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Abstract: Ride-sharing services are one of the top growing sustainable transportation trends led by
mobility-as-a-service companies. Ridesharing is a system that provides the ability to share vehicles on
similar routes for passengers with similar or nearby destinations on short notice, leading to decreased
costs for travelers. At the same time, though, it takes longer to get from place to place, increasing
travel time. Therefore, a fundamental challenge for mobility service providers should be finding
a balance between cost and travel time. This paper develops an integer bi-objective optimization
model that integrates vehicle assignment, vehicle routing, and passenger assignment to find a non-
dominated solution based on cost and time. The model allows a vehicle to be used multiple times
by different passengers. The first objective seeks to minimize the total cost, including the fixed cost,
defined as the supply cost per vehicle, and the operating cost, which is a function of the distance
traveled. The second objective is to minimize the time it takes passengers to reach their destination.
This is measured by how long it takes each vehicle to reach the passenger’s point of origin and
how long it takes to get to the destination. The proposed model is solved using the AUGMECON
method and the NSGA II algorithm. A real case study from Sioux Falls is presented to validate the
applicability of the proposed model. This study shows that ridesharing helps passengers save money
using mobility services without significant change in travel time.

Keywords: ridesharing; vehicle routing; bi-objective optimization; vehicle assignment; AUGMECON;
NSGA II; sustainable transportation

1. Introduction

The sharing economy is changing our transportation systems. Soon, on-demand ser-
vices will support flexible mobility and connect people and goods to various transportation
systems, including short-distance carpooling and bike or scooter sharing services. Among
these services, ridesharing is especially interesting for passengers and public mobility
service providers because it addresses issues traditional mobility systems cannot resolve [1].
Ridesharing is a system that allows passengers to share vehicles for similar routes. It can
reduce traffic congestion and energy consumption by reducing the number of cars in public
spaces and large cities [2]. It can also reduce the time spent searching for parking and travel
costs [3]. Additionally, ridesharing has high positive impacts on environmental factors
such as greenhouse gas (GHG) emissions reduction [4,5].

Based on the idea of sustainable mobility, bike sharing is great solution for transporta-
tion system developments. In [6] the effects of built environment features on bike sharing
service are discussed. The findings of this research suggest some recommendations for
sustainable development of bike sharing. One of the suggestions is expansion of the bike
sharing services in the suburbs or places where proper public transports are no longer
reachable. In other research, Elzbieta [7] studied the influencing factors on bike sharing
systems. In this research, 25 factors from social, technological, economic, environmental,
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and political are recognized and classified based on influences and dependencies. These
studies demonstrate bike ridesharing effects on sustainable transportation development.

An increase in the number of vehicles carrying passengers could significantly reduce
travel costs for users, such as delays in reaching their destination, and provide time-saving
transportation services. However, as the number of vehicles increases, so too do ancillary
costs. These are costs directly related to the system’s operation; they consist of fixed costs,
i.e., supply costs per vehicle, and operating costs, which are a function of vehicle distance
traveled. On the other hand, the provision of fewer vehicles results in passengers facing a
longer travel time and, consequently, their dissatisfaction. These problems also occur in
shared autonomous vehicles in ride-sharing systems, where the main challenges are the
system side cost and the passenger side cost [8]. In the system considered in this paper,
providers tend to serve all passengers to minimize the total cost for providers and travelers.

Some works such as [9,10] assume that drivers have a fixed and single direction of
travel with specific origins and destinations, and in some other cases, detours might occur
to pick up and drop off travelers outside the main route, which cannot be a practical
assumption for the actual transportation network pattern. To provide more flexibility
to ride-sharing services, we assume in this paper that multiple heterogeneous vehicles
can operate simultaneously in an area with different travel routes. We also assume that
vehicles can pick up passengers with different origins and destinations. In this case, no
backward movement from destination to origin points is in any MODM solution allowed
for vehicles; however, the vehicles first collect passengers at one or more origin points then
take them to one or more destination points in any order. To reduce passenger waiting
time, service providers analyze the travel time and set the departure schedule before the
vehicle leaves the parking lot [11]. Once a driver accepts a request, the service providers
use the travel times and road conditions to find the optimal route to offer the best itinerary
to travelers. The cumulative waiting time can be significantly reduced by this method.
Against this background, in this work, we investigate optimal ride-sharing routing among
different origins and destinations to minimize the total travel time and cost and assign
the optimal number of vehicles to passengers. That is, we aim to find a compromise
between the optimal number of vehicles and the minimum travel time. As the proposed
model is an extension of multi-objective shortest path problem, it can be shown it is a
NP-hard problem [12].

The rest of this paper is organized as follows. In Section 2, related works are re-
viewed. In Section 3, a mathematical model based on MIP is developed. Then, the two
multi-objective solution methods, augmented epsilon constraint (AUGMECON) and non-
dominated sorting genetic algorithm 2 (NSGA II), are discussed in Section 4. Numerical
experiments are performed and evaluated to prove the effectiveness of the proposed model
in Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

The mobility-on-demand service has led to ridesharing to address road congestion
and facilitate traveling by sharing rides for passengers with similar schedules [9]. Korn-
hauser [13] was the first researcher who studied ride-sharing systems to help fuel manage-
ment in the United States and implement a new urban transportation system. This study
showed that the use of ride-sharing systems noticeably reduced the energy consumption
of taxis, and the work attracted much attention from researchers for different reasons,
including reducing the waste of energy [14] relieving traffic congestion [10,15] adjusting
prices dynamically [16], and increasing customer satisfaction [17]. Other research regarding
ridesharing can be found in [18,19]. Machado recently conducted a comprehensive review
of mobility sharing, which considers car-sharing, personal vehicle sharing, bike-sharing,
and ridesharing. MENG [19] studied the characteristics of ridesharing and its impact on
travel efficiency due to road congestion reduction. This paper also addressed the selected
route for a ride-sharing trip, types of ridesharing, travel costs and potential savings, the
departure time for a ride-sharing trip from the origin point, and the travel time for a ride-
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sharing trip from the origin point. The different types of ride-sharing are also presented in
literature which contain ride-sharing with static requests that are determined before the
trip begins [20]; ride-sharing with dynamic requests [21], where new requests can be added
during the trip; and ride-sharing with both deterministic and stochastic trip requests [22].

However, some challenges are associated with these on-demand services such as
travel distance, travel cost, and travel time, which can be handled by implementing optimal
vehicles routing. Literature shows these challenges were the case of study in several
research studies and authors used different types of mathematic programming to deal
with them.

Recent studies show that travel time is a crucial factor in ride-sharing systems, and
matching models consider time constraints in finding suitable rides [2]. However, in most of
the studied works, a time window was considered in vehicle routing optimization [3,23], or
travel time was considered deterministic [24–28]. To minimize the travel cost, [29] presented
an optimization model for ride-sharing routes and cost-sharing problems. The problem
of maximizing the total number of passengers served was mathematically formulated
by [30], and a decomposition algorithm was implemented to solve the model. Some other
researchers have tried to minimize the cost function corresponding to the assignment of trip
requests to drivers by a combinatorial optimization problem [31]. In [32], a mixed-integer
optimization was proposed to optimize ride-sharing routes between certain regions during
a particular period. Capacity restrictions were incorporated to ensure that at least each car
serves a minimum number of passengers. In this case, they solved the problem by using a
genetic algorithm.

Some other researchers used assignment problem to find the optimal assignment of
passengers to vehicles, which aimed to address travel cost, time, and distance challenges.
The problem of optimal allocation of requests to drivers to minimize the cost function
defined as the sum of travel delays over all passengers was solved by [33]. Fielbaum [2]
analyzed the positive aspect of optimizing the pick-up and drop-off points in the ride-
sharing system. Moreover, he formulated an optimization problem that aimed to minimize
the total cost, contained the cost for both drivers and riders, which included the cost of
refusing a ride, the additional cost of drivers detouring around passengers’ requests, and
the operating cost. This model also considered thresholds for maximum waiting time,
delay, and walking time (access time). The allocation of vehicles was also considered in
the design of the fleet management system [1]. The authors developed a multi-objective
integer linear programming (ILP) problem with an algorithm based on the idea of the
branch-and-bound algorithm. They also introduced three efficient heuristic methods to
speed up the algorithm for large problems. Their considered method aims to optimize all
passengers’ waiting time and travel time and the total distance and travel time for vehicles.
In [34], the authors focused on an optimization model that enables ride-sharing users to
walk to and from alternative pick-up and drop-off locations. A late acceptance large-scale
and metaheuristic method was presented to solve the model. This problem then presented
in order to minimize the total distance traveled. A study focusing on flexible users also
showed that walking to and from nearby pick-up and drop-off locations in the ride-sharing
system could greatly reduce user rejection [2].

Dynamicity of demands and system condition are studied in some research studies.
Adaptive route selection based on the requests of passengers was studied to adjust the path
based on passengers’ dynamic demands [35]. A learning process method was presented
for route selection based on the experiences of the traffic and ’passengers’ information [36].
In another study, an agent-based model was presented for the assignment of the vehicles
through aggregation of the demand in origins and destinations [37].

The other challenges of the ride-sharing system are related to the number of vehicles
in use and fleet allocation and the operational cost regarding these automated vehicles. An
efficient ride-sharing service must strike a balance between reducing costs for passengers
and the optimal number of vehicles. A large number of vehicles leads to traffic congestion
and makes higher costs for providers to serve passengers due to their operating and fixed
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costs. To address the challenge of vehicle congestion and determine the optimal distribution
of vehicles for a mobility-on-demand system, Wallar [38] developed an algorithm that
calculates routes in real-time to ensure that each vehicle is accessible in the available
time. A two-stage stochastic optimization model by [35] was provided to decide the
allocation of vehicles to each traffic point by maximizing the total profit of the ride-sharing
operator, assuming that the departure time of the vehicles is uncertain. In the first phase, an
optimization mechanism was used to decide the strategic planning, and in the second phase,
an agent-based simulation model tracked the movement of vehicles. A multi-objective
optimization problem has been developed to study the operational aspect related to the
shared autonomous vehicle (SAV) system using the ride-sharing method [8]. A linear
programming problem model was developed in which minimizing the number of SAVs,
the sum of travel time, the total travel distance, and the cost of infrastructure construction
is assumed to be the objectives of the proposed problem. It should be noted that this paper
does not calculate the waiting time for the SAVs to arrive at the passengers’ origin as part of
the total travel time of the passengers. Moreover, this paper considers the travel time of the
SAV rather than the travel time of the passengers. The concept of the autonomous mobility-
on-demand system was presented in [39]. In this review, the authors addressed methods
and mathematical problems such as dispatching, routing, rebalancing, and ridesharing in
relation to autonomous vehicles.

Peer-to-peer ridesharing is another research area that make ridesharing more applica-
ble. Zhoe et al. [40] presented a dynamic decentralized ridesharing platform for vehicle
assignment and routing by utilizing a traffic prediction module. They also formulated
a mathematical model to assign the vehicles to requests and corresponding routes for
candidate vehicles and paths. However, in the proposed model each vehicle could not
serve more than one request in any time interval, i.e., two passengers with similar origins
and destinations could not be picked up by the same vehicle in a common time interval.
Ramon et al. [41] proposed a framework for designing on demand multimodal transit
system which integrated ridesharing in network design. It formulated two optimization
models for network designs and fleet sizing optimization. The first model determined
bus lines and routes of shuttles and the second model optimized the number of shuttles;
meanwhile, the set of shuttle routes as ridesharing vehicles were given as an input of
optimization model and the model solved the route assignment problem instead of vehicle
routing. In [42], a dynamic tree algorithm for solving ride-sharing problem was introduced
to match peer-to-peer demands. They have defined a local accessible region for any driver
and the passengers who have the pickup and drop-off locations inside the accessible region
could be considered as potential requests for ridesharing. So, the assignment of passengers
to a vehicle is based on a local search, while in our proposed method a holistically and
integrated passenger assignment and vehicle routing problem are applied. In [34], for
each driver a set of feasible routes were defined in which passengers were picked up
and dropped off and the origin and destinations of drivers were fixed and detours were
assigned to picked up and drop off the passengers. The summary of most related researches
is presented in Table 1.

To the best of our knowledge, most researchers used decentralized models for making
decision about fleet allocation, vehicle routing, and the passenger’s assignment. In this
research, we have presented an integrated routing, fleet allocation, and the passenger’s
assignment in a centralized optimization model that optimized all holistically. Analyzing
the effect of the number of assigned vehicles to the passenger’s cost and time as the most
important criteria is another contribution of this research, while it offers a set of non-
dominated solutions to passengers for decision making based on passengers’ preferences.
Moreover, our model can be extended to other types of mobility-on-demand systems, such
as shared autonomous vehicle systems. Likewise, the capacity and operating costs of
different vehicles could vary so that it could be applied to transportation systems with
multiple types of vehicles.
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Table 1. Summary of the literature.

Literature Investigated Problem Proposed Method Objectives

(Fielbaum, 2021) [2] Assignment problem Heuristics
Minimizing passenger cost, penalty,

extra passenger cost, and the
operational cost.

(Alonso-Mora, 2017) [33] Assignment problem reactive anytime optimal
method Minimizing travel delay cost

(Alisoltani, 2021) [1] Assignment problem Heuristic Branch and bound
Minimizing distance for vehicles
and waiting time and total travel

time for passengers

(Seo, 2021) [8] Autonomous vehicle (SAV)
system design problem weighted sum method

Minimizing total travel time, total
travel distance, total numbers of

SAVs, and infrastructure
construction cost

(Smet, 2021) [34] Generalized Vehicle Routing
Problem

The late acceptance and
meta-heuristic method -

(Long, 2018) [22] Stochastic ride-sharing
problem

Monte Carlo simulation
(MCS)

Maximizing total generalized trip
cost-saving and the number of

matches
(Huang, Kai and Huang,
Yantao and Kockelman,

Kara M, 2022) [35]

vehicle assignment
problem under departure

time uncertainties

two-phase stochastic
optimization model

Maximizing the total profits of
vehicle sharing operator

(Cao, 2021) [32] Ride-sharing route problem Genetic and branch and
bound algorithm Minimizing total travel distance

(Bei, 2018) [31] Assignment problem approximation algorithm Minimizing cost function

(Masoud, 2017) [30] peer-to-peer multi-hop
ride-matching problem decomposition algorithm Maximizing total number of served

passengers

3. Mathematical Formulation

A transportation network is considered as a directed graph G(N, A), where the number
of nodes is n = |N|, and it is divided into depot nodes (O), passenger nodes (NP), and
destination nodes (ND). The set of vehicles V = {1, ..., v, ..., V} represents the maximum
available vehicle. It is clear that the optimal number of vehicles is one of the model’s
outputs. The passenger set includes the number of passengers (p), the origin of passengers
(nP), and the destination of passengers (nD). The decision variable Sv

p would be 1 if
passenger p is picked up by vehicle v and xk

ij is 1 if vehicle v travels from node i to node j.
The variable tv

i measures the arrival time of vehicle v at node i. The capacity and fixed cost
of the vehicle (i) are represented by Q(v) and FC(v). It is assumed that the arrival time
of all passengers at their origin points is known and that passengers arrive at their origin
points before the vehicles are dispatched. All sets, parameters, and decision variables of
the model are listed in Table 2.

Table 2. The set, parameters, and decision variables of the model.

Set and Parameters
P, p The set and index of all passengers
V, v The set and index of all vehicles

origin
(

p, nP) The origin matrix with values 0 and 1; If passenger p is in node nP, the corresponding value takes the
value 1, otherwise it takes the value 0.

destination
(

p, nD) The destination matrix with values 0 and 1; If nD is the destination of passenger p, the corresponding
value takes the value 1, otherwise it takes the value 0.

NP The set of passengers’ locations
ND The set of all destinations

o The Depot node

N The set of all nodes in the network (including passengers’ locations, passengers’ locations, and Depot
node, N = NP ∪ ND ∪ o)
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Table 2. Cont.

cij The traveling cost between two nodes i and j (i, j ∈ N)
Tij The traveling time between two nodes i and j (i, j ∈ N)

FC(v) The fixed shipping cost of vehicle v
Q(v) The capacity of vehicle v

Tp The time of arriving passenger p to its origin
Decision variables:

xk
ij 1, if vehicle k goes from node i to node j, 0 otherwise (i, j ∈ N).

Sv
p 1, if passenger p is picked up by vehicle v, 0 otherwise (p ∈ P).

tv
i The time when vehicle v reaches to node i.

The mathematical formulation for our model is as follows:

Z1 = Min

{
∑
v

∑
j∈N

FC(v) xv
o,j + ∑

v
∑
i∈N

∑
i∈N

Cijxv
i,j

}
(1)

Z2 = Min ∑
d∈ND

∑
p∈P

Sv
p × destination

(
p, nD

)
×
(
tv
d − Tp

)
(2)

Subject to:
∑

v∈V
Sv

p = 1∀ p ∈ P (3)

∑
p∈P

Sv
p ≤ Q(v)∀ v ∈ V (4)

∑
i ∈ N
i 6= j

xv
i,j ≥ Sv

p∀ j ∈ NP , ∀ p ∈ P, ∀ v ∈ V : origin(p, j) = 1 (5)

∑
j ∈ N
j 6= o

xv
o,j ≥ Sv

p∀ p ∈ P, ∀ v ∈ V (6)

∑
i ∈ N
i 6= j

xv
i,j ≥ Sv

p∀ p ∈ P, ∀ v ∈ V, ∀j ∈ ND : destination(p, j) = 1 (7)

∑
i ∈ N
i 6= j

xv
i,j −∑

i
xv

j,i = 0∀ j ∈ NP, ∀ v ∈ V (8)

∑
j ∈ N
j 6= o

xv
o,j ≤ 1∀ v ∈ V (9)

∑
i∈NP

∑
j∈ND

xv
i,j ≤ 1∀v ∈ V (10)

∑
j ∈ ND

j 6= i

xv
i,j ≤ 1i ∈ ND, ∀ v ∈ V (11)

tv
j = ∑

i 6=j
xv

i,j ∗
[
tv
i + Tij

]
∀ j ∈ N, j 6= o, ∀ v ∈ V (12)

tv
o = 0∀ v ∈ V (13)
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xv
i,j ≤ ∑

p∈P
Sv

p∀ i, j ∈ N, ∀ v ∈ V (14)

∑
j∈Np∪o

xv
i,j = 0∀i ∈ ND, ∀ v ∈ V (15)

∑
i ∈ ND

i 6= j

xv
i,j ≥ ∑

u ∈ ND

u 6= j

xv
j,u∀j ∈ ND, ∀ v ∈ V (16)

xv
i,j, Sv

p ∈ {0, 1}, tv
j ∈ Int+∀ i, j ∈ N, ∀ v ∈ V, ∀ p ∈ P (17)

As can be seen, the proposed mathematical model contains two objective functions.
The first objective function (Z1) minimizes the total cost, including the fixed vehicle and
travel costs. The second objective function (Z2) also minimizes the total time required for
passengers to reach their destination, including the passengers’ waiting time until they are
picked up by the vehicles and the passengers’ travel time.

Constraint (3) guarantees that each passenger is picked up by exactly one vehicle.
Inequality (4) states that the number of passengers in each vehicle must not exceed the
vehicle’s capacity. Constraint (5) shows that if passenger p is picked up by vehicle v, the
vehicle must enter passenger p’s node. According to constraint (6), if a passenger is picked
up by vehicle v, the vehicle must be dispatched from origin o. Constraint (7) guarantees that
if passenger p is picked up by vehicle v, the vehicle must enter passenger p’s destination
node. Equation (8) is a degree constraint where if vehicle v travels to node i

(
i ∈ ND), it

should pass through that node. Constraint (9) shows that each vehicle travels at most one
route from the origin node. Moreover, according to this constraint, not all vehicles need
to be dispatched. Constraint (10) states that each vehicle cannot travel to more than one
destination point from all passenger nodes. Constraint (11) ensures that each vehicle can
only travel to a maximum of one of the destination nodes and one other destination point
from each destination point. Constraint (12) specifies when vehicle v reaches node j. This
constraint prevents the formation of sub-tours. Based on equation (13), the initial time when
leaving the source node is zero for all vehicles. Constraint (14) states that a trip from node i
to node j by vehicle v is possible only if vehicle v is sent from the origin. Constraint (15)
prevents vehicle v from returning from the destination nodes to the passenger and origin
nodes. Constraint (16) states that vehicle v can only leave destination node j if vehicle v has
arrived at that destination node. Finally, constraint (17) shows the domain of each variable.

As can be seen, a part of the Z2 is obtained by multiplying a binary variable (Sv
p) by an

integer variable (tv
d), which is nonlinear. To linearize Z2, we name the multiples of Sv

p and
tv
d as hv

d, and add the following constraints (constraints (18–20)).

hv
d ≤ M× Sv

p∀d ∈ ND, ∀p ∈ P, ∀ v ∈ V (18)

hv
d ≤ tv

d∀d ∈ ND, ∀ v ∈ V (19)

tv
d − hv

d + M× Sv
p ≤ M∀d ∈ ND, , ∀p ∈ P, ∀ v ∈ V (20)

where M is a very large number.
Therefore, according to the above explanations, Z2 changes to the constraint (21).

Z2 = Min ∑
d∈ND

∑
p∈P

hv
d × destination

(
p, nD

)
− Sv

p × Tp (21)

In constraint (12), which is nonlinear, the multiples of the two variables xv
i,j and

tv
i is called gv

i,j, and similar to Bab, we convert it to its linear equivalent based on the
following constraints.

gv
i,j ≤ M× xv

i,j∀ i, j ∈ N, ∀ v ∈ V (22)

gv
i,j ≤ tv

i ∀ i, j ∈ N, ∀ v ∈ V (23)
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tv
i − gv

i,j + M× xv
i,j ≤ M∀ i, j ∈ N, ∀ v ∈ V (24)

Thus, constraint (12) changes to constraint (25).

tv
j = ∑

i 6=j
gv

i,j + ∑
i 6=j

xv
i,j × Tij∀ j ∈ N, j 6= o, ∀ v ∈ V (25)

4. Multi-Objective Method

Several methods for solving multi-objective optimization problems have been pre-
sented, such as goal programming (GP), weighted sum method (WSM), epsilon constraint
(EC), augmented epsilon constraint (AUGMECON), and lexicography (Lex) [43]. In addi-
tion, meta-heuristic methods (e.g., the non-dominated sorting genetic algorithm (NSGA II))
have been developed to solve complex MODM or large-scale problems [44].

In any MODM solution, whether exact or meta-heuristic methods, the goal is to find
an efficient solution set where the values of the objective function are non-dominated and
located on the Pareto solution [45]. AUGMECON is an efficient exact method that prevents
from weakly pareto solutions and has higher calculation speed rather than epsilon con-
straint (EC) as it steers clear of redundant iterations. Whereas, multi-objective evolutionary
algorithms (MOEA) can speedily discover pareto solutions [46]. Around MOEA algorithm,
NSGA II is recognized as an effective algorithm and recommended in the literature [47].
As a result, the AUGMECON method is used as an exact method to obtain exact Pareto
solutions and to show the relationship between the objectives and the NSGA II algorithm
developed for large-scale problems.

a. Augmented epsilon constraint method

As mentioned earlier, several methods have been proposed for solving multi-objective
problems, with the epsilon constraint (EC) method being one of the most popular. In this
method, one of the objective functions is considered the principal function, and the others
are applied to the problem as constraints.

Several developments have been presented for EC to make it more efficient. The
augmented epsilon constraint (AUGMECON) presented by George Mavrotas is one of the
most efficient techniques [46]. AUGMECON includes the following steps:

1st Step:
One of the objective functions is considered principal. Here, the first objective function

(Z1) is principal.
2nd Step:
The problem is solved by considering an objective function, and the optimal value

of each objective function is determined. To be specific, the problem with Z1 and Z2 are
solved independently.

3rd Step:
The lexicographic method is used to determine second objective function’s best and

worst solution. Accordingly, the best solution for the second objective function is its
optimal value when solved individually as an objective function. Then, the worst value
of the second objective function is determined by optimizing it and considering the first
objective function as a constraint in its optimal value. Thus, the interval for second objective
function is determined. [

Zmax
2 , Zmin

2

]
(26)

r2=Zmax
2 − Zmin

2 (27)

4th Step:
The interval between two optimal values of the second objective function is divided

into a defined (qi), and a table for the epsilon values is created.

εk
2 = Zmax

2 − r2

qi
∗ k k = 0, 1, . . . , qi (28)
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5th Step:
The problem is solved with the principal objective function by considering each

epsilon. Accordingly, the constraints of the secondary objective functions are transformed
into equivalent constraints by using shortage or surplus variables. Moreover, the problem
is solved, and efficient solutions are generated.

The new problem is defined as follows:

min{Z1(x) + δ ∗ (s2)}Z2(x) = ε2 + s2x ∈ X, si ∈ R+ (29)

6th Step:
Finally, in each round by solving the new problem and considering different epsilon

values, a part of the Pareto solutions is extracted.

b. NSGA II

One of the most popular and efficient MOEAs is the NSGAII algorithm. It has been
presented by Deb et al. [48]. The Pareto solutions are ranked and sorted by non-dominated
crowding and sorting distance operators in this algorithm. A double-point crossover and
the insertion, swap, and reversion operators for mutation and roulette wheel selection are
used to generate offspring from the parent population. Then, each of the objective functions
is evaluated individually. Pareto fronts are created by ranking the population based on
the non-dominated sorting process. Ultimately, different non-dominated front solutions
engross the new population in terms of their ranks. After the completion of each round, a
non-dominated Pareto set is captured. Here, we present the pseudocode of the main phases
of the NSGA II algorithm in Algorithm 1 [47].

Algorithm 1. NSGA-II Algorithm.

Determining parameters (population size, mutation rate, iteration count)

2: Generating P random populations
3: Checking and modifying the feasibility of each individual
4: Calculating the objectives individually
5: Calculating the crowding distance based on determining the rank of each solution
6: chromosome selection by the binary tournament selection
7: Using mutation operators and crossover
8: Creating Q offspring
9: For i = 1 to “iteration count”
10: for any member of the population
11: Determining the solution rank
12: Applying Crowding distance operator in order to sort the last pareto front solutions
13: end
14: best solution selection
15: Creating the upcoming generation
16: Selection by roulette wheel
17: Recombining and mutation
18: end
19: End

c. Solution representation in NSGA II

Primarily, the assigned passenger to each vehicle must be determined. For this purpose,
the first chromosome structure should be designed. A vector is generated from random
numbers between 0 and 1, while the size of the vector is equal to the number of passengers
plus the number of vehicles minus 1. Then, this vector converts to a vector of integer
numbers by arranging and determining the position of each vector member. Moreover, the
elements of the new vector that have values less than or equal to the sum of passengers are
considered as passenger’s position and the other elements (with values greater than sum of
passengers) are vehicle positions. The position of vehicles is considered as a separator and
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each passenger is assigned to its first right vehicle. For example, if there are four customers
and four vehicles, a random vector could look like Figure 1:
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Therefore, elements 1, 3, and 6 (equal to 5, 6, and 7) are considered as the vehicle
positions and separators. According to the designed chromosome, the arrangement and
passengers assigned to each vehicle are as follows:

Vehicle 1: No passenger assigned (because there is no passenger on the left of
this vehicle)

Vehicle 2: Passenger No. 1
Vehicle 3: Passengers No. 2 and 3
Vehicle 4: Passenger No. 4
The assignment and arrangement of passengers visited in each vehicle are obtained

based on the order of elements in the chromosome. Accordingly, the motion path of
each vehicle is determined. For this purpose, each vehicle initiates the movement from
the depot and travels to the starting point of the passengers in the order of determined
arrangement according to the chromosomes. The K-nearest neighbor (KNN) algorithm is
used to find the paths of the vehicles to reach the nearest node. The algorithm finds the
shortest path between two nodes to get from one passenger origin to the next passenger
origin. Furthermore, this algorithm preferably determines the closest passenger destination
to the last node visited by the customer, and the vehicle travels to the closest destination.
Furthermore, this procedure continues until, first, the origin and then, the destination of all
customers associated with the respective vehicle have been visited.

Solution Feasibility
To confirm the feasibility of the chromosome solutions, it is necessary to verify that

the number of passengers assigned to each vehicle does not exceed its capacity. For this
purpose, we use a penalty function as follows.

PFv = max
(

0,
UCv

Q(v)
− 1
)

(30)

In which UCv is the number of passengers assigned to vehicle v, Q(v) is the capacity
of vehicle v, and PFv is the amount of capacity violation for vehicle v. According to this
equation, the amount of violation is calculated when the number of passengers assigned
to the vehicle exceeds its capacity. The average violation of all vehicles is multiplied by a
large number and added to the objective functions. Therefore, the infeasible solutions are
excluded from the algorithm calculation process.

Considering the violation functions, the objective functions are as follows:

Z1 = Z,
1 + M

(
PF
)

(31)

Z2 = Z,
2 + M

(
PF
)

(32)

where Z,
k is the value of the kth objective function, M is the large number, and PF is the

mean value of the penalty functions.
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Mutation
Insertion, swap, and reversion operators are employed for mutation.
Swap
This operator selects two points from the chromosome randomly and substitutes

them. An example is presented in Figure 2. The blue and yellow points show the
substituent points.
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Insertion
This operator randomly selects two points from the chromosome and moves the first

point to the right of the second point. An example is presented in Figure 3. The blue point
is a random point which moves to the next of second random point (yellow).
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Reversion
This operator randomly selects two points from the chromosome, substitutes them,

and reverses the values of the two points. Figure 4 shows an example for reversion operator.
The blue and yellow points show the substituent points.
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Crossover
A double-point crossover operator is used for the crossover. In this method, two

points are selected, the points between these two points in two parents are shifted, and the
children’s chromosomes are obtained. In Figure 5 an example of parents and the results of
crossover (children) is presented. The red points show the crossover points and the blue
and green points are swapping points.
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5. Computational Results

This section presents (1) the small-scale numerical examples and (2) the practical
application. In the first section, the results of the AUGMECON methods and the NSGA II
algorithm are compared for small to medium cases to measure the quality of the NSGA II
solutions. In the second section, a real world case study is solved by NSGA II with different
parameters, and the results are analyzed.

a. Comparison between AUGMECON and NSGA II

The various small- and medium-scale problems are solved by AUGMECON and
NSGA II. The AUGMECON method is developed in GAMS, and NSGA II is coded in
MATLAB. As mentioned earlier, the problem complexity presented in NP-hard and exact
methods such as AUGMECON cannot solve large-scale problems in a reasonable time. An
efficient method of solving large-scale problems is a heuristic algorithm such as NSGA II
and MOPSO. To test the efficiency of the proposed NSGA II algorithm, different problems
with different parameters and size are solved using both methods, the results are compared,
and running times are noted. In all problems, the fixed cost for vehicle assignment is
assumed to be 4 and 1000, respectively. To understand the results, we start by setting the
arrival time of all passengers at the starting points to zero.

To calculate the error between the AUGMECON and NSGA II algorithms, the mean
absolute percentage error (MAPE) is calculated. For problems (1) to (7), the results of
the two algorithms are exactly the same, and the Pareto solution points are completely
compatible. For problems (2), (4), and (7), the NSGA II algorithm found one more Pareto
solution. The problem parameters and the comparison between the results of the two
algorithms are summarized in Table 3. All tests were performed on a laptop with 12 GB of
memory and an i5-1135G7 CPU 2.40 GHz.

Table 3. Comparison between AUGMECON and NSGA II.

Problem
Number Method

Maximum
Number of

Vehicle

Passenger
Number

Network
Size Run Time (s)

Number of
Pareto Front

Solutions
MAPE (%)

1
NSGA II 4

3 7
0.78456 3

0AUGMECON 4 8.677 3

2
NSGA II 4

4 7
0.7451 4

0AUGMECON 4 12.241 3

3
NSGA II 4

6 7
0.87662 3

0AUGMECON 4 198.141 3

4
NSGA II 4

8 7
0.6805 4

0AUGMECON 4 388.575 3

5
NSGA II 4

3 10
0.7764 2

0AUGMECON 4 4.79 2

6
NSGA II 4

6 10
0.7325 4

0AUGMECON 4 2866.67 4

7
NSGA II 4

8 10
1.085 3

0AUGMECON 4 17902.4 3

8
NSGA II 6

6 10
4.37 6

% 0.07AUGMECON 6 81,063.8 5

The Pareto fronts for the different problems are shown in Figure 6. The red points show
the pareto front set of the AUGMECON method and the yellow points are the NSGA II
pareto set. The points which are common in both algorithms are green.

The size of problem is growing from problem (1) to (8). In most of the problems, the
NSGA II and AUGMECON generated very close pareto front sets. AUGMECON solutions
are optimal, but it needs much time for medium or large-scale problem, while NSGA II is
capable of finding the optimal or near to optimal solutions in much less than time.
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Figure 6. The Pareto front for test problems.

To evaluate this model for a problem with 10 nodes, 6 passengers, and 6 available
vehicles, we ran it in GAMS for 23 h. However, the method found the optimal solutions,
but it could not be an expectable time for real cases which have significantly larger scales.
Figure 7 shows the runtime for a problem with 10 nodes, 4 available vehicles, and a
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different number of passengers. The larger number of passengers makes the runtime
increase exponentially. The runtime of the problem also depends strongly on the number
of available vehicles and the size of the network.
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Figure 7. Runtime for AECAUGMECON method.

As Table 3 shows, the NSGA II algorithm can find more Pareto-optimal solutions
than the AUGMECON method. In addition, it is as accurate as AUGMECON, with much
faster simulations run time. For example, the results from a test problem are shown
in Section 5 and Figures 9–13. In this problem, node 1 is the depot, node 8, node 9, and
node 10 are destinations, and the numbers on the arcs show travel times. It is assumed
that travel time is the same as travel cost. Each figure shows the routes of each vehicle
and the passengers assigned to that vehicle. For example, in solution 1 (found by both
AUGMECON and NSGA II), the first vehicle route is [1-4-5-8], and passenger 5 in node 4 is
picked up and delivered in node 8. To calculate the first objective function, we need to first
calculate the fixed cost. The fixed cost equals the number of assigned vehicles multiplied
by their respective costs: 5 vehicles × 1000 credits. The second cost we need to calculate is
the variable cost, which is equal to the sum of the distances traveled by each vehicle, which
is 29. The second objective function is the total time of arrival of all passengers. The time
taken by the first passenger picked up by vehicle 5 consists of two parts: the waiting time
for the vehicle to arrive at node 2, which is equal to 1, and the travel time to arrive from
node 2 (origin) to node 8 (destination), which is equal to 3. So, the total time for passenger
1 is equal to 4. The total time for all passengers in solution 1 is 43.
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Figure 8. Solution 1 (Z1 = 5029, Z2 = 43) by AUGMECON and NSGA II. 
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Figure 9. Solution 2 (Z1 = 3029, Z2 = 52) by AUGMECON and NSGA II. 
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Figure 8. Solution 1 (Z1 = 5029, Z2 = 43) by AUGMECON and NSGA II.
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Figure 9. Solution 2 (Z1 = 3029, Z2 = 52) by AUGMECON and NSGA II. 
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Figure 9. Solution 2 (Z1 = 3029, Z2 = 52) by AUGMECON and NSGA II.
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 Figure 10. Solution 3 (Z1 = 3026, Z2 = 53) by NSGA II.
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Figure 11. Solution 4 (Z1 = 4033, Z2 = 46) by AUGMECON and NSGA II. 
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Figure 12. Solution 5 (Z1 = 2026, Z2 = 60) by AUGMECON and NSGA II. 
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Figure 13. Solution 6 (Z1 = 2022, Z2 = 66) by AUGMECON and NSGA II. 
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b. Case study

To demonstrate how NSGA II can be applicable in a real-world case, this paper uses
data from the Sioux Falls network, a real-world transportation network available at the
“TransportationNetworks” GitHub repository [49]. The data has 24 nodes and 76 links. The
first node is considered a virtual depot, and nodes 1 to 20 are passenger nodes. Nodes 21 to
24 are supposed to be destination points. Figure 14 shows the map of Sioux Falls. A total of
439 passengers travels from nodes 1 to 20 (origin) to nodes 21 to 24 (destination).
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There are four different ways to evaluate the impact of ridesharing on the average
travel time per person. The figure shows travel time per passenger (red line) and costs per
passenger (blue column) over the different scenarios. In the first scenario, no ride-sharing
strategy (vehicle capacity = 1) is applied. In these states, travel times per passenger are
the lowest. In the non-ride-sharing scenario, there is only one solution since it is a single
objective with a travel time objective function. The best optimal travel time in the non-
ride-sharing scenario is 25.37 min, and the cost per passenger with fixed cost = 1000 is
1025.374. In the second through fourth scenarios, capacity and fixed cost are considered
(2,1000), (3,1000), and (4,1000), respectively. The pareto fronts of these scenarios are shown
in Figures 15–17. As expected, the first objective (total cost) has a high reverse correlation
with second objective function (total passengers travel time).
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Figure 15. Pareto front for Capacity = 2 and Fixed Cost = 1000.
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Figure 17. Pareto front for Capacity = 4 and Fixed Cost = 1000.

Figures 18–20 demonstrate the results of the pareto graph relationship between the
cost and time from the passenger’s perspective. In any scenario, a large variety of solutions
are reachable in which the passengers can select the desirable combination of cost and time.
These selections could be considered as a guideline for ridesharing service development
to satisfy the passengers’ expectations. When the capacity of the vehicles is increased, the
total cost would be decreased while total reaching time would be increased. However,
all solutions have a higher reaching time and lower cost than the condition without ride-
sharing Figure 21 shows the relationship between the capacity of the vehicles and the
travel time per passenger. When the capacity of the vehicles is increased, more passengers
are carried in a common vehicle, which increases the waiting time for passengers and
consequently increases the travel time. Meanwhile, the increscent in reaching time is not
generally ineligible and in the worst case, the reaching time exceeds less than %40 rather to
no ridesharing strategy.
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Figure 18. Pareto solutions (Capacity = 2, Fixed cost = 1000).
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Figure 19. Pareto solutions (Capacity = 3, Fixed cost = 1000).
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Figure 20. Pareto solutions (Capacity = 4, Fixed cost = 1000).
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Figure 21. The relationship between reaching time and vehicle’s capacity.
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Compared to ridesharing, the cost of provisioning when no ridesharing occurs is
highest. This is because each passenger was carried by a vehicle assigned exclusively to
them, while if the vehicle capacity is increased, the number of the assigned vehicles would
be less than the number of the passengers. Twelve scenarios are considered to compare the
cost per passenger. In each scenario, two parameters are changed: capacity and fixed costs.
Figure 22 shows the effects of the parameters on the cost per passenger.
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Figure 22. The relationship between average cost per passenger with capacity and fixed cost.

As you can see, when the number of passengers in the vehicle increases, the cost per
passenger decreases. In current transportation systems, most vehicles have a capacity of
four or more, but only one or two people use the car per trip so they pay the cost of vehicle
with four capacities but the vehicle is utilized as a single or double seated car. By applying
the ridesharing, the cost of trips would decrease about %40 in average. For example, the
average cost per passenger for the vehicle with capacity = 3 and fixed cost = 800 is lower
than for the vehicle with capacity = 1 and fixed cost = 600. Additionally, the average cost
per passenger for a vehicle with an average capacity of four (4) passengers and a fixed cost
of $1000 is almost the same as for a vehicle with an average capacity of one (1) passenger
and a fixed cost of $600. In addition, increasing the average capacity would increase the
travel time, so it is important for the provider to find a balance between average cost and
travel time.

6. Conclusions

A bi-objective integer optimization model is developed that integrates vehicle assign-
ment, vehicle routing, and passenger assignment in the context of a ride-sharing strategy
that allows a vehicle to be used for more than one passenger to reduce travel costs. Two
solution approaches are used to solve the model. The first approach is AUGMECON, an
exact method, and the second approach is NSGA II, a heuristic algorithm. For small-scale
problems, the results of the two methods are quite the same, while the runtime for NSGA
II is much lower. The model can handle the demand of passengers with different origins
and destinations with a common vehicle. In addition, passengers with different origins
or destinations, or both, can be picked up by a common vehicle. This approach strikes
a balance between passenger travel time and mobility provider costs. Mobility service
provider costs include fixed costs related to the number of assigned vehicles and vari-
able costs related to the distance traveled by the vehicles. Alongside passengers’ benefits,
ridesharing lead to reduction in traffic congestion and emission and could be a potential
candidate for sustainable transportation development. A real-world case study from Sioux
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Falls is cited to illustrate the applicability of the proposed model. Finally, various sensi-
tivity analysis scenarios are conducted to determine the impact of vehicle capacity and
fixed costs on passenger arrival time and ridership costs. In this case study, researchers
found that ridesharing did not significantly affect travel time for passengers, but it did
make it more economical to use the ride-sharing service. The proposed model could be
beneficial for network design with ridesharing to find the optimum capacity of vehicles.
It also supports mobility service providers to identify the fleet numbers to respond to
passenger’s expectations.

There are several possible future research areas for this work. One suggestion is to
capture uncertainty by modeling stochastic situations such as passenger arrival times and
travel times between depots. Additionally, the model could be extended by considering
the depot’s location as one of the outputs of the optimization model. Moreover, given that
multiple depots are normally used in real-world train scheduling, this problem could be
extended to handle multiple depots.
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