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Abstract: The reasonable layout of charging stations is an important measure to improve the penetra-
tion rate of the electric taxi market. Based on the multi-type clustering algorithm, a widely applicable
electric taxi charging stations locating method is proposed. By analyzing the massive gasoline taxi
GPS trajectory data, the parking information and charging requirements of electric taxis are extracted,
and the research area is divided into reasonable grids. Then, the divided grids are respectively
subjected to multiple same-type clustering and multiple multi-type clustering algorithms, so as to
help find out the location of the charging station, and a comparative analysis is performed. The
empirical analysis shows that the positioning results of the multiple multi-type clustering algorithms
are more reasonable than the multiple same-type clustering algorithms, which can effectively prolong
the driving distance of electric taxis and save the travel time of drivers.

Keywords: charging station location; multiple and multi-type clustering; electric vehicle; GPS
trajectory data

1. Introduction

With the rapid development of the global economy and the continuous reduction of fossil
energy [1], the greenhouse effect is becoming more and more serious. Low-pollution, low-
emission electric vehicles (EVs) are gradually attracting great attention [2]. Batteries are the
main power source of EVs, but due to the limitations of current battery technology, EVs are not
practical for long-distance travel and charging. This can lead to mental distress or apprehension
caused by the driver’s fear of suddenly running out of power when driving an electric vehicle
(range anxiety) [3], which has become an important factor hindering the development of EVs. It
can be concluded from this that the key to solving the driving range problem of electric vehicles
is to optimize the layout of charging stations according to the charging demand.

The reasonable deployment of charging infrastructure plays a positive role in extend-
ing the driving range of EVs and promoting the development of EVs. In order to solve
the problems of insufficient range, inconvenient charging, and unreasonable charging
infrastructure layout of EVs, a lot of studies have investigated the location problem of
public charging stations for EVs from different perspectives.

In terms of the influencing factors, some researchers have found that charging de-
mand [4], vehicle miles traveled [5,6], geographic distribution of cities [6], path deviation [7],
traffic flow patterns [8], and other factors are important in influencing the location of charg-
ing stations, of which charging demand is the most fundamental factor. The current market
penetration of EVs is low, and the accurate estimation of charging demand can help achieve
an optimized layout of charging stations.

To ensure more accurate estimation of charging demand, some researchers have used
GPS trajectory data of gasoline vehicles to simulate the trajectory data of EVs for charging
infrastructure location selection. For example, Pan et al. [9] used survey data of household trips
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to simulate the charging selection behavior of drivers with the decision process of EV charging
selection so that the existing travel activities of drivers are maximally unaffected. Chen et al. [10]
used parking information from more than 30,000 individual trip records collected from a
household trip survey in Seattle, Washington, USA, to determine the optimal number of
charging stations to be allocated. Liu et al. [11] proposed an intelligent optimization method as
well as data-driven and particle swarm optimization based on GPS trajectory data of hybrid
vehicles in Chengdu, China, to achieve intelligent siting of EV charging stations. Yang et al. [12]
used the GPS trajectory information of a fleet of cabs in Changsha, China, to estimate the
likelihood of EV charging using a queuing model, and investigated the relationship between
installing more charging piles and the trade-off between providing more waiting space, and the
effect of charging power on waiting time. Due to the short time of the emergence of electric taxis
(ETs) in China, relevant GPS trajectory data are scarce to give a reasonable layout of charging
stations. Shi et al. [13] present an improved destination selection model, proposed to simulate
the ET operation system and to help find the optimal ET charging station size with statistical
analysis based on the charging need prediction. Therefore, this paper simulates the travel
trajectory of electric taxis with GPS trajectory data of gasoline vehicles and predicts the charging
demand of electric taxis by combining this with grid-based maps.

In terms of location methods, most studies focus on constructing charging station location
models and siting charging stations based on different objective functions and constraints [14,15],
while relatively few studies have applied clustering algorithms to the location of electric vehicle
charging stations. Cluster analysis is a kind of unsupervised learning, and there are many kinds,
such as the division-based K-means clustering algorithm [16], hierarchical clustering algorithm
(agglomerative and splitting) [17], and DBSCAN algorithm based on density clustering, etc.
At present, clustering algorithms are widely used in short-time traffic flow prediction [18],
logistics center location selection [19], traffic flow speed prediction [20], and travel hotspot area
research [21], etc., but they are less widely applied in charging station location selection. For
example, Zhang et al. [22] developed a siting model for electric cabs based on their dynamic
distribution and charging demand using the K-means clustering method and the center of gravity
method, and applied it to the problem of siting electric cabs in Chengdu, China. Straka et al. [23]
analyzed charging transactions in the Netherlands using clustering algorithms (K-means, dbscan,
and cohesive hierarchical clustering) to identify usage related segments of charging stations,
which helps to improve the planning of charging infrastructure and the development of smart
charging technologies. Liu et al. [24] used existing service areas on highways as potential
locations for charging infrastructure, clustered the close service areas, and calculated the optimal
location of charging stations for each cluster. Gilanifar et al. [25] proposed a Gaussian process
based on the Clustered Multi-Node Learning (CMNL-GP) method to fuse and learn data
from multiple charging stations simultaneously. Zhang et al. [26] proposed a density peak
clustering-based optimization method for siting and sizing EV charging stations in an urban
area. Sánchez et al. [27] proposed a clustering strategy based on the K-means algorithm to
define potential charging station locations. The above studies are based on different clustering
algorithms for the siting and sizing determination of charging stations, and there are not yet
multiple clustering algorithms combined and applied in the siting study.

This paper uses multiple and multi-type clustering algorithms to optimize the location
of charging stations and obtain the optimal charging station location and clustering algo-
rithm combination. At present, electric taxis have not been fully popularized in Qingdao.
Therefore, we can only estimate the charging demand of electric taxis through the GPS
trajectory data of gasoline taxis in reality. The research areas are five main districts of
Qingdao (Shinan District, Shibei District, Licang District, Chengyang District, and Laoshan
District). Firstly, the map of the study area is gridded, and the number of vehicles in each
grid that stay longer than the time threshold is recorded as the number of dwell events,
and the number of dwell events in each grid is used as the charging demand of the grid.
Finally, the overall weighted Euclidean distance sum of the two location selection methods
is compared, and the optimal location and the best location selection method for charging
stations are obtained. The proposed method is of theoretical and practical significance as it
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provides quantitative charging station location solutions to help deal with actual charging
station location problems in urban management.

This paper is organized as follows: Section 2 presents the problem statement and data
processing. Section 3 presents the location selection methodology. Section 4 presents the
results of the charging station location. Finally, we summarize this paper and present the
limitations and future research directions in Section 5.

2. Problem Statement and Data Processing
2.1. Problem Statement

Given a set of electric vehicles that charge at least once a day at a charging station and
a set of grids with a long dwell of electric vehicles, the problem is to present multiple and
multi-type clustering algorithms to optimize the location of charging stations, so as to obtain
the optimal charging station layout and the best clustering siting algorithm combination.

2.2. Data Processing

In this paper, by analyzing the taxi GPS trajectory data from 0:00 to 24:00 on 11
October 2017 (a weekday) and combining the economic development and geographical
location characteristics of each urban area in Qingdao, it is extracted from the taxi GPS
trajectory data within five major municipal districts. By removing the abnormal data and
discontinuous trajectory data, we finally obtained 828,341 GPS trajectory data for a total
of 6042 taxis. The GPS data of each taxi was captured approximately once per 5 s. Data
items include vehicle ID, time, longitude, latitude, speed (km/h), and passenger status
(0 for empty, 1 for passenger) (See Table 1).

Table 1. The examples of GPS trajectory data.

Vehicle ID Time Longitude Latitude Speed Passenger Status

30 18:52:44 120.300572 36.059037 7.4 0
600 18:48:08 120.299342 36.05908 22.4 0
850 18:52:47 120.338533 36.05844 40.8 1

The research area of this paper consists of the five main municipal districts of Qingdao
(Figure 1). In order to exhaustively count the dwell demand in each area and prevent incorrect
statistics of dwell demand due to inconsistent area size, this paper divides the research area into
4759 grids according to the size of both image width and height of 0.005◦ (about a rectangular
grid of 450 m× 550 m), and automatically numbers them as i (i = 1, 2, . . . , 4759), so the size of the
grid number is only for indication, and cannot be used to indicate the distance of geographical
location between the grids. Therefore, the geometric center of the grid is chosen to represent
the geographic location of the grid, and the number of dwell events of the grid represents the
charging demand of electric taxis in the grid.
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2.3. Charging Demand

In order to maximize the satisfaction of the charging demand of electric taxis and
enhance the rationality of site selection, this paper assumes that the travel patterns of
drivers will not change during the electrification of gasoline taxis. So the GPS travel
trajectory data of gasoline taxis in the five main districts of Qingdao is used to simulate
the travel behavior of electric taxis, and extract the vehicle parking patterns to mine their
charging needs.

Taxi drivers typically have long dwelling times for meals, fuel, shift changes, or breaks,
so it is reasonable to assume that electric taxis will have charging needs during this time.
In order to fully understand the charging demand of taxi drivers, this paper uses a time
threshold of 20 min [12] to distinguish the dwelling of vehicles. If the GPS trajectory data
shows that the vehicle dwell in the same grid for more than 20 min, it is considered that the
vehicle needs to be charged in this grid, and a dwell event occurs in this grid.

The research area in this paper was divided into a total of 4759 grids, and the total
number of dwell events occurring in each grid was recorded. Of the 4759 grids with dwell
events, 900 occurred in a total of 3202 taxis, with 3401 dwell events. Figure 2 shows the
frequency statistics of the number of dwell events per grid. It can be seen from Figure 2 that
the number of grids that did not have a dwell event accounted for 81% of the total number
of grids, the number of grids that had a stay event accounted for 6%, and the number of
grids with 20 or more dwell events is the least.
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Figure 2. Frequency distribution of the number of dwell events per grid.

Figure 3 shows the number of dwell sites at which one driver would dwell in a day.
Most taxis only have one dwell event in a day, and a taxi can stay in up to three locations
for more than 20 min in a day. Figure 4 shows the spatial distribution of dwell events
(a represents the number of dwell events per grid). As seen in Figure 4, the grids with
dwell events are relatively dense, and the grids with many dwell events are mostly located
in the center of each district. The eastern part of Laoshan District is Laoshan Scenic Area,
and the electric vehicle dwells are relatively few and scattered, so there are fewer grids with
dwell events; the development of the eastern and western parts of Chengyang District is
more different, and the western area is relatively backward and has fewer electric vehicles,
so the grid distribution in Figure 4 is consistent with the actual situation of EV dwells in
the city.
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In this paper, the number of dwell events in each grid is used to represent the charging
demand for electric taxis in the grid, and the higher the number of dwell events occurring,
the higher the charging demand for EVs in the grid. It is relatively uneconomical to install
charging stations in places that are not attractive to taxi drivers. Therefore, grids with
no less than 4 (a ≥ 4) number of dwell events are selected as the study object, and it can
be found that 295 grids out of 4759 grids satisfy the condition and contain 2312 taxis.
Therefore, this paper optimizes the location of charging stations based on the 295 grids
where taxis dwell.

3. Methodology

To achieve the optimal layout of charging stations and find the best combination of
clustering sizing algorithms, this paper proposes the multiple and multi-type clustering
algorithms, which mainly involve the K-means clustering algorithm, K-means weighted
clustering algorithm, and hierarchical clustering algorithm.
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3.1. Calculation of Euclidean Distance

The difference between the K-means clustering algorithm and the K-means weighted
clustering algorithm is whether Euclidean distance or the weighted Euclidean distance is
used in the clustering process.

The Euclidean distance calculation formula of the K-means clustering algorithm is

D(xi, xj) =

√
m

∑
a=1

(xia − xja)
2 (1)

where xi = (xi1, xi2, . . . , xim), xj = (xj1, xj2, . . . , xjm) represent two data objects containing
m-dimensional attributes [15].

In this paper, the position coordinates of the i-th grid can be expressed as

Li = (xposi, yposi), i ∈ N (2)

where Li represents the position of the i-th grid; xposi and yposi denote the x-coordinate
and y-coordinate of the i-th grid position expressed in terms of GPS longitude and latitude,
respectively. N is the set of grid numbers in this category.

Suppose the coordinates of the k-th cluster center can be written by Equation (3)

Zk = (zxk, zyk), k = 1, 2, . . . , K (3)

where Zk represents the position of the k-th cluster center; zxk and zyk represent the
x-coordinate and y-coordinate of the k-th cluster center, respectively.

Therefore, the calculation formula of the Euclidean distance between the i-th grid and
the k-th cluster center can be written by Equation (4)

D(Li, Zk) =

√
(xposi − zxk)

2 + (yposi − zyk)
2, i ∈ N, k = 1, 2, . . . , K (4)

In the K-means clustering algorithm, the commonly used methods for determining
the number of clusters K are the silhouette coefficient method and the elbow rule. The
silhouette coefficient method determines the optimal K value by finding the local optimal
result; the elbow rule determines the optimal K value by judging the change of the sum of
squared errors (SSE) within the class.

This paper uses the elbow rule to determine the number of clusters K. In the elbow
rule, the sum of squared errors (SSE) of the distance between the cluster center of each class
and the sample points in the class is called the degree of distortion. For a class, the lower
the degree of distortion, the closer the sample points within the class are. The more the
number of clusters, the fewer sample points each class contains, and the closer the sample
points are to the center point of the cluster, so the degree of distortion will decrease with the
increase of the number of clusters. If the number of clusters exceeds the actual number of
categories, the degree of distortion changes little, even if the number of clusters K increases,
the degree of distortion does not change significantly, so an area similar to “elbow” will
be formed on the line graph composed of the degree of distortion and the corresponding
K value of the elbow is the selected number of clusters. The formula for calculating the
degree of distortion (SSE) can be written by Equation (5)

SSE =
K

∑
k=1

∑
i∈N

D(Li, Zk)
2 (5)

In addition, the K-means weighted clustering algorithm selects a weight in the K-
means clustering process and improves the Euclidean distance into the weighted Euclidean
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distance, so the weighted Euclidean distance between the position of the i-th grid and the
center of the k-th cluster is calculated (Equation (6)).

D(Li, Zk) =

√
wi((xposi − zxk)

2 + (yposi − zyk)
2), i ∈ N, k = 1, 2, . . . , K (6)

where wi is the weight of the i-th grid.

3.2. Multiple Same-Type Clustering and Multiple Multi-Type Clustering Algorithms

This paper presents multiple and multi-type clustering algorithms for the siting layout
of charging stations. The so-called multiple, that is, repeatedly applying the same clustering
algorithm and improving this algorithm in the application; the so-called multi-type, that is,
comprehensive application of multiple clustering algorithms.

Method 1: The multiple same-type clustering algorithms first use K-means clustering
to obtain the classification results based on the geographical location between grids; sec-
ondly, using the charging demand of each grid as the weight, K-means weighted clustering
is performed on the sample points of each category. The new cluster center of each class
is obtained, which is the location of the charging station, and the intra-class weighted Eu-
clidean distance sum from the sample points of each class to the cluster center is calculated,
and finally, the overall weighted Euclidean distance sum is obtained.

Method 2: The multiple multi-type clustering algorithms use K-means clustering to
obtain classification results based on the geographical location between grids; secondly,
considering the charging demand of each grid, the two-step clustering method is used
to select the location of charging stations. The so-called two-step clustering method is to
perform agglomerative hierarchical clustering for each class of sample points, choose a
fixed relative distance to reclassify each class of sample points, and then perform K-means
weighted clustering for each class of sample points after classification to obtain the location
of charging stations, and calculate the intra-class weighted Euclidean distance sum for each
class. Therefore, finally, we obtain the overall weighted Euclidean distance sum.

4. Results

In order to obtain a reasonable layout and siting method for charging stations, this
paper firstly clusters the screened 295 grids using a K-means clustering algorithm based
on the geographic location attributes between the grids. The input data samples of the
K-means clustering algorithm are shown in Table 2, which contains the grid number, the
longitude and latitude corresponding to the grid location, and the number of dwell events
for the grid.

Table 2. The examples of the input data for K-means clustering algorithm.

Grid Number Longitude Latitude Number of Dwell Events

22 120.2984848 36.056797 4
282 120.3634796 36.0967979 16
434 120.3484802 36.1117973 14

3752 120.3984833 36.2917976 7

The choice of K value is crucial for K-means clustering algorithm. Table 3 shows the
number of clusters K and the specific values of the corresponding degree of distortion
(SSE) obtained by the elbow rule, and Figure 5 is the elbow diagram obtained by the elbow
rule. According to the elbow diagram judgment K value is obtained by human subjective
observation, so this paper sets a limit value for the variation difference of the degree of
distortion (SSE). If the variation difference of the degree of distortion is less than this limit
value, the former K value is selected. The limit value of the variation difference of the
degree of distortion is set to 0.02, so K can be set to 4. Meanwhile, through the observation
of the elbow diagram in Figure 5, it can be seen that when K>4, the degree of distortion
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(SSE) does not change significantly, so the final number of clusters K is determined to be 4.
The simultaneous use of the two methods ensures the accuracy of the K value.

Table 3. The number of clustering and the corresponding distortion degree.

Number of Clusters K Degree of Distortion (SSE)

1 0.554661
2 0.231372
3 0.121694
4 0.065528
5 0.041640
6 0.028624
7 0.021175
8 0.016797
9 0.012739
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Figure 6 shows the clustering diagram of K-means clustering with selected K = 4.
The dots of different colors represent different clustering categories. The geographical
locations between the grids within each category are the closest, and the number of grids
in the 4 categories are 118 (category 1), 21 (category 2), 102 (category 3), and 54 (category 4),
respectively. From Figure 6, we can see that the sample points in category 1, category 3 and
category 4 are more concentrated, while the sample points in category 2 are more dispersed.
The grids in category 2, belonging to the Laoshan District, are unevenly distributed because
there is a large mountainous area in Laoshan District.
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K-means clustering only considers the geographic location between 295 grids without
considering the charging demand of electric taxis in each grid, so the 4 clustering centers
obtained are not the best locations for charging stations. Therefore, the following two
optimization modes of location selection are chosen to select the optimal location of the
charging station on the basis of the K-means clustering results.

4.1. Location Results of Multiple Same-Type Clustering Algorithms

The more the number of dwell events in the grid, the greater the charging demand
of electric taxis in the grid. According to the 4 classes of grid data obtained by K-means
clustering, the charging demand of electric taxis in each grid is considered, and the charging
demand of electric taxis in each grid is used as the weight of the grid. Then K-means
weighted clustering (K = 1) is performed for each class of the sample points to obtain 4
new cluster centers and the corresponding intra-class weighted Euclidean distance sums
(Table 4), and finally obtain the overall weighted Euclidean distance sum of the four types
of grid data is 24.1.

Table 4. The cluster centers for K-means weighted clustering algorithm.

Number Longitude Latitude Intra-Class Weighted
Euclidean Distance Sum

Cluster Center 1 120.35636442 36.08921391 9.314467822
Cluster Center 2 120.48848397 36.14346568 1.946304218
Cluster Center 3 120.40593398 36.14640666 8.401443127
Cluster Center 4 120.40746448 36.29133549 4.439257816

Figure 7 shows the best locations of charging stations obtained by the multiple same-
type clustering algorithms. As can be seen from Figure 7, charging stations are located in
the economic and residential centers of Shibei District, Licang District, Laoshan District,
and Chengyang District, respectively. However, the small number of charging stations may
cause long queues of electric taxis and reduce drivers’ satisfaction with charging, while the
long queues may cause traffic congestion problems around the charging stations. Therefore,
it is necessary to further deal with.
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4.2. Location Results of Multiple Multi-Type Clustering Algorithms

Based on the results of K-means clustering, a two-step clustering method (agglom-
erative hierarchical clustering and K-means weighted clustering) is used to optimize the
location of charging stations. Firstly, agglomerative hierarchical clustering is performed
on the sample grid data of each class obtained by K-means clustering, and a relative dis-
tance of 0.08 is selected to classify the grid. Figure 8 shows the tree diagram obtained by
agglomerative hierarchical clustering for each of the 4 classes of sample grid data. The
black dotted line in the tree diagram represents the relative height of 0.08, which is used to
divide the results of agglomerative hierarchical clustering.
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Figure 8. Tree diagram of hierarchical clustering algorithm. (a) Hierarchical clustering diagram for
category 1. (b) Hierarchical clustering diagram for category 2. (c) Hierarchical clustering diagram for
category 3. (d) Hierarchical clustering diagram for category 4.

Figure 8a shows the agglomerative hierarchical clustering result of category 1. The
grids in the sample are basically located in the southern parts of Shinan District and Shibei
District. The areas of the two urban areas are relatively small, but the daily vehicle flow is
large and the number of grids is large, so it is divided into 3 categories. Figure 8b shows
the agglomerative hierarchical clustering result of category 2. Most of the grids in the
sample are located in Laoshan District, and the distance between grids is long, so it is
divided into 2 categories. Figure 8c shows the agglomerative hierarchical clustering results
of category 3. The grids in the sample are mostly located in the northern part of Licang
District and Shibei District, the location between grids is close and the number of grids is
large, which indicates that the charging demand of electric vehicles in this area is large. So
it is divided into 4 categories. Figure 8d shows the agglomerative hierarchical clustering
result of category 4. The grids in the sample are basically located in Chengyang District.
Most grids are densely located, and some grids are scattered around, so it is divided into
3 categories. After performing agglomerative hierarchical clustering on grid samples, all
sample grid data are divided into 12 categories.

The 12 categories of data obtained by the agglomerative hierarchical clustering method
are respectively subjected to K-means weighted clustering (K = 1) to obtain 12 cluster
centers, which are the optimal locations of charging stations. The 12 cluster centers and the
corresponding intra-class weighted Euclidean distance sums are shown in Table 5, and the
final overall weighted Euclidean distance sum is 16.1.
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Table 5. The cluster centers for Two-step clustering method.

Category Cluster Center Longitude Latitude Intra-Class Weighted
Euclidean Distance Sum

Category 1
Cluster Center 1 120.34409294 36.07009134 3.469152132
Cluster Center 2 120.36123313 36.08829833 1.945626697
Cluster Center 3 120.36469908 36.11139359 1.501172971

Category 2 Cluster Center 1 120.48463792 36.11949128 0.839284857
Cluster Center 2 120.49473381 36.18242406 0.606927985

Category 3

Cluster Center 1 120.41098308 36.11398672 1.574992016
Cluster Center 2 120.39828278 36.13879853 1.09009133
Cluster Center 3 120.41973210 36.16148613 1.234712563
Cluster Center 4 120.39934566 36.18041940 0.714346782

Category 4
Cluster Center 1 120.42181778 36.23846498 0.30493468
Cluster Center 2 120.39823263 36.28304862 1.135222951
Cluster Center 3 120.41098295 36.30858407 1.712925032

Figure 9 shows the optimal layout of charging stations obtained by the two-step
clustering method. It can be seen from Figure 9 that the location of the charging station
matches the grid with many dwell events, which meets the charging demand of electric
vehicles. Compared to Laoshan District and Chengyang District, the number of charging
stations in Shinan District, Shibei District, and Licang District is higher. This is because the
three areas are densely populated with residential areas, commercial areas, scenic spots,
and high population density, resulting in high traffic flow, many dwell events, and a high
charging demand for electric vehicles.
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4.3. Results Analysis

By comparing the overall weighted Euclidean distance sum obtained by the multiple
same-type clustering algorithms and the multiple multi-type clustering algorithms, it can
be seen that the multiple multi-type clustering algorithms effectively reduces the overall
weighted Euclidean distance sum. That is, they reduce the traveling distance from the
electric vehicle to the charging station, save the travel time of the electric vehicle driver,
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and increase the operating time. From Figures 7 and 9, it can be found that the location
and layout of the charging station in Figure 9 is more reasonable, which can meet the
charging demand of electric vehicles as much as possible and achieve the goal of optimizing
the location of the charging station. Meanwhile, it can be seen that the multiple multi-
type algorithms proposed in this paper are better than the multiple same-type clustering
algorithms in the application of charging station locations, which provides a new method
for future charging station locations.

5. Conclusions

This paper takes the gridded map of five major municipal districts of Qingdao (Shinan
District, Shibei District, Licang District, Chengyang District, and Laoshan District) as the
research area, extracts the number of vehicles in each grid with a dwell time of more
than 20 min, based on the GPS trajectory data of gasoline taxis in the five main municipal
districts, and takes the grid with the number of dwell events no less than 4. Assuming that
the geometric center of each grid and the number of dwell events, respectively, represent
the location of the grid and the charging demand of electric taxis. Then, the location of
charging stations is selected using the clustering method. Based on the geographic location
among grids, multiple same-type clustering algorithms and multiple multi-type clustering
algorithms are performed for all grids separately. Finally, the overall intra-class weighted
Euclidean distance sum obtained by the multiple same-type clustering method is 24.1,
and the overall intra-class weighted Euclidean distance sum obtained by the multiple
multi-type clustering method is 16.1, which indicates that the overall weighted Euclidean
distance sum obtained by the multiple multi-type clustering algorithms is significantly
smaller than that of the multiple same-type clustering algorithms, reducing the traveling
time of electric taxis. The location selection result of the multiple multi-type clustering
algorithms is more reasonable than that of the multiple same-type clustering algorithms.
This paper provides feasible suggestions and methods for the location and optimal layout
of charging stations in five major municipal districts of Qingdao.

Currently, the market penetration rate of electric vehicles is increasing, and the reason-
able layout of charging stations plays a positive role in the promotion of electric vehicles.
The multiple multi-type clustering location selection method proposed in this paper pro-
vides a new solution for the optimal layout of urban charging stations. However, only
the travel time of electric vehicle drivers is considered, and the trajectory data of gasoline
taxis are used to simulate the trajectory of electric taxis, which has some errors in terms of
station location. In future research, the cost problem can be considered, more clustering
algorithms can be integrated, and GPS trajectory data of electric vehicles can be used to
further improve the scientific and reasonable location of charging stations.
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