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Abstract: This paper presents an alternative way of making predictions on the effectiveness and
efficacy of Renewable Energy (RE) policies using Decision Trees (DT). As a data-driven process
for decision-making, the analysis uses the Renewable Energy (RE) target achievement, predicting
whether or not a RE target will likely be achieved (efficacy) and to what degree (effectiveness),
depending on the different criteria, including geographical context, characterizing concerns, and
policy characteristics. The results suggest different criteria that could help policymakers in designing
policies with a higher propensity to achieve the desired goal. Using this tool, the policy decision-
makers can better test/predict whether the target will be achieved and to what degree. The novelty
in the present paper is the application of Machine Learning methods (through the Decision Trees)
for energy policy analysis. Machine learning methodologies present an alternative way to pilot
RE policies before spending lots of time, money, and other resources. We also find that using
Machine Learning techniques underscores the importance of data availability. A general summary
for policymakers has been included.

Keywords: energy policy; policy effectiveness; policy efficacy; decision trees; machine learning

1. Introduction

The main motivation of this paper is to provide an alternative to elaborate predictions
on the effectiveness and efficacy of Renewable Energy (RE) policies. Critical situations
highlight the motivation of this analysis, like the non-achievement of the 2020 RE targets by
the countries (e.g., France) [1]. RE policies were selected to be analyzed for their relevance
towards energy efficiency improvement and direct impact on GHG emissions, but also due
to their data availability for the conformation of the database.

The main contribution of this proposal is the provision of a data-driven solution that
may support policymakers in designing policies with a higher propensity to achieve the
desired goal (as when designing the policies, decision-makers can test/predict whether the
target will be achieved or not or in what degree).

Machine Learning (ML) has been selected for the analysis. It includes different tech-
niques, such as Support Vector Machine (SVM), Artificial Neural Networks (ANN), Random
Forest (RF), or Decision Trees (DT) [2]. Regarding the application of these techniques across
the energy field, there are two main ideas to be highlighted. First, ML has been mainly
used to analyze patterns of energy features like energy consumption and prices, using the
results to design alternatives and solutions that better respond to specified conditions (like
the weather or the integration of RE resources) [3]. Second, ML techniques are generating
new opportunities for innovative research in energy, especially connected with topics like
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economics and finance [4]. These include different applications like risk management,
trading strategies, energy prices, demand forecasting, and analyzing macro/energy trends,
among others.

A review of recent literature examining Machine Learning in the energy field
(Appendix A) reveals the growing use of ML techniques, especially for the short-term
predictions in the energy industry. The studies considered mainly use neural networks,
support vector regression techniques, or Decision Trees, although other methodologies are
being developed and applied.

The literature recognizes the potential of applying the ML methods to the tasks
of predicting elements in different stages of the energy provision process, from utility
scheduling [5] to Demand-Side-Management [6]. To our knowledge, this is one of the few
analyses done for energy policy analysis.

Literature research suggests that there is a growing interest in applying Decision Trees
for finding solutions to short-term utilizations, such as security dispatches [7], as there is
for long-term ones as planning of energy storage systems [6]. The results indicate that the
application of Decision Trees minimizes the risk of contingencies or structural problems,
which can be translated into the potential for energy and economic savings [7,8].

Decision Trees (DT) have been successfully used in different energy systems applica-
tions. DT has an easy reasoning and reading process through what is known as induction
rules [9]. The induction rules prevent the existence of a total black box that characterizes
other types of techniques in which the internal logic is not that easy to be understood [10].
The rules have served as the base for developing real scheduling for optimizing electricity
generation and gas production [5].

Problem statements at the strategical, tactical, and operational levels can be observed
across the DT literature, for which different target users of the models have been observed,
including energy aggregators, planners in utilities, or energy planners.

Some of the benefits of the application of Decision Trees may be obvious such as their
ease of problem structuring and interpretability. However, the diversity of the challenges
associated with their application (and of other ML techniques) in policymaking include
the possible lack of understanding of a high share of public policy makers around their
applicability to solving prediction and the lack of data availability [11]. In addition, poor
communication between academics and researchers, and public policy decision-makers
may raise a communication barrier [12].

Nevertheless, the potential benefits of the application of Decision Trees support the
development of this analysis. Overall, this research brings up an easy-to-implement and
interpret modeling technique application while simultaneously contributing to filling the
gap in the literature on machine learning techniques for energy policy analysis.

This work contributes to proposing a novel orientation mechanism for policy analysis
through Decision Trees. Predictive analytics has been applied to provide the alternative of
anticipating RE share target achievement and its degree of fulfillment.

Such techniques support scientific research incorporation into the country’s policy
design, locating scientific progress as an essential key for development [13]; with this in
mind, the conclusions of this work are presented as a summary for policymakers. The
summary aims to leverage the key highlights of this work, serving as a reference point for
evidence-based energy policy making.

2. Materials and Methods

Building a DT is mainly divided into two stages: (1) tree building and (2) testing [5]. In
the building stage, the training data is partitioned using testing conditions. The first node
(at the top of the tree) acts as the root, specifying the testing condition for the following
branches, known as internal nodes. Each internal node can split into two or more sub-
spaces [10]. The terminal nodes (located in an end node) assign the classifications and are
also known as leaf nodes [14].
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In the testing stage, the performance of the model is tested [15]. Different methods can
be used for testing purposes (further explained in the validation section of this paper). An
iterative process of identifying the best performing tree aims to increase the performance
of the Decision Tree.

2.1. Algorithm

For DT, different types of algorithms are available; some of the most frequent ones
include CART, C4.5, CHAID, and QUEST YAN YAN [16]. They all share the task of
predicting the value of a dependent variable from a set of independent variables [3]. The
criteria to decide the splits depends on the algorithm [10]. Each algorithm leads to a
different way of building up the tree under three main elements [14]:

� Splitting decision: Selection of the independent variable with the strongest interaction
with the dependent variable in every step of the tree.

� Stopping decision: The splitting process is repeated for all input variables until the
defined tree levels are achieved.

� Assignment decision: The class assigned to each terminal node.

For this study, the CHAID (Chi-squared Automatic Interaction Detection) algorithm
was selected. This algorithm selects the variables for partitioning using Chi-square tests.

2.2. Data

The final dataset used to construct the DT was self-elaborated. The dataset is composed
of a sample of 292 observations. Each one reflects a set of RE policies (policy mixes)
assessed in a specific year and country, including their respective dependent variable
and independent variables. The variables composing the dataset have different origins.
A variables directory is presented in Appendix B (Tables A1–A9).

All the observations used for this analysis refer to the years 2004 to 2018. A total
of 89 policy programs were initially inputted. These policies were extracted from the
MURE-ODYSEE database [17]. When considering each policy program by its year and
country of implementation, 889 policy programs are presented. However, after integrating
them as policy mixes per year per country, the final data set consisted of 292 observations.
This conglomeration of the policy programs, i.e., policy mixes (done by grouping sets of
policies by year and place of implementation), can assess the RE target share achievement
(dependent variable). An individual assessment per policy program was not possible to be
carried out; as a result (dependent variable) that can be directly assessed by a single policy
was not identified in the literature.

An example of the RE policy programs integrated to generate the policy mixes used
for the database is provided in Table 1.

Table 1. Example of the integration of Policy mixes.

Policy
Mix No.

Year of
Evaluation Individual Policy Policy Instruments * Policy Subtypes

1 2004 Promotion of Electricity
from Renewable Sources Information/Education Information

campaigns

2 2005

Promotion of Electricity
from Renewable Sources Information/Education Information

campaigns
Mobility management

consulting and funding
program

Financial Grants/Subsidies
for investments

* The policy instruments and the subtypes can be reviewed in Appendix B (Table A10).

Existing online policy databases were searched. The MURE-ODYSEE database was
identified. It gathers policy programs under different energy topics, including RE poli-
cies. The policies included in this database represent policies of the European Union and
Schengen space countries.
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Other general data availability challenges were identified:

• Fragmented data: In the policymaking field, the availability of data can regard the
disposal of information from different sources and in diverse formats [18].

• Unreachable data: Even if national or international efforts are being taken to organize
data required for policy evaluation or other analysis, the reachability of the info may
be stressed by the open access to the data or its availability in only the mother tongue
languages.

• Disparities in data: The different purposes behind the data organization and sources
can result in disparity of information and their formats from source to source [3].

• Basic or non-existence information registration: In some cases, it can be noted that
there are no existing records on policy data or other cross-cutting topics that regard
the policy evaluation process [19].

To address these general challenges, we encourage the governments to share data
with relevant stakeholders; adopt a data openness approach around policies [17]; create
the infrastructure required to accumulate and generate reliable data [18]. In addition, ML
techniques can only be successfully employed with the recognition that efforts are required
from the governments to systematically assess the policy outcomes [20].

2.3. The Variables

• Dependent Variable

Effectiveness has been selected as the core of the assessment of policy performance
and it is defined as “the degree to which something is successful in producing a desired
result” [21]. The proxy measure of success or efficacy of RE policies is the share of RE in the
total energy consumption. The dependent variable of the effectiveness model is the degree
of Renewable Energy share achieved by country by year [22] (second column of Table 2).

Table 2. Estimation of the average intended growth by year.

Country Initial RE Share
Values in 2004

RE Target
Until 2020 Intended Growth

Average Intended
Growth by Year

(Threshold) *

EU 8.5 20 11.5 0.71875
Belgium 1.9 13 11.1 0.69375

* Average Intended growth by year (threshold) = (RE Target until 2020 − Initial RE share values in 2004)/number
of years in the period of analysis.

The EU defined a target of 20% of RE share from the total energy consumption by 2020.
In addition, member countries established binding national targets for raising their shares
under the Renewable Energy Directive [23]. The targets vary significantly by country,
reflecting the different stages each country is at for RE production and their resource
availability to expand the usage of RE sources. Contrasting examples range from 10% in
Malta to 49% in Sweden [24].

An alternative dependent variable has been considered. The focus on effectiveness
(the degree of achievement in producing the desired result) has been changed to efficacy
(whether or not the intended result is produced [25]). As a categorical variable, it is the
product of the binarization of the achievement of the RE share target (effectiveness model
dependent variable). The detailed procedure is described as follows:

• Step 1: The self-defined “RE Target until 2020” of every country [23] and the differ-
ence from the starting value “Initial RE share values in 2004” was used to calculate
their expected increase: “Intended growth”. Afterward, the “Intended growth” was
divided by the number of years in the period of analysis (16 years, from 2004 to 2020),
producing a value under the name of “average intended growth by year” (being the
reference threshold). Examples of the calculations are introduced in Table 2.
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• Step 2: The “Average Intended growth by year” (calculated threshold in Table 2) is
compared to the RE share achieved each year (achieved difference in RE share). To do
so, the “Achieved Difference in RE share” is calculated by subtracting the “Achieved
RE share” value of the consecutive year from the year of evaluation (Consecutive
year value—Year of evaluation value). An example of this estimation is presented in
Table 3.

• Step 3: For the dependent variable binarization (under the name of “Efficacy by
country”), if the “Achieved Difference in RE share” (step 2) is equal or lower than the
“Average Intended growth by year” (threshold Table 3), the value of 0 (non-efficacious)
is assigned. If the “Achieved Difference in RE share” is higher than the “Average
Intended growth by year”, the variable takes the value of 1 (efficacious). An example
of this estimation is presented in Table 4 and a representation by country for the year
2010 can be seen in Figure 1.

Table 3. Estimation of the intended growth by year.

Year of Evaluation Achieved RE Share Achieved Difference in RE Share

2005 8.5 0.600 *
2006 9.1

* Achieved Difference in RE share of 2005 = (RE share by year 2006) − (RE share by year 2005).

Table 4. Example of the estimation of the category of efficacy by country.

Year of
Evaluation

RE Share by
Year

Achieved
Difference in RE

Share

Average
Intended

Growth by Year
Efficacy by Country

2005 8.5 0.600 0.71875 0 Non-efficacious

2006 9.107 0.578 0.71875 0 Non-efficacious

2007 9.685 0.931 0.71875 1 Efficacious

2008 10.616 0.752 0.71875 1 Efficacious

2009 11.368 1.254 0.71875 1 Efficacious
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• Independent Variables

As part of the data organization, it is important to define the attributes that will
be tested in the model for prediction purposes [10]. Attributes that characterize energy
policy effectiveness from different angles were identified. Through the incorporation of the
effectiveness concerns, a multidisciplinary assessment has been done. The aim is to enrich
the proposed data-driven analysis and perform an integral analysis.

The independent variables have been organized into three groups. A complete de-
scription of each variable is presented in Appendix B (Tables A1–A9), together with the
possible values that each variable can take, their units, etc.

Country Characteristics include variables that regard sociodemographic and other
contextual conditions of the country. To enable the model to be used for future prediction
purposes, all the independent variables of this group report the data from one year before
the evaluation year (year-1 format). The variables of this kind are introduced in Table 5
below.

Table 5. Country Contextual Characteristics variables.

Variables

Country location Population
EU member Human Development Index (HDI)

Member of the Eurozone Harmonised Index of Consumer Prices (HICP)

Population Total people at risk of poverty or social exclusion by age
and sex

Long-term interest rate Gini coefficient
Cooling degree days Average household size
Heating degree days Air pollutants by source sector

Final energy consumption Pollution, grime, or other environmental problems
Total energy supply by product Exposure to air pollution

Renewables and biofuels Environmental protection expenditure
Oil and petroleum products Total general government expenditure

Non-renewable waste Number of national civil servants in central public
administration

Nuclear heat Feed-in Tariff (FiT)-Small Hydro
Electricity FiT-Biomass

Solid fossil fuels FiT-Waste
Final energy supply FiT-Waste

Expenditure on research and
development FiT-Geothermal

Gross Domestic Product (GDP) per
capita FiT-Marine

1. Policy Characteristics include the variables that are self-calculated by using other
database variables. These variables provide radiography of the policy mix at the
moment of performing the analysis. For example, this group includes the number of
policies in the sample and the number of years of operation. This group also includes
the amount, types, and subtype of instruments included in the sample. The different
types and subtypes of policies that a policy mix can include are detailed in Appendix B
(Table A10). The variables under this group are introduced in Table 6 below.

2. Policy Effectiveness Concerns, these variables are focused on assessing policy effective-
ness. The literature on energy policy effectiveness is extensive [26]. These variables
have been identified based on the systematic review of energy policy effectiveness
concerns by Ortiz and Leal. We follow the concerns identified and categorized by
Ortiz and Leal. The categorization is based on eight core groups. With further analysis
of their database, additional concerns and metrics are identified. All the variables in
this category have a year-1 format. An important observation is that from the eight
condensed groups of concerns, it is only possible to find variables included in seven
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groups; no data for the employment subcategory are identified. The variables under
this group are introduced in Table 7 below.

Table 6. Policy Characteristics variables.

Variables

Other related policies
Average duration of the programs

Average years of activity
Median years of activity
Number of RE programs

Policy Type
Policy subtype

Table 7. Policy Effectiveness Concerns variables.

Category Subcategory Variable

Economic

1. Affordability

Electricity price for households
Electricity prices for non-household consumers

Gas Price for households
Gas prices for non-household consumers

2. Economic
Competitiveness

Market share of the biggest competitor
Energy productivity

Energy intensity of the economy
Energy intensity of the population

3. Accessibility Energy balance
Energy import dependency

Environmental

4. Impact on
climate-change

Total Greenhouse gas emissions
Greenhouse gas emissions intensity of energy

consumption
5. Impact on the

environment
Increase in renewable electricity capacity

Energy efficiency

Social 6. Health Population unable to keep home adequately
warm by poverty status

Institutional
7. Governance

effectiveness and efficacy
Expenditure on energy and fuels expenditure

Environmental tax revenues (energy tax)

3. Results

The results of the two models (with the two dependent variables) are now presented,
including the tree diagram, the Decision Tree results, and the classification rules.

The results for the continuous dependent variable “RE share” are presented first as
the variable used for analyzing energy policy effectiveness and, therefore, the degree of RE
share achievement. Secondly, the categorical dependent variable “Efficacious by country”
results are presented.

3.1. Effectiveness Analysis

For the continuous variable used for the Energy Policy effectiveness model, the predict-
ing performance has been estimated using the Coefficient of Determination or R-squared. It
is estimated via the proportion of the variation in the dependent variable that is predictable
from the independent variables [27]. It has been calculated using the formula:
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R2 = 1 − SSres
SStot

= 1 − ∑ i(Yi − Yî)2

∑ i(Yi − γ)2

SSres = Residual sum of squared errors; Y actual values − Y predicted values
SStot = Total sum of squared errors; Y actual values − the mean value
Yi = actual y values
Yî = predicted y values
y = baseline model the mean
The validation procedure adopted was the ten cross-fold validation. This means that

the entire data was randomly partitioned into ten parts, nine parts were used for training
the model, and the remaining part was used for testing. This process is iterated ten times.

The R-squared compares the predicted values and the observed ones. As seen in the
calculation done below, with an R-squared value of 0.917, and as seen in Figure 2, the EP
effectiveness model estimates 91 percent of the variation in the dependent variable based
on the variation in the independent variables.

R2 = 1 − 5096.5
61529

= 1 − 0.82 = 0.917
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3.1.1. Tree Diagram

The tree diagram is the graphic representation of the model. The technique for
determining the optimal pathway in a Decision Tree is known as the “rollback method” [28].
To apply this method, the tree is analyzed from the bottom to the top (or right to the left in
this case) by considering the later decisions first. The Decision Tree is presented in Figure 3.
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From the Decision Tree above, we find that:

• Final energy consumption is the best discriminator of Energy policy effectiveness.
• The subsequent branch on the lower side of the DT selected the Total energy supply

by renewables and biofuels as the second-best discriminator. The policy mixes included
in the three consecutive nodes present higher mean values, as the value of the total
energy supply by renewables and biofuels increases (with a 17,625.4 thousand TOE, the
mean value of RE share is 4%, with TOE between 17,625.4 and 24,616.4 the mean value
of the RE share is 11.4%, with TOE higher than 24,616.4 the mean value of the RE
share is 13.9%). Two child nodes are derived from this branch (child nodes), for which
the Gas prices for non-household consumers and the Harmonised Index of Consumer Prices,
respectively, are the best next discriminators.

• For the next five branches above, a second-best predictor has been identified: Final
energy consumption. If the Final energy consumption is between 38.7 and 71.9 million
TOE, and the country is located in the Western area of Europe, the predicted mean
value for the RE Target to be achieved is 4.4%, while if located in the Eastern the mean
value is 9.6%.

• Similar to the previous observation, if the Final energy consumption is between 34.2 and
38.7 million TOEs, and the country is located in the Western part of Europe, the
predicted mean value for the RE Target to be achieved is 30.4%, compared to the mean
value of the European Union which is 13.5%.

• If the Final energy consumption is between 24.6 and 34.2 million TOE, and the Average
years of activity of the policy mix is higher than 6 years, the mean value predicted to be
achieved is 34.4%, compared to a 25.3% if lower than 6 years.

• If the Final energy consumption is between 18.1 and 24.6 million TOE, and the Population
is higher than 5.2 million, the RE target mean value predicted to be achieved is 23.1%,
compared to 64.6% if lower than the 5.2 million in the population.

• If the Final energy consumption is between 15.3 and 18.1 million TOE, and the Energy
import dependency is lower than 55.8%, in between 55.8% and 67.6%, or higher than
67.6%, the mean values of the predicted RE target are respectively 16.4%, 10.8%, and
32.6%. As import dependency increases in countries with a final energy consumption
between 15.3 and 18.1 million TOE, the share of renewable energy also increases.

• Whenever the Final energy consumption is in between 4.1 and 15.3 million TOE, the next
best predictor is the Total Energy Supply with Renewables and Biofuels. At this level, an
increase in RE share mean value is observed as the variable increases (from 981.6 to
1566.9 thousand TOE). A third level can be observed, in which if the country is a
member of the Eurozone, the predicted RE target is 10.1% compared to 14.1% if not. If
the GHG emissions intensity of energy consumption is lower than 95.4%, the predicted RE
target value is 29.9%, falling to 16.2% if higher than 95.4%.

• Finally, the second predictor on the upper branch of the tree is the Total Energy Supply
with Renewables and Biofuels. If its value is lower than 981.6 thousand TOE, the predicted
RE Target to be achieved is 19.4%, compared to 33.7% if the predictor is higher than
981.6 thousand TOE.

The DT data has been organized in a table (Table 8) presenting the details for each
node. It includes the number of observations (N) included in each node and the percentage
of observations that it represents. The table also presents the predicted value of each node,
being the policy mix prediction values. The table also includes the parent node, as the
immediate ascendant node and the Primary Independent Variable, as the most influential
attribute in determining the tree partition. The terminal nodes of the model have been
highlighted in Table 8.
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Table 8. Decision Tree results in a table format.

Node N Percent Predicted
Mean

Parent
Node Primary Independent Variable

0 292 100.0% 20.0
1 29 9.9% 26.8 0 Final energy consumption
2 58 19.9% 14.7 0 Final energy consumption
3 30 10.3% 20.0 0 Final energy consumption
4 29 9.9% 43.2 0 Final energy consumption
5 29 9.9% 30.0 0 Final energy consumption
6 30 10.3% 22.0 0 Final energy consumption
7 29 9.9% 7.0 0 Final energy consumption
8 58 19.9% 10.8 0 Final energy consumption
9 14 4.8% 19.4 1 TES renewables and biofuels
10 15 5.1% 33.7 1 TES renewables and biofuels
11 15 5.1% 4.8 2 TES renewables and biofuels
12 21 7.2% 12.2 2 TES renewables and biofuels
13 22 7.5% 23.7 2 TES renewables and biofuels
14 10 3.4% 16.5 3 Energy import dependency
15 10 3.4% 10.9 3 Energy import dependency
16 10 3.4% 32.6 3 Energy import dependency
17 14 4.8% 64.7 4 Population
18 15 5.1% 23.1 4 Population
19 14 4.8% 25.4 5 Average years of activity
20 15 5.1% 34.4 5 Average years of activity
21 15 5.1% 30.4 6 Country location
22 15 5.1% 13.6 6 Country location
23 15 5.1% 4.5 7 Country location
24 14 4.8% 9.7 7 Country location
25 13 4.5% 4.1 8 TES renewables and biofuels
26 20 6.8% 11.4 8 TES renewables and biofuels
27 25 8.6% 13.9 8 TES renewables and biofuels
28 10 3.4% 10.1 12 Member of the Eurozone
29 11 3.8% 14.1 12 Member of the Eurozone

30 12 4.1% 30.0 13 Greenhouse gas emissions intensity
of energy consumption

31 10 3.4% 16.2 13 Greenhouse gas emissions intensity
of energy consumption

32 10 3.4% 9.8 26 Gas prices for non-household consumers
33 10 3.4% 13.0 26 Gas prices for non-household consumers
34 10 3.4% 10.4 27 Harmonised index of consumer prices
35 15 5.1% 16.2 27 Harmonised index of consumer Pprices

3.1.2. Classification Rules

The classification rules (also known as induction rules) reveal the paths followed
by the tree for making predictions, and identifying routes with different degrees of RE
target achievement. Via the classification rules, the replication of the tree is possible using
modeling software (e.g., Microsoft Excel or Python).

The identification and application of the rules can simplify the definition of policy
profiles, making it easier to determine the possible course of action for certain choices. The
classification rules generated by the model are presented in Table 9.
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Table 9. Classification Rules.

Node Rules

Node 9 IF (Finalenergyconsumption ≤ 4.169) AND (Renewablesandbiofuels ≤ 981.668) THEN RE share = 19.40%.
Node 10 IF (Finalenergyconsumption ≤ 4.169) AND (Renewablesandbiofuels ≥ 981.668) THEN RE share = 33.72%.
Node 11 IF (Finalenergyconsumption ≥ 4.169 AND ≤ 15.364) AND (Renewablesandbiofuels ≤ 981.668) THEN RE share = 4.84%.

Node 28 IF (Finalenergyconsumption ≥ 4.169 AND ≤ 15.364) AND (Renewablesandbiofuels ≥ 981.668 AND ≤ 1566.912) AND
(MemberoftheEurozone = 1) THEN RE share = 10.11%.

Node 29 IF (Finalenergyconsumption ≥ 4.169 AND ≤ 15.364) AND (Renewablesandbiofuels ≥ 981.668 AND ≤ 1566.912) AND
(MemberoftheEurozone = 1) THEN RE share = 14.12%.

Node 30
IF(Finalenergyconsumption ≥ 4.169 AND ≤ 15.364) AND (Renewablesandbiofuels ≥ 1566.912)

AND(Greenhousegasemissionsintensityofenergyconsumption ≤ 95.4)
THEN RE share = 29.95%.

Node 31
IF (Finalenergyconsumption ≥ 4.169 AND ≤ 15.364) AND (Renewablesandbiofuels ≥ 1566.912) AND

(Greenhousegasemissionsintensityofenergyconsumption ≥ 95.4)
THEN RE share = 16.23%.

Node 14 IF (Finalenergyconsumption ≥ 15.364 AND ≤ 18.188) AND (Energyimportdependency ≤ 55.823) THEN RE
share = 16.49%.

Node 15 IF (Finalenergyconsumption ≥ 15.364 AND ≤ 18.188) AND (Energyimportdependency ≥ 55.823 AND ≤ 67.691) THEN
RE share = 10.88%.

Node 16 IF (Finalenergyconsumption ≥ 15.364 AND ≤ 18.188) AND (Energyimportdependency ≥ 67.691) THEN RE
share = 32.63%.

Node 17 IF (Finalenergyconsumption ≥ 18.188 AND ≤ 24.680) AND (Population ≤ 5.276) THEN RE share = 64.67%.
Node 18 IF (Finalenergyconsumption ≥ 18.188 AND ≤ 24.680) AND (Population ≥ 5.276) THEN RE share = 23.13%.
Node 19 IF (Finalenergyconsumption ≥ 24.68 AND ≤ 34.24) AND (Averageyearsofactivity ≤ 6) THEN RE share = 25.37%.
Node 20 IF (Finalenergyconsumption ≥ 24.68 AND ≤ 34.24) AND (Averageyearsofactivity ≥ 6) THEN RE share = 34.40%.

Node 21 IF (Finalenergyconsumption ≥ 34.240 AND ≤ 38.742) AND (CountryLocation = “European Union”) THEN RE
share = 30.44%.

Node 22 IF (Finalenergyconsumption ≥ 34.24083 AND ≤ 38.742) AND (CountryLocation = “European Union”) THEN = RE
share = 13.59%.

Node 23 IF (Finalenergyconsumption ≥ 38.742 AND ≤ 71.933) AND (CountryLocation = “Eastern”) THEN RE share = 4.46%.
Node 24 IF (Finalenergyconsumption ≥ 38.742 AND ≤ 71.933) AND (CountryLocation = “Eastern”) THEN RE share = 9.68%.
Node 25 IF (Finalenergyconsumption ≥ 71.933) AND (Renewablesandbiofuels ≤ 17,625.451) THEN RE share = 4.08%.

Node 32 IF (Finalenergyconsumption ≥ 71.933) AND (Renewablesandbiofuels ≥ 17,625.451 AND ≤ 24,616.453) AND
(Gaspricesfornonhouseholdconsumers ≤ 8.734) THEN RE share = 9.82%.

Node 33 IF (Finalenergyconsumption ≥ 71.933) AND (Renewablesandbiofuels ≥ 17,625.451 AND ≤ 24,616.453) AND
(Gaspricesfornonhouseholdconsumers ≥ 8.734). THEN RE share = 12.98%.

Node 34 IF (Finalenergyconsumption ≥ 71.933) AND (Renewablesandbiofuels ≥ 24,616.453) AND
(HarmonisedIndexofConsumerPrices ≤ 99.09) THEN RE share = 10.43%.

Node 35 IF (Finalenergyconsumption ≥ 71.933) AND (Renewablesandbiofuels ≥ 24,616.453) AND
(HarmonisedIndexofConsumerPrices OR ≥ 99.09) THEN RE share = 16.21%.

Command Orders (IBM, 2021): AND = And, IF = If, OR = Other than, THEN = Compute.

3.2. Efficacy Analysis

For categorical dependent variables, the performance of the model results by the
calculation of the accuracy of the model (overall right prediction of the positive and
negative classes) [29]. It is calculated using the following formula:
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Accuracy =
TP + TN

TP + TN + FP + FN
TP (True Positive): amount of right predictions for the positive class in the model.
TN (True Negative): amount of right predictions for the negative class in the model.
FP (False Positive): amount of wrong predictions for the positive class in the model.
FN (False Negative): amount of wrong predictions for the negative class in the model.

Accuracy =
107 + 111

107 + 111 + 35 + 39
= 0.746

The accuracy rate of 74.6% is expressed in the confusion matrix (Table 10). It reflects
the overall percentage of correct classifications.

Table 10. Confusion Matrix.

Classification

Observed
Predicted

Non-Efficacious Efficacious Percent Correct

Non-Efficacious 111 39 74.0%
Efficacious 35 107 75.4%

Overall Percentage 50.0% 50.0% 74.6%

With the results displayed in the Confusion Matrix, the Sensitivity (True positive
rate) and Specificity (True negative rate) measures can be calculated. Sensitivity, also
known as True Positive Rate, measures how well a test can identify true efficacious. Speci-
ficity, also known as True Negative Rate, measures how well a test can identify true
non-efficacious [29]. For the efficiency analysis, Sensitivity refers to the rate of observations
predicted as efficacious and Specificity as non-efficacious. They are calculated using the
following formulas:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

TP (True Positive): amount of right predictions for the positive class in the model.
FN (False Negative): amount of wrong predictions for the negative class in the model.
TN (True Negative): amount of right predictions for the negative class in the model.
FP (False Positive): amount of wrong predictions for the positive class in the model.
The Sensitivity and Specificity of the RE efficacy model are calculated below:

Sensitivity = 107/(107 + 35) observations = 0.754

Specificity = 111/(111 + 39) observations = 0.740

The results for the Energy Policy efficiency analysis are presented below, including
the Decision Tree Diagram (Figure 4), the DT result in a table (Table 11), findings and
Classification rules (Table 12).
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Table 11. Decision Tree results in a table format.

Node Non-
Efficacious Efficacious Total Predicted

Category
Parent
Node Primary Independent Variable

Number of
policies

Percentage
of

policies

Number
of

policies

Percentage
of

policies

Number
of

policies

Percentage
of

policies
Variable used to split the node

0 150 51.40% 142 48.60% 292 100.00% Non-
efficacious

1 140 56.00% 110 44.00% 250 85.60% Non-
efficacious 0 Fiscal

2 10 23.80% 32 76.20% 42 14.40% Efficacious 0 Fiscal

3 20 69.00% 9 31.00% 29 9.90% Non-
efficacious 1 Gas price for households

4 23 32.40% 48 67.60% 71 24.30% Efficacious 1 Gas price for households

5 97 64.70% 53 35.30% 150 51.40% Non-
efficacious 1 Gas price for households

6 2 11.80% 15 88.20% 17 5.80% Efficacious 2 Total energy supply by
product

7 7 58.30% 5 41.70% 12 4.10% Non-
efficacious 2 Total energy supply by

product

8 1 7.70% 12 92.30% 13 4.50% Efficacious 2 Total energy supply by
product

9 15 88.20% 2 11.80% 17 5.80% Non-
efficacious 3 FiT-Small Hydro

10 5 41.70% 7 58.30% 12 4.10% Efficacious 3 FiT-Small Hydro

11 26 92.90% 2 7.10% 28 9.60% Non-
efficacious 5 Total people at risk of poverty

12 41 68.30% 19 31.70% 60 20.50% Non-
efficacious 5 Total people at risk of poverty

13 30 48.40% 32 51.60% 62 21.20% Efficacious 5 Total people at risk of poverty

14 17 37.00% 29 63.00% 46 15.80% Efficacious 13 Harmonised index of consumer
Pprices

15 13 81.30% 3 18.80% 16 5.50% Non-
efficacious 13 Harmonised index of

consumer prices

16 8 24.20% 25 75.80% 33 11.30% Efficacious 14 Total general government
expenditure

17 9 69.20% 4 30.80% 13 4.50% Non-
efficacious 14 Total general government

expenditure

Table 12. Classification rules.

Node Rules

Node 9 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≤ 7.931) AND (FiTSmallHydro ≤ 0) THEN Non-efficacious (Prob = 0.882)
Node 10 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≤ 7.931) AND (FiTSmallHydro ≥ 0)THEN Efficacious (Prob = 0.583)
Node 4 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≥ 7.931) AND (Gaspricehousehold ≤ 10.731) THEN Efficacious (Prob = 0.676)

Node 11 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≥ 10.731) AND (Peopleatriskofpovertyorsocialexclusionbyageandsex ≤ 18) THEN
Non-Efficacious (Prob = 0.928).

Node 12 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≥ 10.731) AND (Peopleatriskofpovertyorsocialexclusionbyageandsex ≥ 18
AND ≤ 23.5) THEN Non-efficacious (Prob = 0.683).

Node 16 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≥ 10.731) AND OR (Peopleatriskofpovertyorsocialexclusionbyageandsex ≥ 23.5)
AND (HICP ≤ 99.91) AND (Totalgeneralgovernmentexpenditure ≤ 49.2) THEN Efficacious (Prob = 0.757).

Node 17 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≥ 10.731) AND (Peopleatriskofpovertyorsocialexclusionbyageandsex ≥ 23.5)) AND
(HICP ≤ 99.91) AND (Totalgeneralgovernmentexpenditure ≥ 49.2) THEN Non-efficacious (Prob = 0.692).

Node 15 IF (FiscalTaxC.TaxI = 1) AND (Gaspricehousehold ≥ 10.731) AND (Peopleatriskofpovertyorsocialexclusionbyageandsex ≥ 23.5) AND
(HICP ≥ 99.91) THEN Non-efficacious (Prob = 0.812).

Node 6 IF (FiscalTaxC.TaxI = 1) AND (Totalenergysupplybyproduct ≤ 33,202.406) THEN Efficacious (Prob = 0.882).

Node 7 IF (FiscalTaxC.TaxI = 1) AND (Totalenergysupplybyproduct ≥ 33,202.406) AND (Totalenergysupplybyproduct ≤ 46,284.6) THEN
Non-Efficacious (Prob = 0.583).

Node 8 IF (FiscalTaxC.TaxI = 1) AND (Totalenergysupplybyproduct ≥ 46,284.6) THEN Efficacious (Prob = 0.923).
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From the Decision Tree we report that:

• Fiscal is the best discriminator of Energy policy efficacy.
• The subsequent branch on the upper side of the DT have selected the Total energy supply

by product as the second-best discriminator (with a p-Value of 0.023). The policy mixes
included in the three consecutive nodes, independently of the total energy supply
by product, have a high average probability of achieving their national RE targets
(therefore classified as efficacious). As there are no child nodes below this branch, the
nodes are considered terminal nodes.

• On the bottom branch, the second-best predictor is the Gas price for households; only one
out of the tree branches of it is a terminal node, in which if the Gas price for households
is between 7.93 and 10.73 Euro/Gigajoules, there is a probability of 67.7% for the RE
Target to be achieved (classified as efficacious and therefore a 32.3% probability for the
target to not be achieved).

• If the Gas price for households is lower than 7.93 Euro/Gigajoules and there is a Feed-In
Tariff for Small Hydro (FIT), there is a probability of 58.3% for the RE Target to be
achieved. If this FIT is not present in the analyzed policy mix, the probability of being
classified as efficacious falls to 11.8%.

• The third predictor on the left branch of the tree is People at risk of poverty. If its value
is lower than 18% or between 18–23%, the probability is very low, with 7 and 31%,
respectively, for the policy mixes to be efficacious. At this same level of the tree, if
the people at risk of poverty is higher than 23%, and the Harmonised Index of Consumer
Prices (HICP) (fourth predictor) is higher than 99.9, the policy mix is predicted to
be efficacious with an 18.8% of probability (if it is lower than 99,9 the policy mix is
predicted to be efficacious with a 63% of probability).

• Whenever the HICP is lower than 99.9, the next (and fifth) best predictor is the Total
general government expenditure. Whenever it is lower than 49.2% of GDP, the probability
of falling into the category of efficacious is 75.8%, and whenever higher than 49.2%,
the probability is 30.8%.

Table 11 presents the results of the Decision Tree in a table format. The terminal nodes
have been highlighted in bold and italic letters. The highest percentage of policies by
category in each node has been underlined.

Classification Rules

The classification rules generated by the model are presented in Table 12.

3.3. Analysis with Other Dependent Variables

As part of the robustness validation of the models, other possible dependent variables
were tested. The additional variables are variations of the initial one “RE share” (Eurostat,
2020). The descriptions are included in Table 13 for the continuous variables and Table 14 for
the categorical variables that were tested. For the EP effectiveness model, two additional
continuous dependent variables were tested, comparing their R-squared values. This
process is documented in Table 14. RE share, as the selected variable (highlighted variable),
has the highest R-squared compared to the additional tested variables.
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Table 13. Continuous Dependent Variables.

Possible Dependent Variable Dependent Variable Description
Type of Variable

(Categorical/Continuous) &
(Binary/Non-Binary)

R-Squared

1. RE share *
Observed share of Renewable Energy

of the total electricity consumption
achieved in the year of measurement.

Continuous 0.917

2. RE share variation
(self-calculated)

Observed difference in RE share between
consecutive years. Continuous 0.039

3. RE share ratio variation
(self-calculated)

Variation of the Ratio between the
observed increase in RE share and the
country’s expected growth in a year.

Continuous 0.198

Source: * (Eurostat, 2020).

Table 14. Categorical Dependent Variables.

Possible
Dependent

Variable
Description

Type of Variable
(Categori-

cal/Continuous)
& (Binary/Non-

Binary)

Accuracy Sensitivity Specificity True
Positives

True
Negatives

Efficacy by
country (self-
calculated)

Comparison of the
observed RE share

increase and the country
expected growth in a year

(threshold)

Categorical;
binary 0.746 0.754 0.740 107 111

RE share
Increase vs.
Decrease

(self-
calculated)

Increase or decrease in the
RE share compared to the

RE share value of the
consecutive year by

country.

Categorical;
binary 0.718 0.674 0.802 130 81

RE share
Efficacy over

0.6% (self-
calculated)

Comparison of the
observed RE share

increase and the EU
expected growth of 0.6%

per year. **

Categorical;
binary 0.554 0.786 0.516 33 130

RE share
Efficacy (over

1) (self-
calculated)

Comparison of the
observed RE share

increase and the
self-defined value of 1

(from the RE share mean
value of 0.7 plus 1/3 of
one standard deviation

value). *

Categorical;
binary 0.732 0.659 0.765 60 156

* Efficacious class is assigned if the RE share growth is higher than 1; otherwise, non-efficacious. ** Efficacious
class is assigned if the RE share growth is higher than 0.6; otherwise, non-efficacious.

The results of the predicted and observed values by the models are presented graphi-
cally in Figure 5.
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Figure 5. Comparison of possible dependent variables. (a) RE share (selected variable); (b) RE share
variation; (c) RE share ratio variation.

For the categorical variables tested for the EP efficacy model, the Sensitivity and Speci-
ficity measures, as well as the accuracy, were estimated and compared. The comparisons
are reported in Table 14.

Variables 1, 2, and 4 have similar accuracy values (with around 0.7). Nevertheless,
when comparing their sensitivity and specificity values, differences can be seen in having
a non-balanced value among Sensitivity and Specificity. Variable number 1, “Efficacy by
country” (highlighted in the table), has more equilibrated values among its Sensitivity and
Specificity values, meaning that the model will perform similarly in predicting both the
efficacious policies and the non-efficacious ones. It also has the highest accuracy rate, and
the higher its value, the better the model is [18].
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The comparison of the accuracy values of the categorical variables tested are presented
in Figure 6. The comparison of the sensitivity and specificity values of each variable can be
seen in Figure 7.
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4. Discussion

The study’s objective has been to develop a support tool that provides information that
could guide targeted interventions and policies. With the use of advanced data analytics,
we aimed to determine whether there is a relationship between the different independent
variables selected and the RE share and its target achievement.

Using Decision Trees to predict the degree of RE share and classify the policy mixes
into efficacious and non-efficacious outcomes and a predicted RE share value, we present
the utility of machine learning techniques and the application to energy policymaking. The
methodology explored in this paper also aims to bring different substantive fields together
in advancing data-driven policymaking. The results of this study are one example that
illustrates the intersection of public policy and computational sciences. A wider application
of these techniques in social sciences could enable better future policy design, capturing
the real problems and needs on the ground.

The model proposed in this document is a data-driven model whose performance was
validated using historical data. In the future, we plan to validate the model with new data
that are gathered each year.

The results of the Decision Tree models have produced the stratification of the policy
mixes according to their potential to promote RE share targets (effectiveness model) and the
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potential to display achievement or non-achievement (efficacy model). Each of the nodes
of the trees has different profiles of predictors and, therefore, different RE share degrees
(for the EP effectiveness analysis) and different achievement probability of achieving the
efficacious or non-efficacious categories (for the EP efficiency analysis).

To the best of our knowledge, this study is one of the few studies in policymaking to
incorporate ML methods to analyze energy policies. No renewable energy target and policy
achievement analysis has been found to compare its results against the ones presented
in this work. An ex-ante methodology for policy impact assessment is proposed to the
European Commission [30], serving as a guideline for the member states supporting the
objective achievement of climate change policies (energy policies included). It proposes
comparing GHG levels ex-ante and ex-post of the implementation of the policies.

4.1. Effectiveness Findings

The findings of this study suggest some policy implications both in the European and
global contexts with similar circumstances or policy environments. These results need to
be seen with care, as the Decision Tree model detects associations, which do not always
imply causation.

Policymakers must be selective when designing energy policy mixes, as small varia-
tions in predictors can bring very different outcomes. This predictive model aims to be an
inspiration to maximize the feasibility of policy targets and limit policy target misalignment.

Energy Policy Efficacy implications:

• When the Population served by a policy mix is higher, the predicted RE share value is
reduced by almost half (from 64.6% to 23.1%) (as seen in NODE 17 & 18). The model
predicts more effective policy mixes in the context of smaller populations (within the
range of 18.1 and 24.6 million TOE of final energy consumption).

• Considerable variation in the predicted RE share values can be seen based on the
duration of how long the policy mixes have been in effect. For example, if the policy
mixes have more than six years of average duration, compared to under six years, with
a difference of more than 10% RE share (from 34.4% to 23.6%). The model predicts
a more efficacious policy mix if the average duration surpasses six years (within the
range of 24.6 and 34.2 million TOE of final energy consumption).

• As the amount of the Total Energy Supply by renewables and biofuels is increased due
to policy mixes, the respective RE share values will also increase (as seen in NODE
9 to 13 and 25 to 27).

• The threshold determined by the model at 95.4 for the GHG emissions intensity
of energy consumption denotes a decrease in RE share value (within the range of
4.169 and 15.364 million TOE of final energy consumption and higher than 1566.9 of
TES Renewables and Biofuels thousand TOE) (as seen in NODE 30 & 31).

4.2. Efficacy Findings

• First, when a policy mix addresses FIT for Small Hydro, a considerable difference in
the probability of target achievement or of being efficacious is reached (from 11.8% to
58.3%) (as seen in NODE 9 and 10).

• When a policy mix is designed to address a fiscal policy type, and with a high gas
price for households (after 10.73 Gigajoule/euro), the higher the risk of poverty, the
more efficacious a policy mix becomes (as seen in NODE 11 and 12).

• When the total general government expenditure addressed by a policy mix is higher
than 49.2% (Percentage of GDP), the probability for policies to fall in the category of
efficacious is reduced from 30.8 to 75.8% (as seen in NODE 16 and 17).

• If there is a fiscal policy included in the policy mix, independent of the amount of
energy supply, all profiles will be in the trend of RE target achievement (efficacious)
(70% average) (as seen in NODE 6, 7 and 8).
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• The threshold determined by the model at 99.9% for the HICP value denotes an
increase in the probability for the policy mixes to achieve their RE target if the threshold
is surpassed (as seen in NODE 4).

Classification rules have been generated to estimate outcomes, highlighting the easy
application of DT as prediction tools. Through the tree paths that are created, predictions
of future trends can be made.

The main outcomes of the predictive models rely on estimations of the RE share and
the target achievements before the proposed policies are implemented (in their design
stage). Based on the anticipated likely degrees of policy effectiveness and efficacy (or
success) of the policy mixes, the decision-makers can make informed policy decisions,
considering the country’s characteristics and circumstances.

The proposed predictive models allow policymakers at various scales and localities to
not only improve the precision of the policies in achieving the desired outcomes but also to
come to realize the generalizable and testable lessons over time. These lessons or trends
could be shared across national borders. Data-driven machine learning methodologies
present an alternative to save time, money, and resources required to see the real outcomes
by the end of the policy life cycle. The issue of analyzing the efficacy of policy mixes after a
long period alone can be debatable. Policymakers ought to experiment with these models
as examples of “tools”, allowing them to implement policies with a higher probability of
being effective or efficacious.

The findings from this research highlight the importance of data availability. Without
the data that can be used to illustrate the variables that feed into the models, the possibility
of maximizing our ability to take action based on estimation is not possible. The shortage
of data at the country level must be continued to be improved with more aggressive
measures and transparency adopted by the governments. At the same time, the need for
multidisciplinary methodologies that can systematically seek evidence-based approaches
in policymaking needs more focused attention [31].

As the limitations of this analysis, it is recognized that the RE share is also influenced
by the energy efficiency and other factors; and that different energy policies are available to
promote energy efficiency (each policy subject involves different types of policy instruments
and technical measures). The policy analysis here presented was applied only to a certain
type of policy (Renewable Energy policies).

In addition, missing concerns to be included in further applications of this analysis
include information on foreign business (as investment and trade) [32], political stability
and the absence of violence [33], energy access, and employment [26].

Finally, all the 22 sample countries used in the analysis are located in the same conti-
nent (Europe). A situation that resulted mainly due to the data availability. Even in Europe,
not all the countries were evaluated as not enough information for the assessed years was
found.

5. Conclusions

A summary for Policy Makers on applying ML techniques for energy policy analysis
has been organized and is now presented.

Machine Learning use. Machine Learning methods have been applied within the
energy sector to estimate short- and long-term factors. Their usability is promoted by their
capability to alleviate the uncertainty of controllable and non-controllable circumstances
and provide estimations that lead to coping with a better use of resources.

Decision Trees. They are used to predict a dependent variable based on independent
variables. They are characterized by their easiness of being interpreted. Better performing
policies can be identified, leading to choices with a higher propensity for “success”.

Supported information for Policy-Making. A support tool based on the examination
of ex-post policy information is available to be used in an ex-ante form to adjust or design
policies and their interaction (through policy mixes). By doing so, it is possible to provide
information that could guide targeted interventions.
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Predictive analytics to improve RE target achievement. Predictive analytics provides
an alternative to anticipating RE share target achievement and its degree of achievement
through the results of the effectiveness (degree of achievement) and efficacy (achievement
or not) analysis.

Data Availability Challenges. Different challenges have been identified as key aspects
to be considered for the fulfillment of the data requirements; actions must be taken by
policy developers, institutions, and academics toward data registration and openness.

Conformation of a Database. Data combined with Machine Learning has a great po-
tential to tackle complex problems. The database conformed for the analysis includes vari-
ables effectiveness assessment concerns, country and policy characteristics. The database
can serve for further application of studies.

Findings. This paper aimed to determine whether there is a relationship between the
different independent variables selected and the RE share and its target achievement. The
findings aim to lead to further exploration of certain variables.

Machine Learning opportunities. A call for collaboration among experts from dif-
ferent fields of knowledge is made to continue energy policy analysis based on machine
learning methods. The call is extended to energy policymakers and other stakeholders to
raise problems on the topic. Computational sciences at the service of qualitative-based
sciences ought to be supported.
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Appendix A. Examples of Machine Learning Applications in the Energy Field

Year Authors Application Document Focus

2018 Marugán et al. [34] Wind energy systems
NN applied in forecasting and predictions; design
optimization; fault detection and diagnosis; and

optimal control in wind energy systems

2018 Zaidi et al. [35] Energy-water nexus
Description of different ML methodologies applied in

the Energy-water nexus

2018 Zeng et al. [36] Optimization of reactors
Development of a support vector regression for the
creation of autonomous control for small reactors

2018 Zendehboudi et al. [37] Oil and gas processes
Review on hybrid models with focus on applications

in chemical, petroleum, and energy systems

2017 Anifowose et al. [38] Oil and gas field exploration
Modeling based in ensemble learning paradigm for oil

reservoir and other applications

2017 Voyant et al. [39] Solar radiation forecasting
Development of hybrid models to use an ensemble

forecast approach on solar radiation

2016
Heinermann and

Kramer [40]
Wind power forecasting

Proposal of a prediction framework based on
heterogeneous machine learning ensembles

2016 Fulford et al. [41] Shale gas well diagnosis Model application for shale gas well

2015 Gupta et al. [42] Failure prediction
Development of a support vector machine model for a

blackout prediction
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Year Authors Application Document Focus

2016 Costa et al. [43]
Security dispatch method for coupled

natural gas and electric power
networks

DT for preventing contingencies that may cause
interruption in the power networks

2016 Ottesen [5]
Total cost minimization in energy

systems for the prosumers’ buildings
DT for the minimization of total costs

2016 Moutis et al. [6]
Energy storage planning and energy

controlling
Application of a DT to improve storage planning

2017 Kamali et al. [7]
Prediction of the risk of a blackout in

electric energy systems
Smart grid early warning system DT support (in

several scenarios)

2018 Aguado et al. [8]
Railway electric energy systems

optimal operation
DT applied for multiple railway electric energy

systems and operation modes

Appendix B. Variables Directory

• Context Variables

Table A1. Country Characteristics (1).

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Country
Location (2)

Geographical
Country location in
which the program

has been
implemented

Western Polynomial no units n.a. n.a. n.a. n.a. (Unstat,
2020)

EU member

The country was a
member of the EU
at the moment of
evaluation or not

1 (or 0) Binary no units 0 1 0.95 0.23
(European

Comis-
sion)

Member of
the Eurozone

The country had
the Euro as

currency at the
moment or not

1 (or 0) Binary no units 0 1 0.47 0.5

(European
Comis-

sion,
2020)

Population

Number of persons
having their usual

residence in a
country

10 mil-
lion Numeric million

people 0.49 82.91 20.61 24.95 (Eurostat,
2020)

Cooling
degree days

Weather-based
technical indexes

designed to
describe the energy

requirements of
buildings in terms

of cooling

4.94 Numeric Numeric
Value 0 320.38 54.48 71.73 (Eurostat,

2020)

Heating
degree days

Weather-based
technical indexes

designed to
describe the energy

requirements of
buildings in terms

of heating

36 Numeric Numeric
Value 1054.83 6179.75 3329.1 1081.02 (Eurostat,

2020)
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Table A1. Cont.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Final energy
consumption

Total final energy
consumption

38,381 Mil-
lion

tonnes
of oil

equiva-
lent

(TOE)

Numeric

Million
tonnes
of oil

equiva-
lent

(TOE)

2.77 225.35 49.99 58.49 (Eurostat,
2020)

Total energy
supply by
product

For the total of all
energy products it
is the total energy

deliv-
ered/consumed in

a country

33,218.11 Numeric Thousand
TOE 3948.82 335,474.27 73,683 88,544.81 (Eurostat,

2020)

Supply by
Renewables
and biofuels

Supply by
renewables and

biofuels
9789.91 Numeric Thousand

TOE 125.54 43,693.14 9627.3 9781.01 (Eurostat,
2020)

Supply by Oil
and

petroleum
products

Supply by the Oil
and petroleum

products
11,698.52 Numeric Thousand

TOE 61.1 110,941.29 23,479 28,753.99 (Eurostat,
2020)

Supply by
Non-

renewable
waste

Supply by the
non-renewable

waste
634.23 Numeric Thousand

TOE 0 4514.02 629.28 941.77 (Eurostat,
2020)

Supply by
Nuclear Heat

Supply by the
Nuclear Heat 0 Numeric Thousand

TOE 0 115,209 9470.7 23,010.26 (Eurostat,
2020)

Supply by
Electricity

Supply by
Electricity products 534.19 Numeric Thousand

TOE −5777.3 3987.79 −17.6 1564.75 (Eurostat,
2020)

Supply by
Solid Fossil

Fuels

Supply by Solid
Fossil Fuels 3205.97 Numeric Thousand

TOE 8.66 81,561.13 12,034 20,038.21 (Eurostat,
2020)

Final energy
supply

Total final energy
supply

58,031
(Million

TOE)
Numeric Million

TOE 3.95 349.21 73.95 88.02 (Eurostat,
2020)

Expenditure
on Research

and
Development

Percentage of
government

budget allocations
for Research &
Development

1.90% Numeric Percentage 0.35 2.13 1.28 0.44 (Eurostat,
2020)

Long-term
interest rate

The amount a
lender charges a

borrower, being a
percentage of the

principal

4% Numeric Percentage 0.09 10.55 3.39 1.92 (Eurostat,
2020)

Air pollutants
by source

sector

Air pollutants
emissions for the

entire territory
240,593 Numeric Tonnes 32,138 1,783,137 391,508 444,570.42 (Eurostat,

2020)

Pollution or
other environ-

mental
problems

Environmental
problems by degree

of urbanization
14.1 Numeric Percentage 5.2 43.6 18.33 7.5 (Eurostat,

2020)

GDP per
capita

Country’s GDP per
capita

36,883.87
(U.S.

dollars
per

capita)

Numeric

U.S.
dollars

per
capita

4477.03 117,366.01 36,674 22,373.49

(Woeld
Economic
Outlook,

2020)
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Table A1. Cont.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Human
Development

Index

Average
achievement of a
long and healthy

life, being
knowledgeable

and have a decent
standard of living

0.86 Numeric

Numeric
Value
(Scale
0 to 1)

0.77 0.95 0.88 0.04 (UNDP,
2020)

Harmonised
Index of

Consumer
Prices

Change over time
of the prices of

consumer goods
and services
acquired by
households

80.6 Numeric Index 63.06 108.05 93.72 8.38 (Eurostat,
2020)

Total People
at risk of
poverty

Indicator to
monitor the EU
2030 target on

poverty and social
exclusion

0.14 Numeric Percentage 12.2 61.3 23.31 7.94 (Eurostat,
2020)

Gini
coefficient of
equivalised
disposable

income

Indicator relating
to poverty risk

0.43
(Scale
0 to 1)

Numeric

Numeric
Value
(Scale
0 to 1)

20.9 40.2 29.62 3.91 (Eurostat,
2020)

Average
household

size

Average household
inhabitants

2.3 in-
habi-
tants

Numeric

Number
of

inhabi-
tants by
house

1.9 2.9 2.36 0.27 (Eurostat,
2020)

Exposure to
air pollution

by particulate
matter

Measures the
population

weighted annual
mean

concentration of
particulate matter

23.3 Numeric Numeric
Value 4.9 51.4 15.8 7.73 (Eurostat,

2020)

Environmental
protection

expenditure

General
government

expenditure by
environmental

protection

0.005 53.7
Euro

per in-
habitant

−0.3 1.7 0.72 0.29 (Eurostat,
2020)

Environmental
tax revenues

Proportion of
environmental tax
revenues in total
revenues from all
taxes and social

contributions

43.3 Numeric Percentage 173.76 49,474 11,402 15,029.44
(Eurostat,

2020)

Remuneration
of civil

servants

Annual evolution
in the

remuneration of
national civil

servants working
in central public
administrations

102.5 Numeric Index 73 148.7 103.21 5.91 (Eurostat,
2020)

Number of
national civil

servants

Number of
national civil

servants in central
public

administration

42,005 Numeric Numeric
Value 825 435,660 65,250 85,104.49 (Eurostat,

2020)
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Table A1. Cont.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

FiT-Solar PV Feed in Tariff for
Solar technologies 0.6717 Numeric US

Dollars 0 0.83 0.15 0.22 (OECD,
2020)

FiT-Wind Feed in Tariff for
Wind technologies 0.097 Numeric US

Dollars 0 0.68 0.07 0.09 (OECD,
2020)

FiT-Small
Hydro

Feed in Tariff for
Hydro

technologies
0.6717 Numeric US

Dollars 0 0.25 0.06 0.06 (OECD,
2020)

FiT-Biomass
Feed in Tariff for

Biomass
technologies

0.097 Numeric US
Dollars 0 0.21 0.06 0.07 (OECD,

2020)

FiT-Waste Feed in Tariff for
Waste technologies 0 Numeric US

Dollars 0 1.13 0.08 0.17 (OECD,
2020)

FiT-
Geothermal

Feed in Tariff for
Geothermal
technologies

0.1477 Numeric US
Dollars 0 0.33 0.05 0.08 (OECD,

2020)

FiT-Marine
Feed in Tariff for

Marine
technologies

0.0964 Numeric US
Dollars 0 0.71 0.05 0.1 (OECD,

2020)

Total general
government
expenditure

Total General
government
expenditure

0.65 Numeric Percentage
of GDP 25.6 65.1 45.62 6.31 (Eurostat,

2020)

(1) Country Characteristics: The variables of this group have not been included for the EPEI application. (2)
Country Location possible values: Western, Eastern, Northern, Southern or European Union (as the average
values).

• Effectiveness Concerns

Table A2. Affordability Variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Electricity
price for

households

Yearly average of
the price paid for

electricity in a
country by

households users

0.89
€/kWh Numeric

Euros/
Kilowatt-
hour/

0.06 0.2 0.12 0.03
(Eurostat,

2020)

Electricity
prices for non-

households

Yearly average of
the price paid for

electricity in a
country by

industrial users

0.81
€/kWh Numeric

Euros/
Kilowatt-
hour/

0.04 0.14 0.08 0.02
(Eurostat,

2020)

Gas Price for
households

Yearly average of
the price paid for

gas in a country by
household users

10.4
€/GJ Numeric Euros/

Gigajoules 3.67 21.05 11.8 3.11 (Eurostat,
2020)

Gas prices for
non-

households

Yearly average of
the price paid for

gas in a country by
industrial users

7.3 €/GJ Numeric Euros/
Gigajoules 2.75 14.03 8.38 1.83 (Eurostat,

2020)
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Table A3. Accessibility Variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Energy
Balance

Difference
between the final

energy
consumption and

final energy
supply

19,650 Mil-
lion tonnes

of oil
equivalent

(TOE)

Numeric

Million
tonnes of

oil
equivalent

(TOE)

−0.18 123.86 23.96 30.53 Own
calculated

Energy
import

dependency

Share of total
energy needs of a

country met by
imports from

other countries

50% Numeric Percentage −702.61 97.51 19.15 139.86 (Eurostat,
2020)

Table A4. Economic Competitiveness Variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Market share
of the biggest

competitor

Market share of
the largest

generator in the
electricity market

55.30% Numeric Percentage 15.3 96.5 49.11 21.36 (Eurostat,
2020)

Energy
Productivity

Indicator that
measures the

amount of
economic output
that is produced
per unit of gross
available energy

8.05 Numeric

Euro per
Kilogram

of Oil
Equivalent

(KGOE)

1.67 18.58 7.13 3.13 (Eurostat,
2020)

Energy
Intensity of

the economy

Primary energy
consumption per

unit of GDP
12.7 Numeric Numeric

Value 1.15 13.03 3.11 2.49 Own
Calculated

Energy
Intensity of

the
population

Primary energy
consumption per

inhabitant
1.04 Numeric Numeric

Value 0.04 7.29 1.48 1.66 Own
Calculated

Table A5. Impact on the Environment Variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Total Green-
house gas
emissions

Total GHG
emissions in a

country
81,987.78 Numeric Thousand

tonnes 6636.22 1,007,867 181,129 236,340.85 (Eurostat,
2020)

GHG
emissions

intensity of
energy con-
sumption

Ratio between
energy-related
GHG emissions

and gross
inland

consumption of
energy

105.4 Numeric Numeric
Value 68.5 124.9 91.61 8.88 (Eurostat,

2020)
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Table A6. Impact on Climate Change Variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean
Std.

Devia-
tion

Source

Renewable
Electricity
capacity

Maximum net
generating

capacity of power
plants and other
installations that

use renewable
energy sources

303 Numeric MW −168.48 11,316.33 941.11 1807.05 (IRENA,
2020)

Energy
Efficiency

Ratio of the total
energy delivered
by the sytem and

the energy
consumed by it

55.6
(Million
tonnes of

oil
equivalent

(TOE))

Numeric Million
TOE 4.27 332.75 70.96 85.12

(European
Commission,

2020)

Table A7. Equity Variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean Std.
Deviation Score

Population
unable to

keep home
adequately

warm

Population
unable to keep

home adequately
warm by poverty

status

0.03% Numeric Percentage 0.3 69.5 10.05 12.27 (Eurostat,
2020)

Table A8. Governance effectiveness and efficacy variables.

Variable
Name Description Example

Binary,
Polynomial
or Numeric

Units Min Max Mean Std.
Deviation Score

Expenditure
on energy
and fuels

expenditure

General
government

expenditure by
fuels and energy

0.53 Numeric Percentage
of GDP −0.5 1.8 0.23 0.28 (Eurostat,

2020)

Environmental
tax revenues
(energy tax)

of GDP

Proportion of
environmental
tax revenues in
Gross Domestic
Product (GDP)

0.01 Numeric Percentage
of GDP 0.97 3.05 1.94 0.4 (Eurostat,

2020)
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• Policy Characteristics

Table A9. Policy Characteristics (1).

Variable
Name Description Example

Binary,
Polyno-
mial or

Numeric

Units Min Max Mean Std.
Deviation Source

Other related
policies

Amount of RE
policies included
part of the policy

mix

2 Numeric Numeric
Value 0 136 25.61 21.25 Own

Calculated

Average
duration of

the programs

Average of the
years the

programs were
designed to be

active

15 years Numeric no units 4 16 11.38 2.89 Own
Calculated

Average
years of
activity

Average of the
years the

programs have
been active

5 Numeric no units 1 15 6.28 3.62 Own
Calculated

Median years
of activity

Median of the
years the

programs have
been active

5.5 Numeric no units 1 15 6.51 4.06 Own
Calculated

Number of
RE programs

Total amount of
RE programs that

are active
simultaneously

3 policies
active at the

analyzed
year

Numeric no units 1 14 3.02 2.73 Own
Calculated

Age of oldest
program

Age of the oldest
policy program

considered
1 or 0 Binary no units 4 141 14.41 13.19 Own

Calculated

Policy Type
(2)

General program
type class

General
Programme Polynomial no units n.a. n.a. n.a. n.a.

(Fraunhofer
Institute,

2020)

Policy Sub
type (3)

Detailed program
type class

General
programme
renewables

Polynomial no units n.a. n.a. n.a. n.a.
(Fraunhofer

Institute,
2020)

(1) Policy Characteristics: The variables of this group have not been included for the EPEI application; (2) Legisla-
tive/Normative; Legislative/Informative; Financial; Fiscal/Tariffs; Information/Education; Co-operative Mea-
sures; Cross-cutting; (3) Mandatory Standards for Buildings; Regulation for Heating Systems; Other Regulation in
the Field of Buildings; Mandatory Standards for Appliances; Mandatory labelling; Mandatory energy efficiency
certificates; Mandatory audits; Grants/Subsidies for investments; Grants/Subsidies for audits; Loans/Others; VAT
Reduction; Income tax reduction; Linear electricity tariffs; Voluntary labelling; Information campaigns; Detailed
energy/electrical bill; Regional and local information centers; Voluntary/Negotiated agreements; Voluntary DSM
measures of suppliers; Technology procurement; Eco-tax on electricity/energy; Eco-tax on CO2-emissions.
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Table A10. Policy instruments and subtypes.

Policy Type Policy Subtype

Legislative/Normative

Mandatory Standards for Buildings
Regulation for Heating Systems

Other Regulation in the Field of Buildings
Mandatory Standards for Appliances

Legislative/Informative
Mandatory labelling

Mandatory energy efficiency certificates
Mandatory audits

Financial
Grants/Subsidies for investments

Grants/Subsidies for audits
Loans/Others

Fiscal/Tariffs
VAT Reduction

Income tax reduction
Linear electricity tariffs

Information/Education

Voluntary labelling
Information campaigns

Detailed energy/electrical bill
Regional and local information centres

Co-operative Measures
Voluntary/Negotiated agreements

Voluntary DSM measures of suppliers
Technology procurement

Cross-cutting Eco-tax on electricity/energy
Eco-tax on CO2-emissions

(Boonekamp & Piccioni, 2014).
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