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Abstract: As regional interaction increases in an open economy, a region’s green total factor produc-
tivity in agriculture must be considered alongside relationships with other regions. In this study, the
slack-based model (SBM) global Malmquist–Luenberger (GML) index is used to measure the green
total factor productivity of agriculture in each province of China, and the social network analysis
(SNA) and vector autoregressive model (VAR) impulse response function (IRF) are used to examine
the spatial network structure and regional interactivity. The research confirms that the absolute value
and concentration of agricultural green total factor productivity are generally higher in the south
than in the north of China, but the peak is lower in the south than in the north. The network density
of agricultural green total factor productivity in China from 2008 to 2019 shows an increase, with the
cut-off values of mean, 10, 50, and 100 treated as 4.97%, 2.57%, 3.30%, and 2.43%, respectively. From
2008 to 2019, the central potentials of network entry and network exit of green total factor productivity
in China’s agriculture show a “V”-shaped and inverted “V”-shaped evolution path, respectively,
with the density of cohesive subgroups growing, which demonstrates that the spatial structure of
green total factor productivity in Chinese agriculture has experienced an evolutionary path from
polycentric to monocentric to polycentric conditions. The spatial interaction of different cohesive
subgroups is intensifying and has a certain degree of self-stability. In terms of regional interaction, the
siphon effect of the east on the green development of agriculture in the central and western regions is
significant, but the trickle-down effect is not obvious, and the interaction between the central and
western regions has a catalytic effect on the efficiency of the green economy of agriculture in both
regions. It is recommended that targeted policies be introduced to support the flow of agricultural
factors and industrial division of labour between the central and western regions and the south and
north, taking into account the actual situation. The novelty of this paper is that it focuses on the
green total factor productivity of Chinese agriculture and combines the innovative use of the social
network analysis paradigm to analyse the green development of agriculture in a country from a
spatial dynamic evolutionary perspective. A limitation of the research methodology in this paper is
its poor applicability to closed economy analysis.

Keywords: agricultural green total factor productivity; SBM-GML approach; impulse response; social
network analysis; regional interaction
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1. Introduction

The concept of “green development” was first introduced by the United Nations
Development Programme in 2002 and is widely regarded by society as the ideal path to
achieve the organic integration of economy and environment [1]. In line with the concept of
green development in agriculture, the Chinese government introduced and implemented
regulations in May 2008 regarding the disclosure of information from government de-
partments that publish pollution data and the Ministry of Environmental Protection’s
information disclosure measures, with a focus on promoting green and sustainable devel-
opment in agriculture. The research questions are as follows: What is the level of total factor
productivity in China’s agricultural environment under strict environmental regulation?
With the gradual breakdown of administrative barriers, does China’s green total factor
productivity in agriculture show a trend towards agglomeration at the spatial level? What
is the correlation between green total factor productivity in agriculture in eastern, central,
and western China, as well as in southern and northern regions, due to differences in
geographical location and degree of economic development?

In a national context where green development has become the main goal of Chinese
agriculture, an accurate grasp of the actual effects of environmental regulations on the
efficiency of economic development in agricultural development is of great theoretical and
practical value for the next stage of agricultural green development policy formulation
in China and other developing countries similar to it. Therefore, in the research design
of this paper, firstly, the theoretical and empirical studies are summarised and a more
scientific approach is adopted to measure the green total factor productivity of agriculture
in each province of China. Secondly, we innovate the use of social network analysis to
analyse the spatial distribution pattern of green total factor productivity in agriculture at
the provincial level in China. Thirdly, we focus on the regional interaction of green total
factor productivity in agriculture in these key regions, taking into account the development
disparities between the eastern, central, and western parts of China, as well as the southern
and northern regions.

From the research literature, the exclusion of resource factors does not fully reflect
the characteristics of agricultural development. Therefore, some scholars have included
resource and environmental factors in the measurement models of agricultural productivity
and used different methods to obtain green total factor productivity in agriculture [2–4].
For example, Tone (2003) [5] developed a standard DEA-SBM efficiency model that in-
cludes non-desired output, and after incorporating slack variables into the function, it
could better correct the error problems of the general DEA model in radial and angu-
lar aspects. In their work on measuring total factor productivity (TFP) of Swedish pulp
mills, Chung et al. (1997) [6] included, for the first time, pollution emissions as a non-
desired output and developed the directional distance function (SBM). Based on this study,
Kuosmanen (2013) [7] combined the strengths of DEA and SFA models to construct a
stochastic semi-parametric data envelope model (StoNED) to analyse country-specific agri-
cultural green productivity for the period 1990–2004, using OECD countries and selecting
data on agricultural CO2 emissions, nitrogen stocks, and phosphorus stocks. Xiaocang
Xu et al. (2020) attempted to incorporate environmental pollution into the framework of
agricultural productivity analysis by using soil N2O emissions as an important variable
with which to measure agricultural green total factor productivity (AGTFP) [8]. Dongdong
Liu et al. (2020) used a super SBM model to calculate China’s carbon emission-based
agricultural total factor productivity based on provincial agricultural panel data in China,
and used kernel density estimation to examine its dynamic evolution [9]. Chen Yufeng
et al. (2021) took carbon emissions and agricultural surface source pollution (ANSP) as
non-expected outputs, used a three-stage data envelopment analysis (DEA) method com-
bined with an SBM model to remove the effects of environmental factors and random
errors, explored the true AGTFP of 30 Chinese provinces from 2000 to 2017, and further
explored the spatial distribution and dynamics of AGTFP before and after adjustment to
seek the reasons behind it [10]. Chen Yanling et al. (2022) used the recent 15-year provincial
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panel SBM-ML index method to measure agricultural productivity from the perspective
of environmental constraints with agricultural surface source pollution as a non-desired
output, and a dynamic panel regression model was used to empirically analyse the factors
affecting agricultural productivity [11]. Huang Xiuquan et al. (2022) constructed two
different data envelopment analysis models, combining the green Luenberger productivity
indicator (GLPI), a two-year weight-corrected Russell model, and a two-year bounded
adjustment model to measure AGTFP in China and decompose AGTFP growth at both the
production and factor levels to examine its drivers [12]. Based on panel data from 2001 to
2019 for 30 Chinese companies, Zhu Yingyu et al. (2022) measured the green total factor
productivity of China’s plantation industry based on the net carbon sink using stochastic
frontier analysis with an output-oriented distance function, and empirically investigated
the impact of agricultural mechanisation on the green total factor productivity [13]. Yuanxin
Peng et al. (2022) used the Malmquist index, spatial autocorrelation analysis, and conver-
gence analysis to analyse the GTFP of 263 prefecture-level and above cities in China [14].
Zhang Yanan et al. (2022) measured green total factor productivity in the Huaihe Economic
Zone based on the carbon cycle in the period 2004–2017, and used a spatial Durbin model
to analyse the effects of seven variables on green total factor productivity, including the
level of economic development, environmental regulation, R&D level, and openness to the
outside world [15]. Yining Zhang et al. (2022) measured green total factor productivity in
the Chinese manufacturing industry using the Malmquist–Luenberger (ML) model based
on provincial panel data from 2008 to 2017, and further constructed an empirical model to
analyse the impact mechanism of green total factor productivity [16]. Fang Lan et al. (2022)
used the SBM-GML index model to measure agricultural green total factor productivity
based on provincial panel data in China from 2002 to 2015, and systematically examined the
impact of crop insurance on agricultural green total factor productivity and its mechanism
of action [17].

A number of scholars have conducted in-depth studies on the analysis of the spatial in-
teraction of green total factor productivity in agriculture. Fredriksson and Millimet (2002) [18]
were the first to study the spatial spillover effects of government policies that could lead to
inter-regional resource flow mechanisms and scalar competition mechanisms [19]. Due to
the spatial scale of agricultural green total factor productivity interactions, governments
tend to weaken the intensity of local environmental regulations for the purpose of attracting
competing high-quality agricultural production factors, thus triggering the phenomenon
of bottom-up racing for environmental quality between regions [20]. In contrast, some
studies have argued that quality agricultural resources have a higher demand for the
environment and that there is also a race to the top in inter-regional agricultural develop-
ment [21]. As a result, agricultural green total factor productivity is networked at a spatial
scale and in turn influences the green economic efficiency of regions due to cooperative or
competitive strategies between local governments [22]. Zhangqi Zhong et al. (2019) used
data envelopment analysis to construct a spatial panel data model with embedded cli-
mate change factors to measure agricultural total factor productivity in China, and then
explored the possible impact of climate change on agricultural total factor productivity
in provincial regions of China [23]. Wang Haoran et al. (2020) used stochastic frontier
analysis, the Malmquist index, and the spatial Durbin model to examine the spatial effects
of green technology innovation on green total factor productivity from a regional per-
spective [24]. Zhang Xueyao et al. (2021) used ICT and panel spatial measurement (PSM)
models to measure the overall characteristics, temporal changes, and regional differences
in agricultural development in 30 Chinese provinces from 2000 to 2019 from the perspec-
tive of resources and environment, and constructed a panel data measurement model
using generalised least squares to analyse the main factors affecting performance develop-
ment [25]. Xingming Li et al. (2022) used a data envelopment analysis (DEA) model and
the Malmquist–Luenberger (ML) index to measure China’s tourism GTFP from 2007 to 2018
and analyse spatial and temporal differences [26]. Huaping Zhang et al. (2022) established
an assessment index system (AIS) for GTFP, and used the EBM model to calculate the GTFPs
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of 30 Chinese provinces from 2000 to 2019. They analysed the spatial correlation between
the GTFPs of each province and discussed the convergence between them using spatial
panel data [27]. Shiying Hou et al. (2022) used a spatial econometric model to investigate
the spatial effects of market integration on regional green total factor productivity and the
transmission mechanism by calculating the Malmquist–Luenberger index based on panel
data of 30 Chinese provinces from 2008 to 2017 [28]. Qiang Li et al. (2022) used a slack
metric-based data envelopment analysis (DEA-SBM) super-efficiency model to measure
agricultural environmental total factor productivity (ETFP) in 30 provinces and regions in
China. Based on the measurement results, the impact of the urban–rural income gap on
agricultural ETFP was empirically tested using a spatial autoregressive (SAR) model and
estimation methods [29].

However, an analysis of the existing literature reveals two points. Firstly, from the per-
spective of research objects, most of the existing studies have been conducted on green total
factor productivity and agricultural total factor productivity, while few studies have been
conducted on agricultural green total factor productivity. Secondly, from the perspective of
research methods, most of the existing studies have used time series models, panel models,
and spatial econometric models, while few studies have used social network models. In
comparison with other methods, the use of social network models can both portray the
spatial structure of green total factor productivity in agriculture in a given period and
better analyse the evolutionary trends of green total factor productivity in agriculture in
different time dimensions, with a variety of advantages applicable to the study. Therefore,
there is a need to focus on green total factor productivity in agriculture and to combine
research methodological innovations to examine a country’s development from a spatial
dynamic evolutionary perspective. Indeed, given the spatial spread and interaction of
policies and factors, the assessment of agricultural green total factor productivity of a given
region cannot be undertaken in isolation, but must take into account both its own efficiency
and the role of the efficiency of other regions in the local context, i.e., the region must be
analysed in the context of a network formed by links with other regions. Social network
analysis (SNA) is a powerful tool for studying social phenomena and structures, based
on a “relational” perspective, which can better reflect the relative position and network
characteristics of a province in a nationwide network of agricultural green total factor
productivity [30]. Therefore, in this paper, we propose to use social network analysis to
measure the overall profile of agricultural green total factor productivity in China and
the position of each province in the network. On this basis, the VAR impulse response
function (IRF) is applied to further examine how agricultural green total factor productiv-
ity in a particular region is affected by other regions, considering the economic linkages
between the three major regions of China: north and south, central, and east and west
(eastern provinces include Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, and Guangdong; central provinces include Shanxi, Jilin, Heilongjiang,
Anhui, Jiangxi, Henan, Hubei, and Hunan; western provinces include Inner Mongolia,
Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and
Xinjiang). The VAR impulse response function (IRF) is used to further examine how the
green total factor productivity of agriculture in a given region is affected by other regions.
The research in this paper is based on the following hypotheses: in the development of a
market economy, due to the profit-seeking motive of enterprises, the allocation of resources
and factors, etc., between regions is inevitable, so the magnitude of agricultural green
total factor productivity in a region will not only be influenced by the development of the
local economy, but also, in the long run, will be increasingly influenced by other regions,
especially geographically adjacent regions. The research methods are based on the more
scientific slack-based model (SBM) global Malmquist–Luenberger (GML) index to measure
the green total factor productivity of agriculture in China’s provinces, and the innovative
use of social network analysis (SNA) to examine the spatial linkages and network structure
of green total factor productivity in China’s agriculture. Furthermore, a vector autore-
gressive model (VAR) impulse response function (IRF) was used to analyse the regional
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interaction of green total factor productivity in China’s agriculture. The aim of this paper
is to establish a social network-based analytical framework through a systematic analysis
of the spatial structure, dynamic evolution, and regional interaction of agricultural green
TFP in China, in which it is possible to study the open economic linkages of a region at a
spatial scale while taking into account developments over time, and in doing so, stimulate
the thinking of policy makers.

2. Measurement of Agricultural Green Total Factor Productivity in China
2.1. Methodology for Measuring Agricultural Green Total Factor Productivity

Following Tone (2003) [5] and OH (2010) [31], the results of the GML index measure of
the SBM model were used to characterise the green total factor productivity of agriculture
in each province. It is assumed that there exist n decision unit production systems, and the
decision units all consist of input, desired output, and non-desired output input-output
vectors, with input m units obtaining S1 desired output and S2 non-desired output. Based
on the production possibility set, the SBM model of green total factor productivity in
agriculture in period i in region m is developed.

ρ∗ = min

1
m

m
∑

i=1

xi
xi0

1
S1 + S2

(
S1
∑

r=1

yg
r

yg
r0
+

S2
∑

r=1

yb
r

yb
r0
)
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θjy

g
j
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j
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0 , yb ≥ yb
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(1)
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X = [x1, x2, . . . , xn] ∈ Rm×n, Yg = [yg
1 , yg

2 , . . . , yg
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2, . . . , yb
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The SBM model is based on the assumption of constant size; S = (S−, Sg, Sb) repre-
sents the input, desired, and undesired output slack; and the objective function value ρ*
characterises the efficiency value of the decision unit.

The mathematical expression for the GML index is:
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→
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D
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= ECt,t+1 × TCt,t+1

(2)

The GML index can be decomposed into technical efficiency (EC) and technical
progress (TC), where x, y, b, and t denote input, desired output, undesired output, and time,

respectively.
→
D

G

o (xt, yt, bt; yt, bt) and
→
D

G

o (xt+1, yt+1, bt+1; yt+1, bt+1) denote the efficiency
values of the decision unit in period t and period t + 1, respectively.

In the agricultural green total factor productivity measurement, the input factors
include seven indicators: labour, cultivated area, farm machinery, fertiliser application
(discounted amount), agricultural irrigation area, agricultural film coverage area, and
pesticide application. The desired outputs are agricultural output value and agricultural
carbon sequestration, which mainly include crop types such as rice, wheat, maize, beans,
potatoes, peanuts, rapeseed, sugar cane, cotton, melons, and vegetables. Non-desired
outputs comprise the sum of carbon emissions from fertiliser, agriculture, mulch, diesel and
irrigation, soil N2O emissions (converted to CO2), livestock carbon emissions, and paddy
CH4 emissions (converted to CO2). In consideration of data availability, the study was
conducted in 30 provincial-level regions in China (Hong Kong, Macao, Taiwan, and Tibet
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were not considered due to missing data), and the study interval was from 2008 to 2019.The
research data in this paper were obtained from the China Statistical Yearbook, China
Environmental Statistical Yearbook, China Rural Statistical Yearbook, China Agricultural
Yearbook from 2009 to 2020, and the EPS data platform (https://www.epsnet.com.cn,
accessed on 9 February 2022).

2.2. Analysis of the Results of Agricultural Green Total Factor Productivity in China

The results of the agricultural green total factor productivity measurement for each
province in China based on the SBM-GML are reported in Table 1 and Figure 1. In terms
of province comparison, the top five provinces in terms of average agricultural green
total factor productivity from 2008 to 2019 are Zhejiang (1.049), Jiangxi (1.044), Fujian
(1.039), Hunan (1.037), and Chongqing (1.035), mainly in the central and western regions,
while the bottom five provinces are Hainan (0.999), Guangxi (1.0003), Xinjiang (1.0005),
Qinghai (1.005), and Shaanxi (1.008), mainly in the western region. In terms of regional
comparison, the average values of agricultural green total factor productivity in China’s
southern provinces in 2008, 2015, and 2019 were 1.053, 1.011, and 1.061, respectively, while
the average values of agricultural green total factor productivity in northern provinces
were only 1.036, 0.985, and 1.035 respectively, showing a certain gap with the southern
regions in different years. Figure 2 shows that the south was higher than the north in
8 of the 12 years analysed, accounting for 66.7% of the total years, which is in line with the
above view. When analysed in terms of kernel density, we found that the peak value of
agricultural green total factor productivity in the south (about 1.02) is lower than that in
the north (about 1.03), but the concentration is higher than that in the north, indicating
that the distribution of the quality of agricultural green development in the north is more
dispersed and the development differences between different provinces are more obvious
than in the south.

Table 1. Agricultural green total factor productivity measurements by province in China, 2008–2019.

Province 2008 2015 2019 Province 2008 2015 2019

Beijing 1.084 1.043 1.003 Henan 0.997 1.013 1.040
Tianjin 0.973 1.027 1.056 Hubei 1.184 1.006 1.075
Hebei 1.066 0.992 1.049 Hunan 1.083 1.007 1.212
Shanxi 1.061 0.967 0.993 Guangdong 0.926 1.016 1.058

Inner Mongolia 0.981 0.962 1.043 Guangxi 1.000 0.989 1.024
Liaoning 1.015 1.063 1.065 Hainan 0.842 0.932 1.134

Jilin 1.104 0.972 1.059 Chongqing 1.019 1.019 1.069
Heilongjiang 1.150 0.982 1.006 Sichuan 1.066 1.004 1.066

Shanghai 1.151 0.932 1.000 Guizhou 0.897 1.068 1.009
Jiangsu 1.048 1.067 1.008 Yunnan 1.058 0.976 1.106

Zhejiang 1.077 1.018 1.072 Shaanxi 1.043 1.001 1.022
Anhui 1.041 1.000 1.027 Gansu 1.025 1.010 1.023
Fujian 1.089 1.062 1.027 Qinghai 1.000 0.768 1.141
Jiangxi 1.107 0.998 1.104 Ningxia 0.991 1.004 0.983

Shandong 1.048 1.009 1.040 Xinjiang 1.000 0.968 1.000

https://www.epsnet.com.cn
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3. Spatial Structure Portrayal of Agricultural Green Total Factor Productivity in China
3.1. Spatial Network Construction Model of Agricultural Green Total Factor Productivity
3.1.1. Gravitational Model

On a spatial scale, different regions gradually form a network structure of links through
interaction. Drawing on the gravitational model of physics, a basic gravitational model of
inter-regional economic linkages is formed, with the expression generally expressed as:

Pij =

√
Pi·Gi ×

√
Pj·Gj

D2
ij

(3)

where Pij denotes the economic attractiveness of region i to j; Pi, Pj and Gi, Gj denote the
population size and economic volume of regions i and j, respectively; and Dij denotes the
geographical distance between the two places. The distance of each province in this paper
is measured by the latitude and longitude of the provincial capital city.

Since this formula only characterises the single linkage between regions and lacks
consideration of the two-way linkage between regions, the traditional gravity model is
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improved by combining the actual characteristics of the spatial structure of total factor
productivity in China’s agricultural environment to form a new gravity model expression:

Rij = aij ×

√
Pi·Gi ×

√
Pj·Gj

D2
ij

, aij =
GBRi
GBRj

(4)

where Rij denotes the influence of the agricultural green total factor productivity of region i
on the agricultural green total factor productivity of region j. Gi, Gj denote the agricultural
green total factor productivity of regions i and j, respectively. aij denotes the contribution
of region i to Rij as measured by the general budget revenue (GBR) ratio of region i and
region j.

3.1.2. Network Density Model

Network density is a measure of the spatial interaction between regions and is posi-
tively correlated with the closeness of regional ties, characterised by the ratio of the “total
number of actual relationships” to the “theoretical maximum number of relationships”
between regions, as expressed in the equation:

ρ =
L

N(N − 1)
(5)

where ρ denotes the density, L denotes the total number of relationships actually present,
and N denotes the number of regions.

3.1.3. Network Centrality Model

One of the most important tools for characterising the local features of a network is
centrality analysis, which measures the centrality of a local region in the overall network
and consists of two main types of metrics: point centrality and centrality potential. Point
centrality is divided into point-in centrality and point-out centrality, where point-in central-
ity measures the ability of a particular region to receive influence from other regions and
point-out centrality measures the ability of a particular region to influence other regions.
The equation is described as:

Cin =
∑N

j=1,j 6=1 Qij

N − 1
(6)

Cout =
∑N

j=1,j 6=1 Qji

N − 1
(7)

where Cin and Cout denote point-in centrality and point-out centrality, respectively; Qij and
Qji denote the strength of the connection between regions i(j) and j(i) of the two nodes,
respectively; and N denotes the number of regions.

In contrast to point degree centrality, point degree centrality potential indicates the
concentration of nodes in a social network and characterises the central tendency of the
social network. The equation is described as:

Cin =
∑N

i=1 (Cmax − C1)

max[∑N
i=1 (Cmax − Ci)]

(8)

where C denotes the point degree centrality potential, Cmax denotes the social network
centrality maximum, and Ci denotes the regional centrality of each node.

3.2. Overall Characteristics of the Spatial Network of Agricultural Green Total Factor Productivity
in China

The NetDraw function of Ucinet software was used to draw the spatial structure of
the Chinese agricultural green total factor productivity network (Figure 3), with nodes
and directed line segments representing the direction and intensity of environmental
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information interactions between provinces of China, respectively. Based on this, the
network density of green total factor productivity in Chinese agriculture was measured
and collated in Table 2.
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Table 2. Network density of agricultural green total factor productivity in China, 2008–2019.

Year 2008 2019

Using the average method 155.66 163.40
The cut-off value is 10 0.894 0.917
The cut-off value is 50 0.667 0.689
The cut-off value is 100 0.452 0.463

The results show that the network density of green total factor productivity in agricul-
ture exhibited an increasing trend from 2008 to 2019 after the matrix was processed and
measured using four methods with mean cut-off values of 10, 50, and 100. Numerically, the
network density increased from 155.66, 0.894, 0.667, and 0.452 in 2008 to 163.40, 0.917, 0.689,
and 0.463 in 2019, equal to increases of 7.74, 0.023, 0.022, and 0.011, respectively, in 11 years,
representing year-on-year increases of 4.97%, 2.57%, 3.30%, and 2.43%, respectively. This in-
dicates that the regional interaction of green total factor productivity in China’s agriculture
is growing stronger and a spatial network structure is taking shape. With the increasing
improvement in the national system of incentives for green agricultural production and
the wider application of information technology, the spatial interaction and dependence of
green total factor productivity in agriculture among China’s regions is also increasing.

3.3. Centrality Characteristics of Agricultural Green Total Factor Productivity in China

To reflect the changes in the status of different Chinese provinces in the agricultural
green total factor productivity network, the provinces were ranked according to the values
based on the measured network point-out and network point-in degrees, and the results
are shown in Table 3. On the whole, the top 10 provinces do not change significantly in
terms of either network point-out or network point-in, indicating that China’s agricultural
green total factor productivity network has certain characteristics of self-stability. From the
perspective of network point-out, Guangdong, Jiangsu, Shandong, and Zhejiang, as large
economic provinces, have always ranked among the top provinces in China, leading the
country in terms of agricultural green economy efficiency. From the perspective of network
point-in degree, provinces such as Qinghai, Ningxia, and Gansu rank high. Data show that
the average values of total factor productivity of the agricultural environment in Qinghai,
Ningxia, and Gansu in 2008, 2015, and 2019 are only 1.005, 0.927, and 1.049, respectively,
which are mainly driven by the demonstration of the eastern coastal region in the process
of green agricultural development.
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Table 3. Top 10 provinces in terms of network performance.

Web Spot Ranking(Degree of Point-out)

Year 1 2 3 4 5 6 7 8 9 10

2008 Guangdong Jiangsu Shandong Zhejiang Shanghai Henan Sichuan Hebei Liaoning Beijing

2015 Guangdong Jiangsu Shandong Zhejiang Henan Sichuan Shanghai Hubei Hebei Beijing

2019 Guangdong Jiangsu Shandong Zhejiang Henan Sichuan Hebei Shanghai Beijing Hubei

Web Spot Ranking(Degree of Point-in)

Year 1 2 3 4 5 6 7 8 9 10

2008 Qinghai Ningxia Gansu Guizhou Jiangxi Hainan Anhui Hubei Guangxi Hunan

2015 Qinghai Ningxia Gansu Heilongjiang Hainan Guangxi Guizhou Shanxi Anhui Jilin

2019 Qinghai Ningxia Gansu Jilin Heilongjiang Hainan Guangxi Guizhou Hunan Jiangxi

In order to characterise the regional linkages as a whole, the network centrality of
the spatial linkages of agricultural green total factor productivity from 2008 to 2019 was
calculated (Table 4), and the results show that the network point-in and network point-out
centrality exhibit “V”-shaped and inverted “V”-shaped paths from 2008 to 2019, respec-
tively. The results show that from 2008 to 2019, the network entry degree centrality and the
network exit degree centrality exhibit “V”-shaped and inverted “V”-shaped paths, respec-
tively. The point-out centrality increased from 30.57% in 2008 to 38.70% in 2015 and then
decreased to 30.69% in 2019, indicating that the total factor productivity of China’s agricul-
tural environment has undergone an evolutionary path from polycentric to monocentric to
polycentric conditions, and that the provinces in China have basically formed a positive
interaction pattern of competing for upward mobility in improving the efficiency of the
agricultural green economy. The point-in centrality declined from 16.69% in 2008 to 13.47%
in 2015 and then to 14.18% in 2019. Since the financial crisis in 2008, due to the unfavourable
economic situation, the circulation of domestic agricultural products has been reduced,
causing a shock to the environmental economic efficiency at the agricultural production
end. However, as China has the advantage of a mega market and the potential of domestic
demand, the resilience of green agricultural development has gradually increased, and
the spatial interaction of China’s agricultural green total factor productivity will continue
to strengthen as the national strategy of revitalising the countryside and building a new
development pattern progresses.

Table 4. Network centre potential, 2008–2019.

Year 2008 2015 2019

Point-out centrality potential 30.57% 38.70% 30.69%
Point-in centrality potential 16.69% 13.47% 14.18%

3.4. Analysis of Cohesive Subgroups of Agricultural Green Total Factor Productivity in China

Cluster analysis was conducted using the iterative correlation convergence (CONCOR)
method and the results are shown in Figure 4 and Table 5. The cohesive subgroups of
China’s agricultural green total factor productivity from 2008 to 2019 are divided into four
subgroups, with the subgroups in 2019 being (Beijing, Shanghai, Jiangsu, Guangdong,
Shandong, Zhejiang), (Henan, Hebei, Sichuan), (Jiangxi, Anhui, Liaoning, Fujian, Hubei
Shanxi, Tianjin, Hunan, Shaanxi), and (Jilin, Guangxi, Hainan, Chongqing, Heilongjiang,
Guizhou, Yunnan, Inner Mongolia, Gansu, Qinghai, Ningxia, Xinjiang). Comparing re-
gional disparities in the four cohesive subgroups in 2019 (Figure 5), there is a decreasing
relationship in terms of agricultural green total factor productivity in the following order:
third, second, fourth, and first subgroups. However, as shown in Table 5, the cohesive
subgroups formed by China’s agricultural green total factor productivity do not differ
significantly in different years, indicating that the internal structure of cohesive subgroups
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has some stability. Provinces with the same subgroup of agricultural green total factor
productivity tend to be similar at the geographical or economic level, e.g., the first cohesive
subgroup provinces are all located in eastern China, while the fourth cohesive subgroup
provinces are mainly distributed in western China.
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Table 5. Agricultural green total factor productivity linkage network cohesive subgroups in China
from 2008 to 2019.

Year Province

2008

1
Beijing, Shanghai, Jiangsu,

Guangdong, Shandong,
Liaoning, Zhejiang

2 Hebei, Henan, Sichuan

3
Chongqing, Inner Mongolia, Fujian,
Hubei, Anhui, Tianjin, Heilongjiang,

Hunan, Shanxi, Shaanxi, Yunnan
4

Hainan, Jiangxi, Guizhou, Jilin,
Guangxi, Gansu, Qinghai,

Ningxia, Xinjiang

2015

1 Beijing, Shanghai, Jiangsu,
Guangdong, Shandong, Zhejiang 2 Hubei, Henan, Sichuan

3
Chongqing, Inner Mongolia, Liaoning,
Hebei, Jiangxi, Anhui, Fujian, Tianjin,

Hunan, Shaanxi
4

Guangxi, Hainan, Jilin, Heilongjiang,
Guizhou, Yunnan, Shanxi, Gansu,

Qinghai, Ningxia, Xinjiang

2019

1 Beijing, Shanghai, Jiangsu,
Guangdong, Shandong, Zhejiang 2 Henan, Hebei, Sichuan

3
Jiangxi, Anhui, Liaoning, Fujian,

Hubei, Shanxi, Tianjin,
Hunan, Shaanxi

4

Jilin, Guangxi, Hainan, Chongqing,
Heilongjiang, Guizhou, Yunnan,
Inner Mongolia, Gansu, Qinghai,

Ningxia, Xinjiang

The results are reported in Table 6. In general, the density of cohesive subgroups of
agricultural green total factor productivity in China shows a growing trend, indicating that
the spatial interaction of different cohesive subgroups is strengthening, and that a national
network structure of agricultural green development is being formed and optimised,
which is of great value for cross-regional cooperation and industrial chain extension and
integration in agriculture. In terms of the relationship between specific cohesive subgroups,
the (Beijing, Shanghai, Jiangsu, Guangdong, Shandong, and Zhejiang) and (Jilin, Guangxi,
Hainan, Chongqing, Heilongjiang, Guizhou, Yunnan, Inner Mongolia, Gansu, Qinghai,
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Ningxia, and Xinjiang) subgroups are the most closely linked, with the eastern provinces
having more balanced development overall and advantages in terms of capital, technology,
and human capital, while the western provinces, due to their soil, light, and other unique
endowments, have natural complementarities with the eastern regions in the development
of special agriculture and rural tourism. With the promotion of infrastructure and a rule-
of-law business environment, both exogenous and endogenous transaction costs, which
restrict industrial cooperation and factor flows, have dropped significantly, and cross-
regional agricultural cooperation between the central and western regions, in the form of
counterpart cooperation, has achieved satisfactory results.
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Table 6. Density of cohesive subgroups of agricultural green total factor productivity network in
China, 2008–2019.

2008/2015/2019 1 2 3 4

1
131.28/
152.68/
158.47

336.10/
326.53/
349.87

346.00/
330.85/
385.85

586.51/
499.19/
577.10

2
70.04/
76.29/
85.73

193.62/
178.55/
204.49

199.44/
180.31/
214.78

352.87/
285.14/
350.24

3
32.81/
44.50/
45.49

91.16/
100.94/
105.79

87.58/
94.41/
111.98

162.34/
152.70/
170.81

4
11.43/
14.96/
14.44

31.38/
36.14/
38.14

32.83/
35.03/
37.79

61.99/
62.18/
69.91

4. Regional Interaction Analysis of Agricultural Green Total Factor Productivity in China

With the deepening and expansion of the market economy, the green development of
regional agriculture is increasingly influenced by exogenous factors, superimposed on path-
dependent effects, and the spatial correlation is constantly reinforced. However, it should
be noted that it takes a long time for different regions to interact with each other and form a
more stable spatial distribution pattern, i.e., spatial correlation must be analysed in a longer
time dimension to be meaningful; therefore, spatial correlation analysis is not contradictory
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to the assumption that all DMUs should be independent in DEA analysis. In order to
validate the spatial correlation of green total factor productivity in Chinese agriculture,
we measured the global Moran I index (Moran’s I), whose mathematical expression is
as follows.

Moran′s I =
n

n
∑

i=1
(Yi −Y)2

n
∑

i=1

n
∑

j=1
Wij(Yi −Y)(Yj −Y)

n
∑

i=1

n
∑

j=1
Wij

(9)

In the above equation, Yi and Yj denote the observed values of the examined indicators
in regions i and j, respectively; n is the number of spatial cells; and Wij is the spatial weight
matrix, which is used to measure the interrelationship between neighbouring regions. In
this paper, we define the value of a regional neighbourhood as 1, otherwise the value is
0. Moran’s I takes values in the range [−1, 1], tends to −1 for negative spatial correlation,
tends to 1 for positive spatial correlation, and equals 0 for no spatial correlation. We used
OpenGeoDa software to create Moran scatter plots of China’s agricultural green total factor
productivity in 2008 and 2019 (Figure 6), and the plots show that Moran’s I values in 2008
and 2019 are 0.2404 and 0.2148, respectively, which verifies the existence of the spatial
correlation of China’s agricultural green total factor productivity.
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On the basis of spatial correlation analysis, considering regional heterogeneity, impulse
response function (IRF) analysis was conducted by building a VAR model to further
explore the regional interaction of green total factor productivity in agriculture in east,
central, and west China, and in south and north China, resulting in the impulse response
function composite plot reported in Figure 7, where the horizontal axis indicates the
number of lag periods for the effect of shocks; the vertical axis indicates agricultural green
total factor productivity; the solid line indicates the impulse response function, which
represents the response of a particular region to a green agricultural efficiency shock from
other regions; and the dashed line indicates the positive and negative two-times standard
deviation bands.
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Figure 7. Impulse response function synthesis diagrams. (a) Impact of the east on the middle.
(b) Impact of the middle on the east. (c) Impact of the middle on the west. (d) Impact of the west on
the middle. (e) Impact of the east on the west. (f) Impact of the west on the east. (g) Impact of the
north on the south. (h) Impact of the south on the north.

For the analysis of image features, in terms of regional interactivity in the east, central,
and west, and in the south and north, we found that the impulse response curves of east
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to central, west to central, and west to east showed roughly opposite trends, while the
impulse response curves of west to central interaction showed roughly the same trend. This
indicates that the interaction between the centre and the west and the east has generally
improved agricultural green total factor productivity in the east, but has had an insignificant
positive effect on agricultural green total factor productivity in the region, i.e., a significant
siphon effect and a non-significant trickle-down effect. In contrast, the interaction between
the central and western regions, with the direction of the impulse responses converging,
indicates that the central region can also positively influence the efficiency of the agricultural
green economy in the western region while improving its own agricultural green total
factor productivity, showing a certain win-win pattern of agricultural development in the
two regions. In terms of regional interaction between the south and the north, the intensity
of the impulse response of the south to the north is much higher than that of the north to
the south. On the one hand, this indicates that the south has a greater driving effect on the
green total factor productivity of agriculture in the north, and on the other hand, it indicates
that there is still a lack of innovative division of labour in agricultural development between
the south and the north of China, and that the degree of industrial integration needs to be
strengthened. Therefore, in order to further improve the overall level of agricultural green
total factor productivity in China and optimise the cross-regional layout of agriculture, the
next stage should focus on strengthening the rational allocation of factors and the division
of labour between the middle and the west, the south, and the north.

5. Conclusions

In this study, we measured agricultural green total factor productivity in each province
of China based on the SBM-GML method and examined the spatial network structure of
agricultural green total factor productivity in China and the regional interaction between
the east, middle, and west using social network analysis (SNA) and impulse response
function (IRF) in the VAR model, respectively. We found that agricultural green total factor
productivity from 2008 to 2019 was generally higher in the southern provinces than in the
northern provinces, and that the distribution of agricultural green development quality was
more dispersed in the north, with development differences between different provinces
being more pronounced than in the south. The spatial network structure of agricultural
green economic efficiency across Chinese provinces is taking shape, experiencing an evo-
lutionary path from polycentric to monocentric to polycentric conditions, with the same
subgroup of provinces often having similarities at the geographical or economic level,
indicating that China’s agricultural green total factor productivity has basically formed a
benign interaction pattern of competing upwards in terms of improving agricultural green
economic efficiency. China’s resilience in green agricultural development has gradually
increased with the advantage of a mega market and the potential of domestic demand,
and the spatial network is characterised by a certain degree of self-stability. With the
in-depth promotion of the national strategies of rural revitalisation and building a new
development pattern, the density of total factor productivity networks and the density
of cohesive subgroups in China’s agricultural environment are both showing an increase,
indicating that the spatial interaction of agricultural green development is strengthening,
which has important practical significance for cross-regional cooperation in agriculture and
the extension and integration of industrial chains; for example, the cross-regional agricul-
tural cooperation in central and western China in the form of counterpart cooperation has
achieved satisfactory results. The interaction between the eastern, central, and western
regions has generally improved the total factor productivity of the agricultural environment
in the east, but not in the central and western regions, meaning that the siphon effect is
significant but the trickle-down effect is not obvious. Therefore, for policy makers, in order
to improve the green total factor productivity of Chinese agriculture, targeted policies
related to cross-regional cooperation in terms of factor mobility and industrial division of
labour can be considered, taking into account the actual agricultural development in the
mid-west and the south–north. For academic researchers, the possible inspiration of this
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paper is that for different research topics, appropriate research methods must be selected
and applied in order to provide a more profound analytical portrayal of the real world. The
social network analysis method adopted in the paper can obtain appropriate answers to the
question of the spatio-temporal development of regional economies in an open economy,
but it cannot do anything about the analysis of closed economies due to geographical
and institutional factors. At a time when globalised markets are encountering increasing
challenges and food security and environmental protection are prominent issues, the use
of social network analysis tools to study the position and changing trends of countries in
international trade in agriculture, in order to maintain global trade security and promote
sustainable agricultural development, is a promising, challenging, and meaningful exercise.
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