data within locations and
required distance or length, Euclidean distance was calculated for the indicators in the line
form, which gives the center of the source of the cell to the mid-point of each neighboring
cell. This shortest distance is the one that was allocated to the cell location on the output
raster [25]. The Features to Raster tool converts vector features to a raster dataset for the
indicators in the polygon form and already has an area state. This tool uses the cell center
to decide the value of a raster cell. The input field type determines the type of output
raster (for example, if the field is an integer, the output raster will be an integer; if it is a
floating point, the output will be the floating point). The output cell size can be defined
by a numeric value or obtained from an existing raster dataset. Rasterization methods for
each vector type is illustrated in Figure 3.
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• Assignment of Membership Functions

Based on the favorability of macroplastic leakage under each input indicator’s influ-
ence, the following membership functions were selected for this research: Linear, Large,
Small, MS Large, and MS Small. Each of the functions has been identified to improve
the proportional or inversely proportional relations. The Large and MS Large functions
were used for the group increase of macroplastic, indicating that the higher the number of
sources, the higher the outflow of macroplastic in the region. As for the road networks in
the group of the increased macroplastic group, the Small function was used, which showed
that the shorter the distance from these sources, the higher the leakage. The decreased
macroplastic group followed similar logic, with input indicators assigned the Small and
MS Small functions [26].

Among the static indicator group, the Small function was used for the slope indicator.
Areas with low elevations favor higher human habitation, consequently raising the number
of macroplastic sources. For the remaining variable in the static group, population, the
linear function was applied, which meant that the outflow of macroplastic increases directly
with the increase in the indicator’s value. It should be noted that resident type data
was acquired from the classification of nighttime light raster data. Three classes were
assigned to resident type: commercial area, urban residential area, and slum residential
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area. Slum residential area refers to the areas that contribute most to environmental plastic
leakage. These raster data were reclassified on a scale of 1 to 3 based on the favorability
of macroplastic leakage from the type of resident using the Reclassify tool in ArcGIS.
Following reclassification, the Small membership function was applied.

• Fuzzy Overlay and Defuzzification

Fuzzy overlay was implemented after applying a membership function to each dataset.
The available overlay functions in GIS are: AND, OR, PRODUCT, SUM, and GAMMA.
Among all the overlay functions, “AND” was primarily used because it gives the member-
ship the least common denominator, which considers all the indicators as the impact to
the vulnerable condition (Table 2). This allows us to see the effect of each indicator on the
leakage of macroplastics from the region.

Table 2. Functions used for raster conversion and membership for the indicators.

Data 1
Conversion

into
Raster

Spatial
Resolution

(Meter)

Membership
Function Remarks

Input Value Output Value

Min Max Min Max

Population
Density Raster 30 Linear

As the population increases, the macroplastics
leakage from the area also increases due to

increase in use of plastics.
0 Max 0 1

Factory
location

Kernel
Density 30 MS Large Larger the number of factories in an area, higher

the leakage of macroplastics. 0 Max 0 1

Resident type Raster 30 Small Smaller the value of scale, larger the
macroplastics leakage. 0 Max 0 1

Road Euclidean
Distance 30 Small Smaller the distance from the road networks,

higher the leakage of macroplastics. 0 Max 0 1

Slope Raster 30 Small Smaller slope favors human inhabitation, which
increases macroplastic leakage. 0 20 0 1

Waste
generation

Kernel
Density 30 MS Large Larger the amount of waste generated in an area,

higher the leakage of macroplastics. 0 Max 0 1

Open
dumpsite
location

Kernel
Density 30 Large Larger the number of open dumpsites in an area,

higher the leakage of macroplastics. 0 Max 0 1

Waste
collection
coverage

Kernel
Density 30 Small Smaller the number of waste collection coverage

in an area, higher the leakage of macroplastics. 0 Max 0 1

Waste
collection

route

Euclidean
Distance 30 Small Smaller the number of waste collection routes in

an area, higher the leakage of macroplastics. 0 Max 0 1

Waste
collection
services

Kernel
Density 30 MS Small Smaller the number of waste collection services in

an area, higher the leakage of macroplastics. 0 Max 0 1

Littering spot Kernel
Density 30 Large Larger the number of littering spots in an area,

the larger the leakage of macroplastics. 0 Max 0 1

POIs 2 Kernel
Density 30 Large Larger the number of POIs, the higher the leakage

of macroplastics. 0 Max 0 1

1 Appendix A: Definition of the input indicator. 2 Point of Interest (POI) locations include hotels, restaurants,
facilities other public facilities.

The “PRODUCT” function was used exclusively for uncontrolled dumpsites and
littering spots. This function identifies the highest membership values of the input, which
can eliminate the higher potential of leakage occurrence. Other functions such as “OR”,
“SUM”, and “GAMMA” were not applicable in this case as these overlay functions showed
the combined effect of all the indicators. Multiple overlays were run for each indicator
group and then combined to obtain a final output map.

The final overlay map displayed output values between 0 and 1, where 1 represented
full membership (leakage) and 0 represented non-membership (non-leakage). These values
had to be defuzzied to quantify the values to be represented on a map. Hence, the values
were reclassified in GIS into five classes to indicate macroplastic leakage potential: low,
very low, medium, high, and very high. The values near 0 were classified as low, and those
near 1 were classified as very high.
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2.2.3. Accuracy Assessment

In a statistical context, accuracy indicates the degree of correctness of a classified
map, consisting of bias and precision. The accuracy check compares the plastic leakage
density map with plastic littering hotspot locations (confusion matrix, Table 3). A total of
432 samples were used, including 164 sample locations of littering spots and 268 sample
locations of non-littering spots. It is recommended to obtain ground truth data near the
time of data acquisition, especially before any environmental change.

Table 3. General confusion matrix for a plastic leakage density map. The confusion matrix shows the
number of correctly classified points (True, green diagonal) and wrongly classified (False, red diagonal).

Ground Truth
Classification Result

Leakage Hotspot (A) Non-Leakage Hotspot (B)

Leakage Hotspot (A) True (a) False (b)

Non-Leakage Hotspot (B) False (c) True (d)

In addition to the confusion matrix, user’s, producer’s, and overall accuracies (OA)
and kappa statistics were produced (Table 3).

Overall accuracy
The OA evaluates the overall effectiveness of the algorithm. It is calculated as the

total number of correctly-classified points (green diagonal in Table 3) divided by the total
number of validation points:

OA =
No. o f correct points

Total number o f points

User’s accuracy
The user’s accuracy, also called precision, refers to the fraction of correctly classified

points regarding all points categorized as this class in the classification results. The user’s
accuracy evaluates the fraction of correctly classified leakage hotspot points compared to all
points that were classified (classification result) as leakage hotspots (true and false). There-
fore, precision considers the number of non-leakage hotspot points that were misclassified
as leakage hotspots.

For the leakage hotspot class:

User acc(A) =
a

a + b

For the non-leakage hotspot class:

User acc(B) =
d

c + d

Producer’s accuracy
The producer’s accuracy, also called recall, is defined as the correctly classified points

of a class (e.g., A) related to all points of the considered ground truth class (Ground Truth).
Recall looks at the number of points classified as A and compares them to the reference
ground-truth dataset for class A. Recall considers the number of crop points that were
misclassified as non-leakage hotspots.

For the leakage hotspot class:

Prod. acc(A) =
a

a + c
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For the non-leakage hotspot class:

Prod. acc(B) =
d

b + d

F-score
The F-score is a valuable measure of error as it combines both the user’s accuracy and

the producer’s accuracy of a class. It can be interpreted as the harmonic mean of both error
measures, with a maximum value of 1 and a minimum score of 0 [1].

For the F-score of leakage hotspots:

Fscore(A) = 2 × User acc(A)× Prod. acc(A)

User acc(A) + Prod. acc(A)

For the F-score of the non-leakage hotspots:

Fscore(B) = 2 × User acc(B)× Prod. acc(B)
User acc(B) + Prod. acc(B)

2.2.4. Morphometric Analysis and Leakage Pathway Accumulation Scenario Development

• Morphometric Analysis

Morphometric analysis was used to deliver quantitative measurement and mathematical
analysis for landforms [27]. This method uses DEM extraction for delivering the morphometric
parameters which define the estimated landform. This method of analysis, also referred to as
the static and semi-dynamic analysis for characterizing the hydrological responses between
topographical features within the sub-basin, led to the watershed implication; stream, including
river and its tributaries, led to canal networks. To comply with the method, 22 parameters were
developed to differentiate features from a Shuttle Radar Topography Mission (SRTM) 30 m
DEM [19]. We also developed the supporting sub-category from the shape form of sub-basin
characteristics and the development of each drainage network using weighed on scale and
topography measurement. This approach is utilized by previous studies related to flash floods
and hydrological response towards peak runoff [8,9,27–29], where flash flood events were used
to understand the probability of water flow and sub-basin level material shifts [30]. To deliver
the morphometric analysis related to the hydrological characteristics, several morphometric
parameters were grouped into the four aforementioned classes: scale, topographic, shape, and
drainage network (Appendix B). Previously, the identification was initiated by identifying the
watershed area, shown in Figure 4 below.

Morphometric analysis can be used to describe the hydrology characteristics of sub-
basins, which over time establish their own qualities that can differ from the larger basin
they originate from. Characteristics such as flow and material transport are used to realize
the plastic waste leakage source hotspots where land-based interface with waterbodies. A
30 m resolution DEM was generated to identify streams and the sub-basin (watershed),
followed by zonal processing for 22 parameters (Appendix B). The zonal process involved
the calculation of each parameter by zones, which are delineated areas of the watershed.
Subsequently, all parameters were calculated and combined for weighting values to produce
the hydrological characteristics.
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Figure 4. Morphometric analysis methodology.

• Sub-basin Analysis for Plastic Leakage Source Hotspots

According to [31], areas with high drainage density with both high runoff and high
probability of flooding within the hydrological characteristic, yet improved the material
shifting along with blockage in the waterway. In addition, there is a higher potential for
flooding when increased flow brings more plastic to the channel [32]. Communities that
have high to very high potential for plastic leakage density and high or very high drainage
density will introduce plastic pollution into waterways. Based on this concept, the possible
plastic leakage density map and drainage morphometry map were used to identify plastic
pathways. Figure 5 below shows a conceptual diagram of identifying communities that
contribute to riverine plastic pollution.
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• Leakage Pathway Accumulation Scenario Development

After the characteristics for all obtaining watersheds in each study area were identified, the
result of drainage morphometry was utilized to improve the leakage pathway accumulation.
The framework for the plastic leakage pathway accumulation is shown in Figure 6.

The combination is applied in three steps: (1) identification of hydrological character-
istics in the waterway; (2) calculation of weight based on the proximity of leakage source
hotspot to the waterway; and (3) reclassification of the waterway using five classes (very
low, low, medium, high, and very high). Proximity also regarded the distance between the
plastic leakage source hotspot location and the delineated waterway, where the possibility
was higher for hotspots located closer to the river.

Weight-based calculations were made after arriving at the results for hydrological
characterization. Weights were assigned based on: proximity analysis, flooding record
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detection, and rainfall rate. Overall components were assembled to generate by the scoring
system to define the higher occasions and prone to flash flood probability before the
hydrological characteristics based on morphometric analysis. Therefore, the weight was
overlaid and calculated based on the overlapped plastic waste source hotspot results.

Based on the leakage source hotspot map for land-based plastic waste, there were
leakages occurring within the riverine pathway to the ocean. Hydrological characterization
was used to realize hotspots at the river. Sequentially, leakage pathway accumulation is
divided into 5-class assessed potential. Each regarded class is produced by calculating the
result from the plastic leakage source hotspots and the hydrological characteristic in the
sub-basin level.
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3. Results

The macroplastics leakage density map was produced based on a fuzzy overlay of
static and dynamic indicator groups to access region-level macroplastics pollution. Overlay
of these major indicator groups provided insight for how macroplastics are leaked into
waterways in the area. The output maps in this section show the macroplastics leakage
density for a very low to very high range.

3.1. Plastic Leakage Source Hotspots Mapping
3.1.1. Plastic Leakage Density Map

Overlaid parameters include static and dynamic macroplastics which are based on
indicators that define the waste sources in a particular region. The overlay map of the
indicators in Figure 7 shows the intensity of two main groups of macroplastics leakage in
Vientiane and Ubon Ratchathani.

The sub-districts with the highest macroplastics leakage density are in dark red color
(very high potential of plastic leakage density which is potentially leaking into the envi-
ronment), followed by red color (high potential), orange color (medium potential), yellow
color (low potential), and transparent light-yellow color (very low potential). According
to the input indicators under the static group (POIs, residential area, road network, in-
dustries, waste generation, and waste management) and dynamic group (human littering
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and uncontrolled dumpsites), the distribution concentrated prevalently in the center of
the province/city and surrounding districts/sub-districts. Along with identifying leakage
source hotspots which were derived from the result from the direct survey, plastic leakage
is highly concentrated in the center, which is an urban area. Therefore, we expect great
potential for leakage in the center as the urban area would likely have high intensity of
human activity, causing more plastic waste leakage.

Although the concentrated area in the city and province is ranked in the high leakage
category, it might be reduced with a proper waste management scheme. To address this,
we reached out to the local municipality in Vientiane to gain information about the waste
management plant. In collaboration with the municipality, a GPS Logger was used to track
the routes of waste disposal trucks. The waste management route was used to gain insights
into potential areas of environmental leakage.
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This study included static and dynamic indicators based on the input indicator used
in plastic leakage density identification. Static indicators performed more sensitive analysis
because more indicators were conducted than with dynamic ones. This is implied in the study’s
objective, where the plastic waste leakage source (especially the primary source) must be defined.
Thus, the sources from the static indicators encompassed the control mechanism for reducing
plastic leakage in terms of upstream approaches such as policy enforcement and development
of a roadmap for reducing plastic waste generation in the first place.

As dynamic indicators can be managed with the efforts and approaches, the results
of leakage source density have greater impact. There is still insufficient awareness for the
impacts of littering on plastic leakage in dense urban centers where there is high intensity
of human activity. In this case, a downstream approach such as a citizen science clean-up
event might be the most applicable control mechanism to curb littering in urban areas.

3.1.2. Accuracy Assessment of Plastic Leakage Density Map in Ubon Ratchathani

Based on the fuzzy overlay analysis result in Ubon Ratchathani, the plastic leakage
density map was classified into two classes: leakage hotspot and non-leakage hotspot. The
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leakage hotspot class is the result of merging three classes from the map: medium, high,
and very high plastic leakage density. The non-leakage hotspot class is the combined result
of low and very low plastic leakage density classes. From the plastic littering heatmap, a
random sample of 432 points for leakage hotspots (164 points) and non-leakage hotspots
(268 points) were extracted to validate the plastic leakage density map using a confusion
matrix (Table 4).

The accuracy check of the classified map generated an overall accuracy of 41.67%,
with an F-score of 0.33 (leakage hotspot) and 0.49 (non-leakage hotspot). Producer accuracy
of leakage hotspot and non-leakage hotspot classes was 29.05% and 53.60%, while user
accuracy of the two classes was 37.20% and 44.40%, respectively. The procedure accuracy
(sensitivity) measure reflects the accuracy of prediction of leakage hotspot or non- leakage
hotspot class. Furthermore, the accuracy of the plastic leakage density map demonstrates
the user’s reliability. For example, the non-leakage hotspot was more reliable, with 44.40%
user accuracy, than the leakage hotspot (37.20%).

Table 4. The error matrix for the plastic leakage density map compared with plastic littering hotspots
locations resulted from the pLitter.

Plastic Littering Hotspot Locations
Plastic Leakage Density Mapping Result

Leakage Hotspot Non-Leakage Hotspot

Leakage Hotspot 61 103

Non-Leakage Hotspot 149 119

Producer Accuracy 29.05% 53.60%

User Accuracy 37.20% 44.40%

F-score 0.33 0.49

Overall Accuracy 41.67%

3.1.3. Plastic Leakage Source Hotspots Map

The output map generated after running the fuzzy overlay with the indicator, including
morphometric analysis results and plastic leakage density maps, are shown in Figures 8 and 9.
The map shows that the major pathways for macroplastic leakage are the high morphometric
areas directly under the influence of facilities, infrastructure, and population. Larger morpho-
metric areas next to the major contributors of static indicators are the ones that are causing the
highest leakage of macroplastic.

As the capital city of Lao PDR with the Mekong River flowing between its border
with Thailand, Vientiane implemented an advanced control mechanism to restrict its waste
from entering the waterway. As seen in Figure 8, most of the hotspots in Vientiane are city
pavement categorized as “very high”. One “high” hotspot is located along the shipment
area (Figure 7B), which concerns higher leakage that is possibly generated in the commercial
area. Similarly, Ubon Ratchathani’s result (Figure 8) has a high to very high source hotspot
near the Mun River. Another high hotspot in Ubon Ratchathani is located at Si Mueang Mai,
close to Huai Tung Lung River, which feeds into the Mun River (Figure 9C).
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3.2. Leakage Pathway Accumulation

The hydrological characteristics improved the potential of flash flood occurrence regard-
ing runoff. In the context of leakage, it allows us to define the probability higher classes located
in the flood hazard area within proximity to higher leakage source hotspots. Figures 10 and 11
show how the distribution for city-level leakage pathway accumulates along the river. Here, a
base map helps to visualize the distribution of urban areas and their effect on leakage into
nearby waterways along with the recorded floodplain to be considered.
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Figure 11. Leakage pathway accumulation in Ubon Ratchathani province, Thailand.

According to the findings, the river accumulation type is divided into two general
judgments: hotspots in the mainstream (Ubon Ratchathani) and tributaries from the main-
stream (Vientiane). Based on the sparse in the hotspot, leakage pathway accumulation is
concentrated in the urban areas of Ubon Ratchathani and Vientiane. All leakage pathway
accumulation types are regarded as the result of the plastic waste leakage source hotspot.
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Some factors are chronically affected by the plastic leakage accumulation in the wa-
terway. Firstly, there are flood hazards. The hydrological characteristics refer to the peak
runoff, and the prone to flood will be sensitively detected regarding the higher accumula-
tion of plastic retained in the waterway. Regarding the 10-year period of flooding record
history in Ubon Ratchatani (shown in the map Figure 11 with red transparent polygon),
widespread and concentrated flooded area implies the different types of accumulation.
Where the more concentrated area of flood-impacted to the “very high” categorized prone to
leakage accumulation, this also proves that the condition of flood and plastic accumulation
affect each other [33].

Another impact of the higher accumulation is the condition of the waste management
services provided. Imploring from the regulation applied to dispose of the solid waste
regarding plastic waste, disposal to the waterway could occur due to the overloaded
capacity or improper management.

According to the waste management service, one of the stages that impacted the
leakage events more is the collection system. Along with the same condition as the waste
management services, the collection system implies the occurrence of the littering spots and
uncontrolled dumpsites caused by uncollected waste. This condition is also conducted to
identify land-based waste disposed into the waterway with a lack of collection [34]. We saw,
in Vientiane, how the analysis impacted the recorded route using the GPS Logger, which
led to a lower accumulation of leakage in the mainstream and “very low” categorized
leakage in the rural areas.

Lastly, the riverbank environment impacts the amount of leakage. It is regarded from
the riverbank area’s rejuvenation and revitalization, whether it has more pavement or
vegetation. According to [6], city pavement causes more plastic input to the river. A similar
case improved from the concentrated leakage pathway accumulation in the urban area,
which also occurred in both study areas.

4. Discussion

This study used comparisons of primary data collection from littering spots to de-
termine the degree of plastic leakage into waterways. With a mobile app designed to
streamline macroplastic survey data collection, we compared our GIS-based modelling
analysis with the primary data collection to calculate the density based on the recorded
data acquisition in the particular locations. The density of littering spots to the nearest
riverbank area aided in understanding potential leakage sources to the waterway. An
index calculation was implemented between pathway accumulation and the littering spot
density to provide a comparison in which higher accumulation impacted the higher index
regarding littering spots.

As shown in Figure 12 above, the relationship between the littering spots and pathway
accumulation is proportionally linear. According to the index calculation, the higher
littering hotspot density occupies the higher accumulation index in the river. Leakage
accumulation in Ubon Ratchathani represents a gradual correlation between littering spot
density and pathway accumulation in the river. As seen in Figure 10, leakage in Ubon
Ratchathani is varied, and most of the higher density of leakage sources implied high to
very high accumulation. This also defined how the concentrated accumulation depends on
the littering spots in the same configuration.

Unlike provincial Ubon Ratchathani in Thailand, Vientiane capital implored a more
stagnant comparison. As more results are detected in very low to low accumulation,
Vientiane still features a more concentrated accumulation in higher littering spots. However,
accumulation categorized as “high” is concentrated on the higher leakage density index
(4–8.5), implying the relative linear proportion with the field survey. Vientiane also detects
more concentrated higher leakage in the higher density, leading to the probability of leakage
in the urban area.

There is a correlation of the material accumulation in the waterway where both findings
show higher accumulation in the urban area. This also implies the higher intensity of human
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activity, which leads to more littering spots, impacting the accumulation and abundance of
plastic waste leakage. Some previous studies on riverine plastics were detected in urban
areas with a high density of settlement [6,7,35,36]. However, this also indicated that a control
mechanism at the riverbank for the littering spots is the direct solution.

For further direct solutions, the result of plastic leakage source hotspots was compiled
with the amount of plastic leakage detected in the waterway. Therefore, an improvement
in measuring the plastic waste discharge to the river should comprehend the control
mechanism. In addition, real-time monitoring integrated with closed-circuit monitoring
assisted the mitigation system for plastic leakage in the waterway.
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5. Conclusions

The overall efforts in this study demonstrate the effectiveness of the proposed method
for predicting plastic leakage density and its sources using multi-source geospatial data with
a fuzzy overlay approach. Here, the methodology is compatible with the mitigation system
for preventing plastic leakage in the provincial and capital areas. This approach can be more
cost-effective and practical once tailored to meet each case’s use. The application of fuzzy
overlay methodology and overlay analysis together can be used as a rapid assessment tool
when the model is updated to use only secondary open data available online. To support this
approach, fast field surveys and assessments should be conducted in priority areas.

Moreover, the increased urbanization and population growth rate are responsible
for an unaccountable amount of plastic pollution [37]. Thus, if we have limited to no
action, the plastic pollution crisis will occur in the LMRB in the future. Therefore, this
approach addresses the initial downstream approach to combat the exiting plastic waste in
the environment.

Author Contributions: Conceptualization, D.T.-T. and A.N.R.; Formal analysis, D.T.-T. and A.N.R.;
Methodology, D.T.-T., A.N.R., K.G., A.C. and M.T.; Supervision, D.T.-T. and K.G.; Visualization,
D.T.-T., A.N.R. and A.C.; Writing—Original draft, D.T.-T., A.N.R., K.G., A.C. and M.T.; Writing—
Review & editing, D.T.-T. and A.N.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The full story of the initiative and workflow of this study has been
published under the pLitter platform (plitter.org, accessed on 19 May 2022), a portfolio by the
Geoinformatics Center of Asian Institute of Technology to focus the investigation on plastic pollution



Sustainability 2022, 14, 7879 18 of 22

issue using digital technology solutions. The visualization of data and results are also available on
https://arcg.is/KbfOS0, accessed on 19 May 2022, under a StoryMap concept.

Acknowledgments: This study was contemplated with the considerable effort from the local partners
of Ubon Ratchathani University, Thailand, and the National University of Laos, Laos PDR. High
appreci-ation is delivered to Pawena Limpiteeprakan, Sanga Tubtimhin, College of Medicine of
Public Health, led the primary data collection in Ubon Ratchathani. Furthermore, for directing the
survey in Vientiane, Vatthanamixay Chansomphoun and Souvanna Phengsisomboun of the Faculty
of Environmental Science. And, special thanks to Kakuko Nagatani-Yoshida, Global Coordinator of
Chemicals and Pollution Action Subpro-gramme of the United Nations Environment Programme,
regarding her supervision of the study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Fuzzy Indicators

Related to the identification of land-based leakage identification based on the potential
parameters, we developed the indicators into three based on the dependencies of each
indicator on the potential occurrence of plastic waste leakage. Here, Table A1 shows
how the parameters are distributed based on the type of indicators. To differentiate each
indicator based on the response to the potential of plastic waste leakage, it is divided into
increasing (+), decreasing (−), and depending on contribution.

Table A1. Data List per Indicators.

C
on

tr
ib

ut
io

n

Static Indicators
(Regard to: General State, Background

of the Study Sites)

Dynamic Indicators
(Regard to: Actions, Active

and Human Activity)

Natural Indicators
(Regard to: Potential
Indicators, Cannot Be

Changed
or Scenario Provided)

+

1. Location of POIs (Point of Interest)

Included: location of
human-based activities

2. Population Density

3. Economic Status

Included: resident types

4. Waste Generation
5. Local Waste Management

Included: Disposal and dumping
location, open dumpsite, etc.

6. Land Use

1. Human Littering
2. Land-based Activities
3. Sea-based Activities

Natural Disaster
Included: historical

flooding records

− Waste Management Capacity
1. Applied Local policy
2. Clean-up Frequency Precipitation

D
ep

en
di

ng

1. City characteristics identification

Each city or administrative area will be
developed its indicator depends

on the majority

2. Tourism city, industrial city

Seasonal activities Monsoon

https://arcg.is/KbfOS0
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As each of the contributions were developed from the different types of indicators and
data, the list of indicators is listed below. The definition of each indicator as static, dynamic,
and natural is based on the integral changes in the occurrence of plastic waste leakage.

1. Static indicators implored the condition of the status of the city, which is unlikely to
change over the time;

2. Dynamic indicators intrinsically change in temporal, spatial, and ecological intervention;
3. Natural indicators implied the environment and hazard conditions that impacted the

occurrence of plastic leakage.

To define each parameter, below are the list of data in each parameter which is also
included in the judgment in fuzzy membership.

Definition of Input Indicators
Static indicator

1. Location of POIs (Point of Interests) includes the location of public facilities that might or
possibly generates plastic waste in the daily activities, i.e., hotel, restaurant, schools, temples,
and worship places.

2. Population density is a measurement of population per unit area or unit volume. The high
population density would result in an increase of material needs and waste production. In
compliance to improve the population density, residential type is also regarded to improvise
the distribution and possibility to the leakage.

3. Economic status is measured by GDP, which is a monetary measure of the value of all final
goods and services produced in a period (quarterly or yearly). GDP is linked to the amount
of waste produced and its composition.

4. Waste generation (rate) is measured by waste weight produced per capita per day and is the
basic information needed to plan and implement waste management systems. Some areas
are based on the estimation in each municipality.

5. Local waste management covers the information of the waste management applied by the
municipality and includes coverage, collection route, collection services, station, and waste
depot (informal recycling). Disposal sites included in local waste management are used to
define the location of waste accumulated in each city.

6. Land use improvises the information regarding the city pavement, urban and rural area,
inhabited area, and vegetation.

7. Waste management capacity presents the ability to collect, treat, and recycle waste, which
determines the waste collection rate and the amount of mismanaged waste entering the
environment.

8. City characteristics involve the type of city, whether prevalent in industry or tourism,
regarding assessing the possible waste generated in the activity basis.

Dynamic indicator

1. Human littering includes littering from tourist and residents and are mainly concentrated in
rivers or on coastal/beaches.

2. Land-based activities include daily human activities, mainly regarding detecting the plastic
value chain.

3. Sea-based activities include aquaculture and fishery mainly referring to farming and fishing
activities, in which that latter is a major litter contributor via discarding fishing gear
(including monofilament lines, nylon netting, styrofoam buoys), etc.

4. Applied local policy.
5. Clean frequency is the number of waste cleanup activities at a certain location during a

specific period.
6. Seasonal activities.

Natural indicator

1. Natural disasters such as floods can cause the generation and widespread diversion of
land-based litter.

2. Monsoon (high tide and wind) is a seasonal reversing wind and tidewater accompanied by
precipitation changes.

3. Precipitation can lead to the formation of surface runoff, which carries land surface litter
into the river/ocean.
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Appendix B. Morphometric Analysis

To calculate the morphometric analysis, the 22 morphometric parameters are listed below
to imply the landform calculation on the sub-basin identification. Table A2 below shows
the listed morphometric parameters, where scale and topography parameters are weighted
greater to comprehend the identification of hydrological characteristics on the watershed.

Table A2. List of morphometric parameters and the remarks.

No Type Purpose(s) Parameter Unit

Value Range Correlation
with
Peak

Runoff
Remark Method Notes

Source
(for

Selection
Parameter)

Ubon
Ratchathani,
Thailand

Vientiane,
Laos

1

Scale

Numerical
quantification

for stream
discharge

Basin Area km2 272.17–
5155.26

350.02–
41,442.3 Positive

Estimate the
stream

discharge

Calculate based on the
wastershed delineated

feature
[27–29]

2 Basin
Perimeter km 106.58–

535.22
86.84–

2271.72 Positive
Estimate the

stream
discharge

Calculate based on the
wastershed delineated

feature
[27–29]

3 Basin
Length km 78.61–

561.29
175.94–
1060.2 Positive

Estimate the
stream

discharge
based on the
downstream

Calculate from the
downstream

identification from
each watershed to

another neighboring
watershed

[27–29]

4

Topography

Identification
of topograph-
ical features

and its
possible

constraint
through the
waterflow

Maximum
Elevation m 158–1442 1100–2701 Positive

Identify the
highest

ground level
in each

watershed

Generating the
maximum number

with extend of
watershed as the zonal

calculation

[27,29]

5
Basin

Mouth
Elevation

m 60–126 142–303 Positive

Identify the
the

minimum
elevation in

each
watershed

Extracting the
elevation only in the
streams, generating

the zonal statistics by
its mean value

[27,29]

6 Total Basin
Relief m 50–1375 935–2482 Positive

Calculating
the

differences
between

highest and
lowest

elevation

Pixel based
mathematical

operation from
maximum and

minimum elevation
per each watershed

[8,9,27–29]

7 Relief Ratio - 0.158–8.18 1.81–10.39 Positive

Identify the
roughness of
the elevation

by its
longest scale

Ratio divided with the
basin length with

calculation on
watershed zone based

[8,9,27–29]

8 Mean
Basin Slope

0 1.82–6.19 2.7–20.75 Positive

Lower
velocity of

runoff iden-
tification

Slope generation,
continued with zonal
statistics calculation

per watershed for the
mean value per

watershed

[27,28]

9 Mainstream
Slope

0 13.93–72.73 0.977–4.56 Positive
Reduction of

runoff on
the stream

Calculation of mean
slope in the

mainstream zone
[27,28]

10 Slope Ratio - 5.91–19.93 0.124–0.586 Negative

Factor
between
extreme

slope value

Calculating ratio
between average

mainstream slope and
overall average slope

in one watershed

[27,28]

11 Ruggedness
Number - 0.012–0.461 0.0025–

10.03 Positive
Indicator of
topography
sharpnesses

Calculating from the
basin relief multiply

with drainage density
to refer the water

system

[8,9,27,29]

12

Shape

Impact
throught the
volume and
velocity of

the
wastershed

area

Form
Factor - 0.0011–

0.183
0.00067–

0.313 Positive For runoff
intensity

Ratio calculation of
area and maximum

basin length
[8,9,27–29]

13 Circularity
Ratio - 0.1148–

0.319 0.099–0.583 Positive
Estimate the
catchment

area

Calculated by area and
perimeter of each
watershed area

[8,9,27–29]

14 Elongation
Ratio - 0.037–0.482 0.029–0.632 Negative

Determining
basin

analysis

Ratio calculation of
area and maximum

basin length
[8,9,27–29]
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Table A2. Cont.

No Type Purpose(s) Parameter Unit

Value Range Correlation
with
Peak

Runoff

Remark Method Notes

Source
(for

Selection
Parameter)

Ubon
Ratchathani,
Thailand

Vientiane,
Laos

15

Drainage
Network

Runoff
identification
based on the
hydrological

analysis

Stream
Order - 1–7 1–8 -

Define the
level of river,
higher level

indicates
higher

possibility
or stream
receiver

Hierarchical order of
stream level [9,27,29]

16 Stream
Number - 19–346 229–25,420 Positive

Total stream
number each

watershed

Counting each stream
level on each

watershed
[27–29]

17 Stream
Length km 67.99–

1685.15
266.14–
31,894.3 Positive

Stream
length for

each
watershed

Summarize the length
of each stream and

ordered based on the
level in each
watershed

[8,9,27–29]

18 Mainstream
Length km 9.69–320.11 42.39–

3960.93 Positive

Maximum
length from

each
watershed

Selected the highest
and possible

mainstreams of each
watershed and

calculate the length by
the information of

attributes

[8,27–29]

19 Stream
Frequency km−2 0.017–0.025 0.019–33.56 Positive

Stream
number per
watershed

area

Dividing the stream
number per level with
area of each watershed

[8,9,27,29]

20 Drainage
Density km−1 0.249–0.381 0.0022–5.23 Positive

Stream
length per
watershed

area

Calculate by dividing
stream length of each

level with the
watershed area

[8,9,27–29]

21 Texture
Ratio km−1 0.112–0.646 0.35–134.42 Positive

Stream
number per
watershed
perimeter

Density calculation
from stream number
and the perimeter of

each watershed

[8,9,27]

22 Bifurcation
Ratio - 1.56–9.23 1.34–44.41 Negative

Quantify
the measure-
ment of how

long the
discharge

takes time to
reach outlet
based on the

stream
numbers

Identify the character
of each stream level

with other higher level,
calculated from each

watershed

[8,9,27,29]
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